Person: Ortiz-Monasterio, I.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Ortiz-Monasterio
First Name
I.
Name
Ortiz-Monasterio, I.
ORCID ID
0000-0002-2572-32197 results
Search Results
Now showing 1 - 7 of 7
- Optimal sample size and composition for crop classification with Sen2-Agri’s random forest classifier(MDPI, 2023) Schulthess, U.; Rodrigues, F.; Taymans, M.; Bellemans, N.; Bontemps, S.; Ortiz-Monasterio, I.; Gerard, B.; Defourny, P.
Publication - Bayesian modelling of phosphorus content in wheat grain using hyperspectral reflectance data(BioMed Central, 2023) Pacheco Gil, Rosa Angela; Velasco Cruz, C.; Pérez-Rodríguez, P.; Burgueño, J.; Pérez-Elizalde, S.; Rodrigues, F.; Ortiz-Monasterio, I.; Del Valle Paniagua, D.; Toledo, F.H.
Publication - High-resolution airborne hyperspectral imagery for assessing yield, biomass, grain N concentration, and N output in spring wheat(MDPI, 2021) Raya-Sereno, M.D.; Ortiz-Monasterio, I.; Alonso-Ayuso, M.; Rodrigues, F.; Rodríguez, A.A.; González Pérez, L.; Quemada, M.
Publication - Multi-temporal and spectral analysis of high-resolution hyperspectral airborne imagery for precision agriculture: Assessment of wheat grain yield and grain protein content(MDPI, 2018) Rodrigues, F.; Blasch, G.; Defourny, P.; Ortiz-Monasterio, I.; Schulthess, U.; Zarco-Tejada, P.J.; Taylor, J.A.; Gerard, B.This study evaluates the potential of high resolution hyperspectral airborne imagery to capture within-field variability of durum wheat grain yield (GY) and grain protein content (GPC) in two commercial fields in the Yaqui Valley (northwestern Mexico). Through a weekly/biweekly airborne flight campaign, we acquired 10 mosaics with a micro-hyperspectral Vis-NIR imaging sensor ranging from 400-850 nanometres (nm). Just before harvest, 114 georeferenced grain samples were obtained manually. Using spectral exploratory analysis, we calculated narrow-band physiological spectral indices-normalized difference spectral index (NDSI) and ratio spectral index (RSI)-from every single hyperspectral mosaic using complete two by two combinations of wavelengths. We applied two methods for the multi-temporal hyperspectral exploratory analysis: (a) Temporal Principal Component Analysis (tPCA) on wavelengths across all images and (b) the integration of vegetation indices over time based on area under the curve (AUC) calculations. For GY, the best R2 (0.32) were found using both the spectral (NDSI-Ri, 750 to 840 nm and Rj, ±720-736 nm) and the multi-temporal AUC exploratory analysis (EVI and OSAVI through AUC) methods. For GPC, all exploratory analysis methods tested revealed (a) a low to very low coefficient of determination (R2 ? 0.21), (b) a relatively low overall prediction error (RMSE: 0.45-0.49%), compared to results from other literature studies, and (c) that the spectral exploratory analysis approach is slightly better than the multi-temporal approaches, with early season NDSI of 700 with 574 nm and late season NDSI of 707 with 523 nm as the best indicators. Using residual maps from the regression analyses of NDSIs and GPC, we visualized GPC within-field variability and showed that up to 75% of the field area could be mapped with relatively good predictability (residual class: -0.25 to 0.25%), therefore showing the potential of remote sensing imagery to capture the within-field variation of GPC under conventional agricultural practices.
Publication - Recentes avancos em aplicacoes de sensoriamento remoto para agricultura de precisao: estudos de casos do Centro Internacional de Melhoramento de Milho e Trigo (CIMMYT)(CIMMYT, 2017) Rodrigues, F.; Ortiz-Monasterio, I.; Schulthess, U.; Gerard, B.
Publication - Recent advancements in application of UAVs and remote sensing for precision agriculture and high-throughput phenotyping(CIMMYT, 2016) Rodrigues, F.; Schulthess, U.; Ortiz-Monasterio, I.; Gerard, B.
Publication - High resolution hyperspectral imagery to assess wheat grain protein in a farmer's field(CIMMYT, 2016) Rodrigues, F.; Ortiz-Monasterio, I.; Zarco-Tejada, P.J.; Toledo, F.H.; Schulthess, U.; Gerard, B.
Publication