Person: Alvarado Padilla, J.I.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Alvarado Padilla
First Name
J.I.
Name
Alvarado Padilla, J.I.
8 results
Search Results
Now showing 1 - 8 of 8
- Don Lupe Oro C2020: nueva variedad de trigo duro para el noroeste de México(Sociedad Mexicana de Fitogenetica, 2022) Borbón Gracia, A.; Díaz-Ceniceros, H.L.; Chavez-Villalba, G.; Ammar, K.; Fuentes Dávila, G.; Alvarado Padilla, J.I.; Huerta-Espino, J.
Publication - Borlaug 100, variedad de trigo harinero para condiciones de riego del Noroeste de México(Sociedad Mexicana de Fitogenetica, 2021) Chavez-Villalba, G.; Camacho Casas, M.A.; Alvarado Padilla, J.I.; Huerta-Espino, J.; Villaseñor Mir, H.E.; Ortiz-Monasterio, I.; Figueroa, P.
Publication - Correction to: Strategic crossing of biomass and harvest index—source and sink—achieves genetic gains in wheat (Euphytica, (2017), 213, 257, 10.1007/s10681-017-2040-z)(Springer, 2018) Reynolds, M.P.; Pask, A.; Hoppitt, W.J.E.; Sonder, K.; Sukumaran, S.; Molero, G.; Saint Pierre, C.; Payne, T.S.; Singh, R.P.; Braun, H.J.; González, F.G.; Terrile, I.I.; Barma, N.C.D.; Hakim M.A.; He Zhonghu; Zheru Fan; Novoselovic, D.; Maghraby, M.; Gad, K.I.M.; Galal, E.G.; Hagras, A.; Mohamed M. Mohamed; Morad, A.F.A.; Kumar, U.; Singh, G.P.; Naik, R.; Kalappanavar, I.K.; Biradar, S.; Prasad, S.V.S.; Chatrath, R.; Sharma, I.; Panchabhai, K.; Sohu, V.S.; Gurvinder Singh Mavi; Mishra, V.K.; Balasubramaniam, A.; Jalal Kamali, M.R.; Khodarahmi, M.; Dastfal, M.; Tabib Ghaffary, S.M.; Jafarby, J.; Nikzad, A.R.; Moghaddam, H.A.; Hassan Ghojogh; Mehraban, A.; Solís Moya, E.; Camacho Casas, M.A.; Figueroa, P.; Ireta Moreno, J.; Alvarado Padilla, J.I.; Borbón Gracia, A.; Torres, A.; Quiche, YN.; Upadhyay, S.R.; Pandey, D.; Imtiaz, M.; Rehman, M.U.; Hussain, M.; Ud-din, R.; Qamar, M.; Sohail, Q.; Mujahid, M.Y.; Ahmad, G.; Khan, A.J.; Mahboob Ali Sial; Mustatea, P.; Well, E. von; Ncala, M.; Groot, S. de; Hussein, A.H.A.; Tahir, I.S.A.; Idris, A.A.M.; Elamein, H.M.M.; Yann Manes; Joshi, A.K.
Publication - Nohely F2018, nueva variedad de trigo harinero para el Valle de Mexicali y norte de Sonora, México = Nohely F2018, a new bread wheat variety for the Mexicali Valley And Northern Sonora, Mexico(SOMEFI, 2021) Alvarado Padilla, J.I.; Chavez-Villalba, G.; Velu, G.; Camacho Casas, M.A.; Martinez Cruz, E.; Huerta-Espino, J.; Hortelano Santa Rosa, R.; Borbón Gracia, A.; Villaseñor Mir, H.E.; Díaz-Ceniceros, H.L.; Bargas-Rubalcava, Y.N.
Publication - Isabel Oro C2018: nueva variedad de trigo cristalino (Triticum durum Desf.) para el noroeste de México(SOMEFI, 2021) Alvarado Padilla, J.I.; Chavez-Villalba, G.; Ammar, K.; Hortelano Santa Rosa, R.; Huerta-Espino, J.; Martinez Cruz, E.; Borbón Gracia, A.; Villaseñor Mir, H.E.; Rodriguez Garcia, M.F.; Vargas-Ruvalcaba, Y.N.
Publication - Performance of spring wheat derived from physiological strategic crossing under Mexican growing environments(CGIAR, 2019) Piñera Chavez, F.J; Alvarado Padilla, J.I.; Ireta Moreno, J.; Macías-Cervantes, J.; Chavez-Villalba, G.; Flores, D.; Solís Moya, E.; Sukumaran, S.; Molero, G.; Reynolds, M.P.
Publication - Ñipal F2016: variety of bread wheat for the Rural District 014(INIFAP, 2018) Alvarado Padilla, J.I.; Chavez-Villalba, G.; Camacho Casas, M.A.; Huerta-Espino, J.; Villaseñor Mir, H.E.; Singh, R.P.Recent efforts in the Experimental Field of Mexicali Valley of the National Institute of Agricultural and Livestock Forestry Research have allowed the development of wheat varieties of high yield and industrial quality. Among these superior genotypes is the new bread wheat variety Ñipal F2016, which exceeds the yield of Cachanilla F2000 with 8.1%. It is also resistant to yellow linear rust, resistant to leaf rust, septoria, spica blight and shows good industrial quality. The seed of Ñipal F2016 is available in the Experimental Valley of Mexicali.
Publication - Strategic crossing of biomass and harvest index—source and sink—achieves genetic gains in wheat(Springer, 2017) Reynolds, M.P.; Pask, A.; Hoppitt, W.J.E.; Sonder, K.; Sukumaran, S.; Molero, G.; Saint Pierre, C.; Payne, T.S.; Singh, R.P.; Braun, H.J.; González, F.G.; Terrile, I.I.; Barma, N.C.D.; Abdul Hakim, M.; He Zhonghu; Zheru Fan; Novoselovic, D.; Maghraby, M.; Gad, K.I.M.; Galal, E.G.; Hagras, A.; Mohamed M. Mohamed; Morad, A.F.A.; Kumar, U.; Singh, G.P.; Naik, R.; Kalappanavar, I.K.; Biradar, S.; Prasad, S.V.S.; Chatrath, R.; Sharma, I.; Panchabhai, K.; Sohu, V.S.; Gurvinder Singh Mavi; Mishra, V.K.; Balasubramaniam, A.; Jalal Kamali, M.R.; Khodarahmi, M.; Dastfal, M.; Tabib Ghaffary, S.M.; Jafarby, J.; Nikzad, A.R.; Moghaddam, H.A.; Hassan Ghojogh; Mehraban, A.; Solís Moya, E.; Camacho Casas, M.A.; Figueroa, P.; Ireta Moreno, J.; Alvarado Padilla, J.I.; Borbón Gracia, A.; Torres, A.; Quiche, YN.; Upadhyay, S.R.; Pandey, D.; Imtiaz, M.; Rehman, M.U.; Hussain, M.; Ud-din, R.; Qamar, M.; Muhammad Kundi; Mujahid, M.Y.; Ahmad, G.; Khan, A.J.; Mehboob Ali Sial; Mustatea, P.; Well, E. von; Ncala, M.; Groot, S. de; Hussein, A.H.A.; Tahir, I.S.A.; Idris, A.A.M.; Elamein, H.M.M.; Yann Manes; Joshi, A.K.To accelerate genetic gains in breeding, physiological trait (PT) characterization of candidate parents can help make more strategic crosses, increasing the probability of accumulating favorable alleles compared to crossing relatively uncharacterized lines. In this study, crosses were designed to complement “source” with “sink” traits, where at least one parent was selected for favorable expression of biomass and/or radiation use efficiency—source—and the other for sink-related traits like harvest-index, kernel weight and grains per spike. Female parents were selected from among genetic resources—including landraces and products of wide-crossing (i.e. synthetic wheat)—that had been evaluated in Mexico at high yield potential or under heat stress, while elite lines were used as males. Progeny of crosses were advanced to the F4 generation within Mexico, and F4-derived F5 and F6 generations were yield tested to populate four international nurseries, targeted to high yield environments (2nd and 3rd WYCYT) for yield potential, and heat stressed environments (2nd and 4th SATYN) for climate resilience, respectively. Each nursery was grown as multi-location yield trials. Genetic gains were achieved in both temperate and hot environments, with most new PT-derived lines expressing superior yield and biomass compared to local checks at almost all international sites. Furthermore, the tendency across all four nurseries indicated either the superiority of the best new PT lines compared with the CIMMYT elite checks, or the superiority of all new PT lines as a group compared with all checks, and in some cases, both. Results support—in a realistic breeding context—the hypothesis that yield and radiation use efficiency can be increased by improving source:sink balance, and validate the feasibility of incorporating exotic germplasm into mainstream breeding efforts to accelerate genetic gains for yield potential and climate resilience.
Publication