Person:
Kilian, A.

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Kilian
First Name
A.
Name
Kilian, A.

Search Results

Now showing 1 - 10 of 12
  • A mid-density single-nucleotide polymorphism panel for molecular applications in cowpea (Vigna unguiculata (L.) Walp)
    (Hindawi Limited, 2024) Ongom, P.O.; Fatokun, C.; Togola, A.; Garcia-Oliveira, A.L.; Eng Hwa Ng; Kilian, A.; Lonardi, S.; Close, T.; Boukar, O.
    Publication
  • Erratum: Author Correction: Ethiopia's transforming wheat landscape: tracking variety use through DNA fingerprinting (Scientific reports (2020) 10 1 (18532))
    (Nature Publishing Group, 2023) Hodson, D.P.; Jaleta, M.; Tesfaye, K.; Yirga, C.; Beyene, H.; Kilian, A.; Carling, J.; Disasa, T.; Alemu, S.K.; Daba, T.; Misganaw, A.; Negisho, K.; Alemayehu, Y.; Badebo, A.; Abeyo Bekele Geleta; Erenstein, O.
    Publication
  • Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.)
    (Public Library of Science, 2011) Thudi, M.; Abhishek Bohra; Nayak, S.N.; Varghese, N.; Shah, T.; Penmetsa, R.V.; Thirunavukkarasu, N.; Gudipati, S.; Gaur, P.; Kulwal, P.L.; Upadhyaya, H.D.; Kavikishor, P.B.; Winter, P.; Kahl, G.; Town, C.D.; Kilian, A.; Cook, D.; Varshney, R.K.
    Publication
  • A medium density DArTag single nucleotide polymorphism panel for genetic dissections and deployment in cowpea improvement
    (American Geophysical Union, 2022) Ongom, P.O.; Fatokun, C.; Togola, A.; Garcia-Oliveira, A.L.; Eng Hwa Ng; Kilian, A.; Lonardi, S.; Close, T.; Boukar, O.
    Publication
  • BrAPI - An application programming interface for plant breeding applications
    (Oxford University Press, 2019) Selby, P.; Abbeloos, R.; Backlund, J.E.; Basterrechea Salido, M.; Bauchet, G.J.; Benites-Alfaro, O.E.; Birkett, C.; Calaminos, V.C.; Carceller, P.; Cornut, G.; Vasques Costa, B.; Edwards, J.D.; Finkers, R.; Yanxin Gao; Ghaffar, M.; Glaser, P.; Guignon, V.; Hok, P.; Kilian, A.; König, P.; Lagare, J.E.; Lange, M.; Laporte, M.A.; Larmande, P.; LeBauer, D.S.; Lyon, D.A.; Marshall, D.S.; Matthews, D.; Milne, I.; Mistry, N.; Morales, N.; Mueller, L.A.; Neveu, P.; Papoutsoglou, E.; Pearce, B.; Perez-Masias, I.; Pommier, C.; Ramirez-Gonzalez, R.H.; Abhishek Rathore; Raquel, A.M.; Raubach, S.; Rife, T.; Robbins, K.; Rouard, M.; Sarma, C.; Scholz, U.; Sempere, G.; Shaw, P.D.; Simon, R.; Soldevilla, N.; Stephen, G.; Qi Sun; Tovar, C.; Uszynski, G.; Verouden, M.
    Publication
  • Ethiopia’s transforming wheat landscape: tracking variety use through DNA fingerprinting
    (Nature Publishing Group, 2020) Hodson, D.P.; Jaleta, M.; Tesfaye, K.; Yirga, C.; Beyene, H.; Kilian, A.; Carling, J.; Disasa, T.; Alemu, S.K.; Daba, T.; Alemayehu, Y.; Badebo, A.; Abeyo Bekele Geleta; Erenstein, O.
    Publication
  • Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints
    (Nature Publishing Group, 2020) Sansaloni, C.; Franco, J.; Santos, B.; Percival-Alwyn, L.; Singh, S.; Petroli, C.; Campos, J.; Dreher, K.; Payne, T.S.; Marshall, D.S.; Kilian, B.; Milne, I.; Raubach, S.; Shaw, P.D.; Stephen, G.; Carling, J.; Saint Pierre, C.; Burgueño, J.; Crossa, J.; Huihui Li; Guzman, C.; Kehel, Z.; Amri, A.; Kilian, A.; Wenzl, P.; Uauy, C.; Banziger, M.; Caccamo, M.; Pixley, K.V.
    Publication
  • Misidentification by farmers of the crop varieties they grow: lessons from DNA fingerprinting of wheat in Ethiopia
    (Public Library of Science, 2020) Jaleta, M.; Tesfaye, K.; Kilian, A.; Yirga, C.; Habte, E.; Beyene, H.; Abeyo Bekele Geleta; Badebo, A.; Erenstein, O.
    Publication
  • From genebank to field-leveraging genomics to identify and bring novel native variation to breeding pools
    (CIMMYT, 2016) Romero, A.; Hickey, J.; Kilian, A.; Buckler, E.; Marshall, D.S.; Crossa, J.; Petroli, C.; Sansaloni, C.; Molnar, T.L.; Pixley, K.V.; Wenzl, P.; Singh, S.; Burgueño, J.; Charles Chen; Salinas García, G.; Willcox, M.; Saint Pierre, C.
    Potentially valuable genetic variation, the raw material for crop improvement, remains untapped on genebank shelves, at a time when challenges to crop production are unprecedented. Genebanks should NOT be museums. They should enable breeders worldwide to use high-value genetic diversity to meet tomorrow’s challenges
    Publication
  • A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits
    (BioMed Central, 2015) Huihui Li; Vikram, P.; Singh, R.P.; Kilian, A.; Carling, J.; Jie Song; Burgueño, J.; Bhavani, S.; Huerta-Espino, J.; Payne, T.S.; Sehgal, D.; Wenzl, P.; Singh, S.
    Genotyping-by-sequencing (GBS) is a high-throughput genotyping approach that is starting to be used in several crop species, including bread wheat. Anchoring GBS tags on chromosomes is an important step towards utilizing them for wheat genetic improvement. Here we use genetic linkage mapping to construct a consensus map containing 28644 GBS markers. Results: Three RIL populations, PBW343 × Kingbird, PBW343 × Kenya Swara and PBW343 × Muu, which share a common parent, were used to minimize the impact of potential structural genomic variation on consensus-map quality. The consensus map comprised 3757 unique positions, and the average marker distance was 0.88 cM, obtained by calculating the average distance between two adjacent unique positions. Significant variation of segregation distortion was observed across the three populations. The consensus map was validated by comparing positions of known rust resistance genes, and comparing them to wheat reference genome sequences recently published by the International Wheat Genome Sequencing Consortium, Rye and Ae. tauschii genomes. Three well-characterized rust resistance genes (Sr58/Lr46/Yr29, Sr2/Yr30/Lr27, and Sr57/Lr34/Yr18) and 15 published QTLs for wheat rusts were validated with high resolution. Fifty-two per cent of GBS tags on the consensus map were successfully aligned through BLAST to the right chromosomes on the wheat reference genome sequence. Conclusion: The consensus map should provide a useful basis for analyzing genome-wide variation of complex traits. The identified genes can then be explored as genetic markers to be used in genomic applications in wheat breeding.
    Publication