Person: Szabo, L.J.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Szabo
First Name
L.J.
Name
Szabo, L.J.
ORCID ID
3 results
Search Results
Now showing 1 - 3 of 3
- Phenotypic and genotypic characterization of Race TKTTF of Puccinia graminis f. sp. tritici that caused a Wheat Stem Rust Epidemic in Southern Ethiopia in 2013–14(American Phytopathological Society (APS), 2015) Olivera Firpo, P.D.; Newcomb, M.; Szabo, L.J.; Rouse, M.N.; Johnson, J.W.; Gale, S.; Luster, D.G.; Hodson, D.P.; Cox, J.A.; Burgin, L.; Hort, M.C.; Gilligan, C.A.; Patpour, M.; Justesen, A.F.; Hovmoller, M.S.; Woldeab, G.; Hailu, E.; Kotu, B.H.; Tadesse, K.; Pumphrey, M.; Singh, R.P.; Yue JinA severe stem rust epidemic occurred in southern Ethiopia during November 2013 to January 2014, with yield losses close to 100% on the most widely grown wheat cultivar, ‘Digalu’. Sixty-four stem rust samples collected from the regions were analyzed. A meteorological model for airborne spore dispersal was used to identify which regions were most likely to have been infected from postulated sites of initial infection. Based on the analyses of 106 single-pustule isolates derived from these samples, four races of Puccinia graminis f. sp. tritici were identified: TKTTF, TTKSK, RRTTF, and JRCQC. Race TKTTF was found to be the primary cause of the epidemic in the southeastern zones of Bale and Arsi. Isolates of race TKTTF were first identified in samples collected in early October 2013 from West Arsi. It was the sole or predominant race in 31 samples collected from Bale and Arsi zones after the stem rust epidemic was established. Race TTKSK was recovered from 15 samples from Bale and Arsi zones at low frequencies. Genotyping indicated that isolates of race TKTTF belongs to a genetic lineage that is different from the Ug99 race group and is composed of two distinct genetic types. Results from evaluation of selected germplasm indicated that some cultivars and breeding lines resistant to the Ug99 race group are susceptible to race TKTTF. Appearance of race TKTTF and the ensuing epidemic underlines the continuing threats and challenges posed by stem rust not only in East Africa but also to wider-scale wheat production.
Publication - Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control(American Phytopathological Society (APS), 2015) Singh, R.P.; Hodson, D.P.; Yue Jin; Lagudah, E.; Ayliffe, M.A.; Bhavani, S.; Rouse, M.N.; Pretorius, Z.; Szabo, L.J.; Huerta-Espino, J.; Basnet, B.R.; Lan, C.; Hovmoller, M.S.Race Ug99 (TTKSK) of Puccinia graminis f. sp. tritici, detected in Uganda in 1998, has been recognized as a serious threat to food security because it possesses combined virulence to a large number of resistance genes found in current widely grown wheat (Triticum aestivum) varieties and germplasm, leading to its potential for rapid spread and evolution. Since its initial detection, variants of the Ug99 lineage of stem rust have been discovered in Eastern and Southern African countries, Yemen, Iran, and Egypt. To date, eight races belonging to the Ug99 lineage are known. Increased pathogen monitoring activities have led to the identification of other races in Africa and Asia with additional virulence to commercially important resistance genes. This has led to localized but severe stem rust epidemics becoming common once again in East Africa due to the breakdown of race-specific resistance gene SrTmp, which was deployed recently in the ‘Digalu’ and ‘Robin’ varieties in Ethiopia and Kenya, respectively. Enhanced research in the last decade under the umbrella of the Borlaug Global Rust Initiative has identified various race-specific resistance genes that can be utilized, preferably in combinations, to develop resistant varieties. Research and development of improved wheat germplasm with complex adult plant resistance (APR) based on multiple slow-rusting genes has also progressed. Once only the Sr2 gene was known to confer slow rusting APR; now, four more genes—Sr55, Sr56, Sr57, and Sr58—have been characterized and additional quantitative trait loci identified. Cloning of some rust resistance genes opens new perspectives on rust control in the future through the development of multiple resistance gene cassettes. However, at present, disease-surveillance-based chemical control, large-scale deployment of new varieties with multiple race-specific genes or adequate levels of APR, and reducing the cultivation of susceptible varieties in rust hot-spot areas remains the best stem rust management strategy.
Publication - Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici(American Phytopathological Society (APS), 2008) Jin, Y.; Szabo, L.J.; Pretorius, Z.; Singh, R.P.; Ward, R.W.; Fetch, T.The stem rust resistance gene Sr24 is effective against most races of Puccinia graminis f. sp. tritici, including race TTKS (syn. Ug99), and is used widely in commercial wheat cultivars worldwide. In 2006, susceptible infection responses were observed on wheat lines and cultivars carrying Sr24 in a field stem rust screening nursery at Njoro, Kenya. We derived 28 single-pustule isolates from stem rust samples collected from the 2006 Njoro nursery. The isolates were evaluated for virulence on 16 North American stem rust differential lines; on wheat lines carrying Sr24, Sr31, Sr38, and SrMcN; and on a wheat cultivar with a combination of Sr24 and Sr31. All isolates were identified as race TTKS with additional virulence on Sr31 and Sr38. These isolates were divided into two groups: group A (seven isolates and the two control isolates), producing a low infection type, and group B (21 isolates), producing a high infection type on Sr24, respectively. Isolates of group B represented a new variant of race TTKS with virulence to Sr24. Eighteen simple sequence repeat (SSR) markers were used to examine the genetic relationship between these two groups of isolates in race TTKS and five North American races (MCCF, QCCQ, RCRS, RTHS, and TPMK) that are representative of distinct lineage groups. All isolates of race TTKS shared an identical SSR genotype and were clearly different from North American races. The virulence and SSR data indicated that the new variant of race TTKS with Sr24 virulence likely has arisen via mutation within the TTKS genetic lineage. We propose to revise the North American stem rust nomenclature system by the addition of four genes (Sr24, Sr31, Sr38, and SrMcN) as the fifth set. This revision recognizes the virulence on Sr31 and differentiates isolates within race TTKS into two separate races: TTKSK and TTKST, with avirulence and virulence on Sr24, respectively. The occurrence of race TTKST with combined virulence on Sr24 and Sr31 has substantially increased the vulnerability of wheat to stem rust worldwide.
Publication