Person: Jalal Kamali, M.R.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Jalal Kamali
First Name
M.R.
Name
Jalal Kamali, M.R.
7 results
Search Results
Now showing 1 - 7 of 7
- Correction to: Strategic crossing of biomass and harvest index—source and sink—achieves genetic gains in wheat (Euphytica, (2017), 213, 257, 10.1007/s10681-017-2040-z)(Springer, 2018) Reynolds, M.P.; Pask, A.; Hoppitt, W.J.E.; Sonder, K.; Sukumaran, S.; Molero, G.; Saint Pierre, C.; Payne, T.S.; Singh, R.P.; Braun, H.J.; González, F.G.; Terrile, I.I.; Barma, N.C.D.; Hakim M.A.; He Zhonghu; Zheru Fan; Novoselovic, D.; Maghraby, M.; Gad, K.I.M.; Galal, E.G.; Hagras, A.; Mohamed M. Mohamed; Morad, A.F.A.; Kumar, U.; Singh, G.P.; Naik, R.; Kalappanavar, I.K.; Biradar, S.; Prasad, S.V.S.; Chatrath, R.; Sharma, I.; Panchabhai, K.; Sohu, V.S.; Gurvinder Singh Mavi; Mishra, V.K.; Balasubramaniam, A.; Jalal Kamali, M.R.; Khodarahmi, M.; Dastfal, M.; Tabib Ghaffary, S.M.; Jafarby, J.; Nikzad, A.R.; Moghaddam, H.A.; Hassan Ghojogh; Mehraban, A.; Solís Moya, E.; Camacho Casas, M.A.; Figueroa, P.; Ireta Moreno, J.; Alvarado Padilla, J.I.; Borbón Gracia, A.; Torres, A.; Quiche, YN.; Upadhyay, S.R.; Pandey, D.; Imtiaz, M.; Rehman, M.U.; Hussain, M.; Ud-din, R.; Qamar, M.; Sohail, Q.; Mujahid, M.Y.; Ahmad, G.; Khan, A.J.; Mahboob Ali Sial; Mustatea, P.; Well, E. von; Ncala, M.; Groot, S. de; Hussein, A.H.A.; Tahir, I.S.A.; Idris, A.A.M.; Elamein, H.M.M.; Yann Manes; Joshi, A.K.
Publication - Strategic use of Iranian bread wheat landrace accessions for genetic improvement: core set formulation and validation(Wiley, 2021) Vikram, P.; Franco, J.; Burgueño, J.; Huihui Li; Sehgal, D.; Saint Pierre, C.; Ortiz, C.; Singh, V.K.; Sneller, C.; Sharma, A.R.; Tattaris, M.; Guzman, C.; Peña-Bautista, R.J.; Sansaloni, C.; Campos, J.; Thiyagarajan, K.; Fuentes Dávila, G.; Reynolds, M.P.; Sonder, K.; Velu, G.; Ellis, M.H.; Bhavani, S.; Jalal Kamali, M.R.; Roostaei, M.; Singh, S.; Basandrai, D.; Bains, N.; Basandrai, A.K.; Payne, T.S.; Crossa, J.; Singh, S.
Publication - Optimizing winter wheat resilience to climate change in rain fed crop systems of Turkey and Iran(Frontiers, 2018) Lopes, M.; Royo, C.; Álvaro, F.; Sanchez-Garcia, M.; Ozer, E.; Ozdemir, F.; Karaman, M.; Roostaei, M.; Jalal Kamali, M.R.; Pequeno, D.N.L.Erratic weather patterns associated with increased temperatures and decreasing rainfall pose unique challenges for wheat breeders playing a key part in the fight to ensure global food security. Within rain fed winter wheat areas of Turkey and Iran, unusual weather patterns may prevent attaining maximum potential increases in winter wheat genetic gains. This is primarily related to the fact that the yield ranking of tested genotypes may change from one year to the next. Changing weather patterns may interfere with the decisions breeders make about the ideotype(s) they should aim for during selection. To inform breeding decisions, this study aimed to optimize major traits by modeling different combinations of environments (locations and years) and by defining a probabilistic range of trait variations [phenology and plant height (PH)] that maximized grain yields (GYs; one wheat line with optimal heading and height is suggested for use as a testing line to aid selection calibration decisions). Research revealed that optimal phenology was highly related to the temperature and to rainfall at which winter wheat genotypes were exposed around heading time (20 days before and after heading). Specifically, later winter wheat genotypes were exposed to higher temperatures both before and after heading, increased rainfall at the vegetative stage, and reduced rainfall during grain filling compared to early genotypes. These variations in exposure to weather conditions resulted in shorter grain filling duration and lower GYs in long-duration genotypes. This research tested if diversity within species may increase resilience to erratic weather patterns. For the study, calculated production of a selection of five high yielding genotypes (if grown in five plots) was tested against monoculture (if only a single genotype grown in the same area) and revealed that a set of diverse genotypes with different phenologies and PHs was not beneficial. New strategies of progeny selection are discussed: narrow range of variation for phenology in families may facilitate the discovery and selection of new drought-resistant and avoidant wheat lines targeting specific locations.
Publication - Strategic crossing of biomass and harvest index—source and sink—achieves genetic gains in wheat(Springer, 2017) Reynolds, M.P.; Pask, A.; Hoppitt, W.J.E.; Sonder, K.; Sukumaran, S.; Molero, G.; Saint Pierre, C.; Payne, T.S.; Singh, R.P.; Braun, H.J.; González, F.G.; Terrile, I.I.; Barma, N.C.D.; Abdul Hakim, M.; He Zhonghu; Zheru Fan; Novoselovic, D.; Maghraby, M.; Gad, K.I.M.; Galal, E.G.; Hagras, A.; Mohamed M. Mohamed; Morad, A.F.A.; Kumar, U.; Singh, G.P.; Naik, R.; Kalappanavar, I.K.; Biradar, S.; Prasad, S.V.S.; Chatrath, R.; Sharma, I.; Panchabhai, K.; Sohu, V.S.; Gurvinder Singh Mavi; Mishra, V.K.; Balasubramaniam, A.; Jalal Kamali, M.R.; Khodarahmi, M.; Dastfal, M.; Tabib Ghaffary, S.M.; Jafarby, J.; Nikzad, A.R.; Moghaddam, H.A.; Hassan Ghojogh; Mehraban, A.; Solís Moya, E.; Camacho Casas, M.A.; Figueroa, P.; Ireta Moreno, J.; Alvarado Padilla, J.I.; Borbón Gracia, A.; Torres, A.; Quiche, YN.; Upadhyay, S.R.; Pandey, D.; Imtiaz, M.; Rehman, M.U.; Hussain, M.; Ud-din, R.; Qamar, M.; Muhammad Kundi; Mujahid, M.Y.; Ahmad, G.; Khan, A.J.; Mehboob Ali Sial; Mustatea, P.; Well, E. von; Ncala, M.; Groot, S. de; Hussein, A.H.A.; Tahir, I.S.A.; Idris, A.A.M.; Elamein, H.M.M.; Yann Manes; Joshi, A.K.To accelerate genetic gains in breeding, physiological trait (PT) characterization of candidate parents can help make more strategic crosses, increasing the probability of accumulating favorable alleles compared to crossing relatively uncharacterized lines. In this study, crosses were designed to complement “source” with “sink” traits, where at least one parent was selected for favorable expression of biomass and/or radiation use efficiency—source—and the other for sink-related traits like harvest-index, kernel weight and grains per spike. Female parents were selected from among genetic resources—including landraces and products of wide-crossing (i.e. synthetic wheat)—that had been evaluated in Mexico at high yield potential or under heat stress, while elite lines were used as males. Progeny of crosses were advanced to the F4 generation within Mexico, and F4-derived F5 and F6 generations were yield tested to populate four international nurseries, targeted to high yield environments (2nd and 3rd WYCYT) for yield potential, and heat stressed environments (2nd and 4th SATYN) for climate resilience, respectively. Each nursery was grown as multi-location yield trials. Genetic gains were achieved in both temperate and hot environments, with most new PT-derived lines expressing superior yield and biomass compared to local checks at almost all international sites. Furthermore, the tendency across all four nurseries indicated either the superiority of the best new PT lines compared with the CIMMYT elite checks, or the superiority of all new PT lines as a group compared with all checks, and in some cases, both. Results support—in a realistic breeding context—the hypothesis that yield and radiation use efficiency can be increased by improving source:sink balance, and validate the feasibility of incorporating exotic germplasm into mainstream breeding efforts to accelerate genetic gains for yield potential and climate resilience.
Publication - Growth habit and vernalization requirement in some of Iranian bread wheat cultivars(Research Trend, 2015) Seyyed Hamid Reza Ramazani; Mohsen Ebrahimi; Habibollah Ghazvini; Jalal Kamali, M.R.; Ali Izadi DarbandiTo determine the action of vernalization and growth habit variation in cultivars of bread wheat (Triticum aestivum L.), this research was carried out in greenhouse of Agricultural and Natural Resources Research Center of South Khorasan in 2013-2014 growing seasons. The treatments consisted of 40 cultivars of wheat and 5 levels of vernalization periods (0, 15, 30, 45 and 60 days) at ambient temperature in January and conducted with randomized complete block design with two replications. Vernalization fulfillment was determined using the final leaf number method. Fitting formula was used for each genotype. Then α and β obtained from this fitting used genotypes grouped according to the severity of its response to vernalization was used (using Wards method for cluster analysis with SPSS software). The results showed that Soissons, Zare, C.86.5, Azar2, Gaspared and Gaskogen have a highest leaves with 11 leaves in no-vernalized conditions and divided into separate groups. Roshan, Pishgam, Mihan, Tabasi, Alvand, Dena, Bezostaya, and Karaj3 were intermediate in leaf product. The rest of these were in the lowest group.
Publication - Effect of terminal heat stress on yield and yield components of spring bread wheat cultivars in Ahwaz, Iran(Electronic Center for International Scientific Information, 2012) Moshatati, A.; Siadat, S.A.; Alami-Saied, K.; Bakhshandeh, A.M.; Jalal Kamali, M.R.In order to study the effect of terminal heat stress on grain yield and yield components of spring bread wheat cultivars, a stripe block design was conducted using randomized complete block design with three replications in 35 Km north-east Ahwaz in 2007-2008 cropping season. The vertical plots included four sowing dates (06 Nov., 06 Dec., 05 Jan. and 04 Feb.) and 20 cultivars (Atrak, Arvand1, S-80-18, Star, Inia66, Bolani, Bayat, Pishtaz, Chamran, Chenab70, Darab, Dez, Roshan, Shoeleh, Kavir, Maroon, Hamoon, Hirman and Vee/Nac) were randomized in horizontal plots. The results showed that sowing date, cultivars and their interaction had significant effects on all measured traits. The highest grain yield (5.949 t/ha) was produced in sowing dates of 06 Dec. and the lowest grain yield (1.690 t/ha) was produced in sowing dates of 04 Feb. Chamran had the highest grain yield and Inia66 had the lowest grain yield. Maximum grain yield (7.039 t/ha) related to Chamran in 06 Dec. and the minimum grain yield (1.219 t/ha) belonged to Falat in 04 Feb.
Publication - Quantitative trait loci in bread wheat (Triticum aestivum L.) associated with resistance to stripe rust(Taylor & Francis, 2008) Badakhshan, H.; Mohammadi, S.A.; Zad, S.A.; Moghaddam, M.; Jalal Kamali, M.R.; Khodarahmi, M.Stripe rust is an important wheat disease worldwide and resistance to stripe rust is often not controlled by race-specific resistance genes. To identify quantitative trait loci (QTL) affecting quantitative resistance to stripe rust, 329 F2:3 families from a cross between highly resistant winter type cv. MV17 and highly susceptible spring type local cv. Bolani were used. The population was evaluated for adult plant resistance to pathotype 134E134A+ of Puccinia striiformis, in the field condition and area under the disease progress curve (AUDPC) was calculated. Fifty six polymorphic SSR markers between parental genotypes were screened in the population and linkage map was constructed using these markers. Based on composite interval mapping (CIM) 14 regions on nine (4A, 1B, 2B, 3B, 4B, 5B, 6B, 2D and 7D) out of the 21 wheat chromosomes were significantly associated with AUDPC. The effect of QTLs varied from 0.01 to 8.00% giving an aggregate effect of 34.3% for AUDPC. Leaf tip necrosis (LTN) was also recorded as presence and absence and the phenotype was used as a dominant Mendelian morphologic marker. Linkage analysis revealed association between LTN and Xbarc352 SSR marker on chromosome 7D.
Publication