Person:
Sharma, P.C.

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Sharma
First Name
P.C.
Name
Sharma, P.C.

Search Results

Now showing 1 - 8 of 8
  • Effects of tillage, crop establishment and diversification on soil organic carbon, aggregation, aggregate associated carbon and productivity in cereal systems of semi-arid Northwest India
    (Elsevier, 2019) Jat, H.S.; Datta, A.; Choudhary, M.; Yadav, A.K.; Choudhary, V.; Sharma, P.C.; Gathala, M.K.; Jat, M.L.; Mcdonald, A.
    Publication
  • Re-designing irrigated intensive cereal systems through bundling precision agronomic innovations for transitioning towards agricultural sustainability in North-West India
    (Nature Publishing Group, 2019) Jat, H.S.; Sharma, P.C.; Datta, A.; Choudhary, M.; Kakraliya Suresh Kumar; Yadvinder-Singh; Sidhu, H.S.; Gerard, B.; Jat, M.L.
    Publication
  • Exploring Potential of Pearl Millet Germplasm Association Panel for Association Mapping of Drought Tolerance Traits
    (Public Library of Science, 2015) Sehgal, D.; Skot, L.; Singh, Richa; Srivastava, R.K.; Prasad Das, S.; Taunk, J.; Sharma, P.C.; Pal, R.; Raj, B.; Hash, C.T.; Yadav, R.S.
    A pearl millet inbred germplasm association panel (PMiGAP) comprising 250 inbred lines, representative of cultivated germplasm from Africa and Asia, elite improved open-pollinated cultivars, hybrid parental inbreds and inbred mapping population parents, was recently established. This study presents the first report of genetic diversity in PMiGAP and its exploitation for association mapping of drought tolerance traits. For diversity and genetic structure analysis, PMiGAP was genotyped with 37 SSR and CISP markers representing all seven linkage groups. For association analysis, it was phenotyped for yield and yield components and morpho-physiological traits under both well-watered and drought conditions, and genotyped with SNPs and InDels from seventeen genes underlying a major validated drought tolerance (DT) QTL. The average gene diversity in PMiGAP was 0.54. The STRUCTURE analysis revealed six subpopulations within PMiGAP. Significant associations were obtained for 22 SNPs and 3 InDels from 13 genes under different treatments. Seven SNPs associations from 5 genes were common under irrigated and one of the drought stress treatments. Most significantly, an important SNP in putative acetyl CoA carboxylase gene showed constitutive association with grain yield, grain harvest index and panicle yield under all treatments. An InDel in putative chlorophyll a/b binding protein gene was significantly associated with both stay-green and grain yield traits under drought stress. This can be used as a functional marker for selecting high yielding genotypes with ‘stay green’ phenotype under drought stress. The present study identified useful marker-trait associations of important agronomics traits under irrigated and drought stress conditions with genes underlying a major validated DT-QTL in pearl millet. Results suggest that PMiGAP is a useful panel for association mapping. Expression patterns of genes also shed light on some physiological mechanisms underlying pearl millet drought tolerance
    Publication
  • The conservation agriculture roadmap for India: policy brief
    (ICAR, 2018) Jat, M.L.; Biswas, A.K.; Pathak, H.; Mcdonald, A.; Patra, A.K.; Acharya, C.B.; Sharma, P.C.; Chaudhari, S.K.; Singh, R.; Bhaskar, S.; Sharma, R.; Jat, H.S.; Agarwal, T.; Gathala, M.K.; Pal, S.; Sidhu, H.S.; Yadvinder-Singh; Chhokar, R.S.; Keil, A.; Saharawat, Y.S.; Jat, R.K.; Singh, B.; Malik, R.; Sharma, A.R.; Parihar, C.M.; Das, T.K.; Singh, V.K.; Jat, S.L.; Jha, B.K.; Pratibha, M.; Singh, P.; Singh, R.C.; Choudhary, O.P.; Sharma, S.; Satyanarayana, T.; Sidhu, B.S.; Gehlawat, S.K.; Sen, S.K.; Singh, A.K.; Sikka, A.K.
    Agriculture remains central to the Indian economy, providing livelihood to the majority of its population. Though Indian agriculture have made spectacular progress for food self-sufficiency, yet growing challenges of large management yield gaps, low water and nutrient efficiency, imbalance and inadequate use of external production inputs, diminishing farm profits, deterioration of soil health and environmental quality coupled with climate risks are major concerns. Feeding a growing population with increasing dietary preferences for resource-intensive food products is a major challenge. Moreover, with no scope for horizontal expansion of farming to produce needed food; improving agronomic productivity and achieving high and stable yields under changing and uncertain climate are important for feeding the growing population. Increasing climatic variability affects most of the biological, physical and chemical processes that drive productivity of agricultural systems. The productivity and stability of agricultural systems depends upon measurable factors and processes controlled by climate and non-climate drivers of production paradigm. It is therefore vitally important to develop strategies and practices to sustainably increase food production while increasing farm income, protecting natural resources and minimizing environmental footprints.
    Publication
  • Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India
    (Taylor & Francis, 2018) Jat, H.S.; Datta, A.; Sharma, P.C.; Kumar, V.; Yadav, A.K.; Choudhary, M.; Choudhary, V.; Gathala, M.K.; Sharma, D.K.; Jat, M.L.; Yaduvanshi, N.P.S.; Singh, G.; Mcdonald, A.
    Soil quality degradation associated with resources scarcity is the major concern for the sustainability of conventional rice-wheat system in South Asia. Replacement of conventional management practices with conservation agriculture (CA) is required to improve soil quality. A field experiment was conducted to assess the effect of CA on soil physical (bulk density, penetration resistance, infiltration) and chemical (N, P, K, S, micronutrients) properties after 4 years in North-West India. There were four scenarios (Sc) namely conventional rice-wheat cropping system (Sc1); partial CA-based rice-wheat-mungbean system (RWMS) (Sc2); CA-based RWMS (Sc3); and CA-based maize-wheat-mungbean (Sc4) system. Sc2 (1.52 Mg m−3) showed significantly lower soil bulk density (BD). In Sc3 and Sc4, soil penetration resistance (SPR) was reduced and infiltration was improved compared to Sc1. Soil organic C was significantly higher in Sc4 than Sc1. Available N was 33% and 68% higher at 0–15 cm depth in Sc3 and Sc4, respectively, than Sc1. DTPA extractable Zn and Mn were significantly higher under Sc3 and Sc4 compared to Sc1. Omission study showed 30% saving in N and 50% in K in wheat after four years. Therefore, CA improved soil properties and nutrient availability and have potential to reduce external fertilizer inputs in long run.
    Publication
  • Can productivity and profitability be enhanced in intensively managed cereal systems while reducing the environmental footprint of production? Assessing sustainable intensification options in the breadbasket of India
    (Elsevier, 2018) Kumar, V.; Jat, H.S.; Sharma, P.C.; Singh, B.; Gathala, M.K.; Malik, R.; Kamboj, B.R.; Yadav, A.K.; Ladha, J.; Raman, A.K.; Sharma, D.K.; Mcdonald, A.
    In the most productive area of the Indo-Gangetic Plains in Northwest India where high yields of rice and wheat are commonplace, a medium-term cropping system trial was conducted in Haryana State. The goal of the study was to identify integrated management options for further improving productivity and profitability while rationalizing resource use and reducing environmental externalities (i.e., “sustainable intensification”, SI) by drawing on the principles of diversification, precision management, and conservation agriculture. Four scenarios were evaluated: Scenario 1 – “business-as-usual” [conventional puddled transplanted rice (PTR) followed by (fb) conventional-till wheat]; Scenario 2 – reduced tillage with opportunistic diversification and precision resource management [PTR fb zero-till (ZT) wheat fb ZT mungbean]; Scenario 3 – ZT for all crops with opportunistic diversification and precision resource management [ZT direct-seeded rice (ZT-DSR) fb ZT wheat fb ZT mungbean]; and Scenario 4 – ZT for all crops with strategic diversification and precision resource management [ZT maize fb ZT wheat fb ZT mungbean]. Results of this five-year study strongly suggest that, compared with business-as-usual practices, SI strategies that incorporate multi-objective yield, economic, and environmental criteria can be more productive when used in these production environments. For Scenarios 2, 3, and 4, system-level increases in productivity (10–17%) and profitability (24–50%) were observed while using less irrigation water (15–71% reduction) and energy (17–47% reduction), leading to 15–30% lower global warming potential (GWP), with the ranges reflecting the implications of specific innovations. Scenario 3, where early wheat sowing was combined with ZT along with no puddling during the rice phase, resulted in a 13% gain in wheat yield compared with Scenario 2. A similar gain in wheat yield was observed in Scenario 4 vis-à-vis Scenario 2. Compared to Scenario 1, wheat yields in Scenarios 3 and 4 were 15–17% higher, whereas, in Scenario 2, yield was either similar in normal years or higher in warmer years. During the rainy (kharif) season, ZT-DSR provided yields similar to or higher than those of PTR in the first three years and lower (11–30%) in Years 4 and 5, a result that provides a note of caution for interpreting technology performance through short-term trials or simply averaging results over several years. The resource use and economic and environmental advantages of DSR were more stable through time, including reductions in irrigation water (22–40%), production cost (11–17%), energy inputs (13–34%), and total GWP (14–32%). The integration of “best practices” in PTR in Scenario 2 resulted in reductions of 24% in irrigation water and 21% in GWP, with a positive impact on yield (0.9 t/ha) and profitability compared to conventional PTR, demonstrating the power of simple management changes to generate improved SI outcomes. When ZT maize was used as a diversification option instead of rice in Scenario 4, reductions in resource use jumped to 82–89% for irrigation water and 49–66% for energy inputs, with 13–40% lower GWP, similar or higher rice equivalent yield, and higher profitability (27–73%) in comparison to the rice-based scenarios. Despite these advantages, maize value chains are not robust in this part of India and public procurement is absent. Results do demonstrate that transformative opportunities exist to break the cycle of stagnating yields and inefficient resource use in the most productive cereal-based cropping systems of South Asia. However, these SI entry points need to be placed in the context of the major drivers of change in the region, including market conditions, risks, and declining labor availability, and matching with the needs and interests of different types of farmers.
    Publication
  • Greenhouse gas measurement from smallholder production systems: guidelines for static chamber method
    (CIMMYT, 2014) Sapkota, T.; Rai, M.; Singh, L.K.; Gathala, M.K.; Jat, M.L.; Sutaliya, J.M.; Bijarniya, D.; Jat, M.K.; Jat, R.K.; Parihar, C.M.; Kapoor, P.; Jat, H.S.; Dadarwal, R.S.; Sharma, P.C.; Sharma, D.K.
    Renewed interest in quantifying greenhouse gas emissions from soil has led to development and application of multitude of techniques. But, chamber-based flux measurement technique is most common and frequently used method for GHG flux measurement in smallholder production systems. Despite the apparent conceptual simplicity of chamber-based methods, chamber design, deployment, and data analyses can have marked effects on the quality of the flux data derived from chamber-based measurement. This also have implications on making comparisons of GHGs emissions from the studies by various researchers even within similar cropping systems and management practices. Therefore, harmonization of GHGs emission studies by chamber based method is necessary. This synthesis provides standard guidelines to scientists involved in GHG quantification by using chamber based methods as well as to facilitate inter study comparison. As any methodology or protocol, chamber methodology has also gone rigorous modification, refinement and improvement over time. Further, type of materials used, dimension, place and time of deployment, sampling time and frequency and analysis method differs slightly from location to location based on the systems being studied, resources availability and so on. Efforts have been made to summarize minimum requirement but also highlighting the need of site-specific consideration. Adoption of harmonized methods that is sensitive and unbiased will result into less error and allows accurate interpolation and extrapolation over time and space.
    Publication
  • Operational manual for turbo happy seeder: technology for managing crop residues with environmental stewardship
    (CIMMYT, 2013) Jat, M.L.; Kapil; Kamboj, B.R.; Sidhu, H.S.; Singh, M.; Bana, A.; Bishnoi, D.K.; Gathala, M.K.; Saharawat, Y.S.; Kumar, V.; Kumar, A.; Jat, H.S.; Jat, R.K.; Sharma, P.C.; Sharma, R.; Singh, R.; Sapkota, T.; Malik, R.; Gupta, R.K.
    Multiple challenges associated with plough based conventional production practices that include deteriorating natural resources, declining factor productivity, yield plateau, shortages of water & labour and escalating costs of production inputs coupled with emerging challenges of climate change both in irrigated intensive systems as well as low intensity rainfed ecologies are the major threat to food security of South Asia (Jat et al, 2009; Ladha et al, 2009; Chauhan et al, 2012). Water and labour scarcity and timeliness of farming operations specially crop establishment under the emerging climatic uncertainties are becoming major concerns of farming all across farmer typologies, production systems and ecologies in the region (Chauhan et al, 2012). In many parts of South Asia, over-exploitation and poor management of groundwater has led to declining water table and negative environmental impacts. Conventional tillage based flooded rice receiving the largest amount of fresh water compared to any other crop is the major contributor to the problems of declining groundwater table ranging from 0.1– 1.0 m year-1 specially in north-west India and increasing energy use and costs. The problem has further been intensified with the unavailability of labour in time, and multi-fold increase in labour costs. Fragmented land holdings and nucleus farm families further exacerbates the problem of availability of farm labour. Potential solutions to address these issues include a shift from intensive tillage based practices to conservation agriculture (CA) based crop management systems (Saharawat et al, 2010; Jat et al, 2012; Gathala et al, 2013). Direct drilling (seeding/planting with zero tillage technology) is one such practice that potentially addresses the issues of labor, energy, water, soil health etc (Malik et al 2005; Gupta and Sayre, 2007; Jat et al, 2009; Ladha et al, 2009; Gathala et al, 2011; Jat et al, 2013) and adaptations to climatic variability (Jat et al, 2009; Malik et al, 2013). One of the key elements of CA is rational soil cover with organics (crop residues, cover crops etc) has greater relevance not only in terms of managing the agricultural waste but particularly for eliminating burning, improving soil health, conserve water, help in adaptation to and mitigating of climate change effects. Globally, annual production of crop residues is estimated at 3440 million tonnes of which large quantities are not managed properly. In India alone, more than 140 million tonnes of crop residues are disposed of by burning each year. In rice-wheat system of the IGP of South Asia, the disposal of rice residues is one of the major challenges due to poor quality for fodder, bioconversion, and engineering applications. In most combine harvested rice fields of western IGP, the rice residues are burnt before planting of wheat. The field burning of crop residues is a major contributor to poor air quality (particulates, greenhouse gases), human respiratory ailments, and the death of beneficial soil fauna and micro-organisms. During burning of crop residues around 80% of carbon is lost as CO2 and a small fraction is evolved as CO. Burning involving incomplete combustion can also be a source of net emissions of many greenhouse gases including CO, CH4, SO2 and N2O. Crop residue burning accounts 6.6 million tonnes of CO2 equivalent emission annually in India (INCCA, 2010). Apart from loss of carbon, up to 80% loss of N and S, 25% of P and 21% of K occurs during burning of crop residues (Ponnamperuma, 1984; Yadvinder-Singh et al., 2010). For managing residues of combine harvested crops and field (loose as well as anchored) as surface mulch and realize multiple benefits of improve crop yields, conserve soil moisture, saving of irrigation, buffer soil temperature, improve SOC, adapt to terminal heat effects in addition to environmental benefits through eliminating burning, ‘Turbo Happy Seeder’, is now available, which is capable of direct drilling (ZT) into heavy surface residue loads in a single operation. Many of the farmers in India and elsewhere have started using Turbo Happy Seeder for residue management. However, one of the major constraints in large scale adoption of this technology as well as sub-optimal use efficiency of planter is the lack of skills/knowledge on operation, calibration and maintenance of the machinery. There are different field situation specific adjustments needed before the use of the machine in the field. These adjustments include proper seeding depth, fertilizer rate and the seed rate etc as per the crop and field conditions to realize the potential benefits of the technology. There are several machinery manufacturers who supply these planters but the operational manuals are not available for making adjustments, calibrations under local conditions. In absence of the proper operational guidelines and protocols for efficient use of this machine by the farmers, service providers, extension agents, many a times the desirable results are not achieved and even contradictory results are observed. This results in slow down the adoption rates of the technology. Also, in absence of simple guidelines for maintenance of the machine, the farmers/service providers need to make huge investments on repairing at the start of the season. Therefore, we attempted to develop an operational manual to provide simple guidelines for calibration, operation, maintenance and troubleshooting for efficient use of turbo happy seeder by the range of stakeholders including farmers, service providers, extension agents and researchers.
    Publication