Person: Cichy, K.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Cichy
First Name
K.
Name
Cichy, K.
ORCID ID
0000-0002-4311-07742 results
Search Results
Now showing 1 - 2 of 2
- A scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries(Springer Nature, 2020) Acevedo, M.; Pixley, K.V.; Zinyengere, N.; Meng, S.; Tufan, H.A.; Cichy, K.; Bizikova, L.; Isaacs, K.; Ghezzi-Kopel, K.; Porciello, J.
Publication - Genomic bayesian prediction model for count data with genotype X environment interaction(Genetics Society of America, 2016) Montesinos-López, A.; Montesinos-Lopez, O.A.; Crossa, J.; Burgueño, J.; Eskridge, K.; Falconi, E.E.; Xinyao He; Singh, P.K.; Cichy, K.Genomic tools allow the study of the whole genome and are facilitating the study of genotype-environment combinations and their relationship with phenotype. However, most genomic prediction models developed so far are appropriate for Gaussian phenotypes. For this reason, appropriate genomic prediction models are needed for count data, since the conventional regression models used on count data with a large sample size (nT) and a small number of parameters (p) cannot be used for genomic-enabled prediction where the number of parameters (p) is larger than the sample size (nT). Here we propose a Bayesian mixed negative binomial (BMNB) genomic regression model for counts that takes into account genotype by environment (G×E) interaction. We also provide all the full conditional distributions to implement a Gibbs sampler. We evaluated the proposed model using a simulated data set and a real wheat data set from the International Maize and Wheat Improvement Center (CIMMYT) and collaborators. Results indicate that our BMNB model is a viable alternative for analyzing count data.
Publication