Person:
Ramirez-Villegas, J.

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Ramirez-Villegas
First Name
J.
Name
Ramirez-Villegas, J.

Search Results

Now showing 1 - 10 of 11
  • Climate change impact and adaptation of rainfed cereal crops in sub-Saharan Africa
    (Elsevier, 2024) Alimagham, S.; Van Loon, M.P.; Ramirez-Villegas, J.; Adjei-Nsiah, S.; Baijukya, F.; Bala, A.; Chikowo, R.; Silva, J.V.; Abdelkader Mahamane Soulé; Taulya, G.; Tenorio, F.A.; Tesfaye, K.; Ittersum, M.K. van
    Publication
  • Data-driven approaches can harness crop diversity to address heterogeneous needs for breeding products
    (National Academy of Sciences, 2023) Etten, J. van; de Sousa, K.; Cairns, J.E.; Dell'acqua, M.; Fadda, C.; Güereña, D.T.; Heerwaarden, J. van; Assefa, T.; Manners, R.; Müller, A.; Pè, M.E.; Polar, V.; Ramirez-Villegas, J.; Solberg, S.Ø.; Teeken, B.; Tufan, H.A.
    Publication
  • Ecosistema de plataformas y modelos que soportan el desarrollo de servicios digitales para toma de decisiones en el sector agropecuario en Latinoamérica
    (CGIAR, 2022) Montes, C.; Barrios-Perez, C.; Ayes, I.; Durón, M.; Obando, D.; Sotelo, S.; Gardeazabal, A.; Ramirez-Villegas, J.
    Publication
  • Climate security in the dry corridor of Latin America
    (CIMMYT, 2021) Laderach, P.; Kommerell, V.; Schapendonk, F.; Van Loon, J.; Martinez-Baron, D.; Castellanos, A.; González, C.E.; Vega, D.; Ramirez-Villegas, J.; Achicanoy, H.; Madurga-Lopez, I.; Dutta Gupta, T.; Carneiro, B.; Resce, G.; Ruscica, G.; Pacillo, G.
    Publication
  • State of ex situ conservation of landrace groups of 25 major crops
    (Nature Publishing Group, 2022) Ramirez-Villegas, J.; Khoury, C.K.; Achicanoy, H.; Diaz, M.V.; Mendez, A.C.; Sosa, C.C.; Kehel, Z.; Guarino, L.; Abberton, M.; Aunario, J.; Awar, B.A.; Alarcon, J.C.; Amri, A.; Anglin, N.L.; Azevedo, V.; Aziz, K.; Capilit, G.L.; Chavez, O.; Chebotarov, D.; Costich, D.E.; Debouck, D.; Ellis, D.; Falalou, H.; Fiu, A.; Ghanem, M.E.; Giovannini, P.; Goungoulou, A.J.; Gueye, B.; Hobyb, A.I.E.; Jamnadass, R.; Jones, C.S.; Kpeki, B.; Lee, J.S.; McNally, K.; Muchugi, A.; Ndjiondjop, M.N.; Oyatomi, O.; Payne, T.S.; Ramachandran, S.; Rossel, G.; Roux, N.; Ruas, M.; Sansaloni, C.; Sardos, J.; Setiyono, T.; Tchamba, M.; van den Houwe, I.; Velazquez, J.A.; Venuprasad, R.; Wenzl, P.; Yazbek, M.; Zavala Espinosa, C.
    Publication
  • One CGIAR and the Integrated Agri-food Systems Initiative: from short-termism to transformation of the world's food systems
    (Public Library of Science, 2021) Govaerts, B.; Negra, C.; Camacho Villa, T.C.; Chavez, X.; Diaz Espinosa, A.; Fonteyne, S.; Gardeazabal, A.; González, G.; Singh, R.G.; Kommerell, V.; Kropff, W.; Lopez-Saavedra, V.; Mena-Lopez, G.; Odjo, S.; Palacios-Rojas, N.; Ramirez-Villegas, J.; Van Loon, J.; Vega, D.; Verhulst, N.; Woltering, L.; Jahn, M.; Kropff, Martinus
    Publication
  • CGIAR modeling approaches for resource‐constrained scenarios: I. Accelerating crop breeding for a changing climate
    (Crop Science Society of America (CSSA), 2020) Ramirez-Villegas, J.; Molero Milan, A.; Alexandrov, N.; Asseng, S.; Challinor, A.; Crossa, J.; Van Eeuwijk, F.A.; Ghanem, M.E.; Grenier, C.; Heinemann, A.B.; Jiankang Wang; Juliana, P.; Kehel, Z.; Kholova, J.; Koo, J.; Pequeno, D.N.L.; Quiroz, R.; Rebolledo, C.; Sukumaran, S.; Vadez, V.; White, J.W.; Reynolds, M.P.
    Publication
  • Maize for Colombia 2030 Vision
    (CIMMYT, 2019) Galeano, C.; Nutti, M.; Vanegas, H.; Pasculli, L.; Peña, Y.; Aguilar, D.; Govaerts, B.; Vega, D.; Chávez, X.; Narro, L.A.; San Vicente Garcia, F.M.; Palacios-Rojas, N.; Pérez, M.; González, G.; Ortega, P.; Carvajal, A.; Arcos, A.L.; Bolaños, J.; Romero, N.; Bolaños, J.; Vanegas, Y.F.; Echeverria, R.G.; Jarvis, A.; Jiménez, D.; Ramirez-Villegas, J.; Kropff, W.; Gonzalez, C.; Navarro-Racines, C.E.; Ordóñez, L.; Prager, S.D.; Tapasco, J.; Figueroa, E.; Aguilar, A.; Galeano, C.; Nutti, M.; Ramírez-Villegas, J.; Vanegas, H.; Pasculli, L.; Peña, Y.; Aguilar, D.
    In Colombia, maize is the third crop with the largest cultivation area after coffee and rice. In spite of this, it is the country with the highest volume of imports in South America, and the seventh in the world. Maize is one of the most important crops in the agrifood sector in Colombia. Maize production increased 76% between 1961 and 2016, whereas the demand for it grew at a faster rate. In 2012, a historical production peak of 1.8 Mt (million tonnes) was reached. According to the most recent data, production fell to 1.6 Mt (2016). In the same year, 74% of the national demand was imported, that is, 4.6 Mt of the 6.2 Mt required in the country. If this trend continues, production is expected to grow by around 6% and demand by 9% between 2018 and 2030. Maize has an important social dimension in the diet of millions of Colombians, providing 9% of the daily energy supply of their diet through the consumption of foods such as arepas and mazamorra, among others. On average, a Colombian consumes 30 kg of maize a year. However, the growing demand for this grain responds, to a greater extent, to the consumption of animal protein, which requires maize for animal feed. Therefore, this demand is explained by the significant increase in the consumption of animal products, which has soared dramatically in recent years. Consumption patterns in the diet of Colombians respond to changes in income—hence in their consumption habits— as well as to the spending on animal products among the global population. In turn, production is also part of an important social and economic dimension. Two systems of maize production co-exist in the country: technified and traditional. The technified maize production system is characterized by monocultures of more than 5 hectares (ha) with water availability for irrigation in some cases, and the use of technologies based on mechanization for soil preparation, use of improved seeds, fertilizers, and chemical pesticides. In Colombia, this system represents 48% of the area destined for maize, with a production of 1.2 Mt7 and an average yield of 5.4 t/ha (tonnes per hectare), given its main characteristics of cultivation. In turn, the traditional production system is characterized by planting areas smaller than 5 ha, where the crop is based on the use of a wide diversity of native varieties without the use of hybrids due to the economic difficulties to access them. Also, the technologies for sowing are based on the plough with hoe and dibble bar. In this sense, in spite of having 52% of the area destined for maize production, less is produced than under the technified system, reaching a production of 0.5 Mt, and an average yield of only 2 t/ha
    Publication
  • Maíz para Colombia Visión 2030
    (CIMMYT, 2019) Govaerts, B.; Vega, D.; Chávez, X.; Narro, L.A.; San Vicente Garcia, F.M.; Palacios-Rojas, N.; Pérez, M.; González, G.; Ortega, P.; Carvajal, A.; Arcos, A.L.; Bolaños, J.; Romero, N.; Bolaños, J.; Vanegas, Y.F.; Echeverria, R.G.; Jarvis, A.; Jiménez, D.; Ramirez-Villegas, J.; Kropff, W.; Gonzalez, C.; Navarro-Racines, C.E.; Ordóñez, L.; Prager, S.D.; Tapasco, J.; Figueroa, E.; Aguilar, A.; Galeano, C.; Nutti, M.; Ramírez-Villegas, J.; Vanegas, H.; Pasculli, L.; Peña, Y.; Aguilar, D.
    Publication
  • A framework for priority-setting in climate smart agriculture research
    (Elsevier, 2018) Thornton, P.; Whitbread, A.; Baedeker, T.; Cairns, J.E.; Claessens, L.; Baethgen, W.; Bunn, C.; Friedmann, M.; Giller, K.E.; Herrero, M.; Howden, M.; Kilcline, K.; Nangia, V.; Ramirez-Villegas, J.; Shalander Kumar; West, P.C.; Keating, B.
    Climate-smart agriculture (CSA) is widely promoted as an approach for reorienting agricultural development under the realities of climate change. Prioritising research-for-development activities is crucial, given the need to utilise scarce resources as effectively as possible. However, no framework exists for assessing and comparing different CSA research investments. Several aspects make it challenging to prioritise CSA research, including its multi-dimensional nature (productivity, adaptation and mitigation), the uncertainty surrounding many climate impacts, and the scale and temporal dependencies that may affect the benefits and costs of CSA adoption. Here we propose a framework for prioritising agricultural research investments across scales and review different approaches to setting priorities among agricultural research projects. Many priority-setting case studies address the short- to medium-term and at relatively local scales. We suggest that a mix of actions that span spatial and temporal time scales is needed to be adaptive to a changing climate, address immediate problems and create enabling conditions for enduring change.
    Publication