Person: Pillay, K.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Pillay
First Name
K.
Name
Pillay, K.
2 results
Search Results
Now showing 1 - 2 of 2
- Resistance of Bt-maize (MON810) against the stem borers Busseola fusca (Fuller) and Chilo partellus (Swinhoe) and its yield performance in Kenya(Elsevier, 2016) Tadele Tefera; Mugo, S.N.; Mwimali, M.; Bruce, A.Y.; Tende, R.; Beyene, Y.; Gichuki, S.T.; Oikeh, S.O.; Nang’ayo, F.; Okeno, J.; Njeru, E.; Pillay, K.; Meisel, B.; Prasanna, B.M.A study was conducted to assess the performance of maize hybrids with Bt event MON810 (Bt-hybrids) against the maize stem borer Busseola fusca (Fuller) in a biosafety greenhouse (BGH) and against the spotted stem borer Chilo partellus (Swinhoe) under confined field trials (CFT) in Kenya for three seasons during 2013e2014. The study comprised 14 non-commercialized hybrids (seven pairs of near-isogenic Bt and non-Bt hybrids) and four non-Bt commercial hybrids. Each plant was artificially infested twice with 10 first instar larvae. In CFT, plants were infested with C. partellus 14 and 24 days after planting; in BGH, plants were infested with B. fusca 21 and 31 days after planting. In CFT, the seven Bt hybrids significantly differed from their non-Bt counterparts for leaf damage, number of exit holes, percent tunnel length, and grain yield. When averaged over three seasons, Bt-hybrids gave the highest grain yield (9.7 t ha1), followed by non-Bt hybrids (6.9 t ha1) and commercial checks (6 t ha1). Bt-hybrids had the least number of exit holes and percent tunnel length in all the seasons as compared to the non-Bt hybrids and commercial checks. In BGH trials, Bt-hybrids consistently suffered less leaf damage than their non-Bt near isolines. The study demonstrated that MON810 was effective in controlling B. fusca and C. partellus. Bt-maize, therefore, has great potential to reduce the risk of maize grain losses in Africa due to stem borers, and will enable the smallholder farmers to produce high-quality grain with increased yield, reduced insecticide inputs, and improved food security.
Publication - Testcross performance of doubled haploid maize lines derived from tropical adapted backcross populations(Consiglio per la Ricerca e la sperimentazione in Agricoltura, Unità di Ricerca per la Maiscoltura, 2011) Beyene, Y.; Mugo, S.N.; Pillay, K.; Tadele Tefera; Ajanga, S.; Njoka, S.; Karaya, H.; Gakunga, J.Doubled haploid (DH) lines produced by in vivo induction of maternal haploids are routinely used in maize breeding. The present study was carried out to assess the performance of 75 doubled haploid maize testcrosses and six checks tested across four locations in Kenya for grain yield, agronomic traits and reaction to major leaf diseases. The 75 DH lines were derived from the backcross (BC1) plants of two CIMMYT bi-parental crosses. Significant location, genotype and genotype x location effects were observed for grain yield and anthesis-silking interval (ASI). Genotypes were significantly different for reaction to leaf blight and gray leaf spot. Location explained 69% of the total phenotypic variance while both genotype and genotype by environment interaction effects contributed 4% each. Fifteen DH testcross hybrids yielded better than the best commercial check, WH505 (5.1 t/ha). The best DH testcross hybrid (CKDHH0223) averaged over the four locations yielded 29.5% higher than WH505. These results indicate that maize testcrosses developed from DH lines produced as high a grain yield and as acceptable agronomic traits as the commercial hybrids developed through conventional pedigree methods. The DH lines identified in the study may be useful for improving yield and disease resistance in maize breeding programs in eastern and southern Africa.
Publication