Person:
Rosales Nolasco, Aldo

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Rosales Nolasco
First Name
Aldo
Name
Rosales Nolasco, Aldo

Search Results

Now showing 1 - 10 of 13
  • Estandarización de un método analítico para la cuantificación del índice de peróxido de aceites extraídos de harinas a pequeña escala mediante un extractor Soxtec
    (Universidad Autónoma del Estado de México, 2023) Zúñiga-Calderón, P.; Zarazúa-Aguilar, Y.; Palacios-Rojas, N.; Rosales Nolasco, Aldo
    Publication
  • Fresh/high-zinc maize: a promising solution for alleviating zinc deficiency through significant micronutrient accumulation
    (MDPI, 2023) Rosales Nolasco, Aldo; Molina Macedo, A.; Leyva, M.; San Vicente Garcia, F.M.; Palacios-Rojas, N.
    Publication
  • Near-infrared spectroscopy to predict provitamin A carotenoids content in maize
    (MDPI, 2022) Rosales Nolasco, Aldo; Crossa, J.; Cuevas, J.; Cabrera-Soto, L.; Dhliwayo, T.; Ndhlela, T.; Palacios-Rojas, N.
    Publication
  • Occurrence and postharvest strategies to help mitigate aflatoxins and fumonisins in maize and their co-exposure to consumers in Mexico and Central America
    (Elsevier, 2022) Odjo, S.; Alakonya, A.; Rosales Nolasco, Aldo; Molina Macedo, A.; Muñoz, C.; Palacios-Rojas, N.
    Publication
  • Effect of maize processing methods on the retention of minerals, phytic acid and amino acids when using high kernel-zinc maize
    (Elsevier, 2021) Gallego-Castillo, S.; Taleon, V.; Talsma, E.F.; Rosales Nolasco, Aldo; Palacios-Rojas, N.
    Publication
  • Genotype selection influences the quality of gluten-free bread from maize
    (Elsevier, 2020) Ekpa, O.; Palacios-Rojas, N.; Rosales Nolasco, Aldo; Renzetti, S.; Fogliano, V.; Linnemann, A.
    Publication
  • Cuantificación de antocianinas mediante espectroscopía de infrarrojo cercano y cromatografía líquida en maíces pigmentados.
    (Sociedad Mexicana de Fitogenética, 2017) Hernández Quintero, J.; Rosales Nolasco, Aldo; Molina Macedo, A.; Miranda, A.; Willcox, M.; Hernández Casillas, J.M.; Palacios-Rojas, N.
    Near infrared reflectance, NIR, is a method largely used for rapid and robust determination of chemical compounds. It is currently used to support breeding programs to analyze protein, oil, starch, moisture and ash content, among others. Five hundred fifty four samples belonging to 24 races of pigmented maize (Zea mays L.) were used in the development and validation of mathematical models to estimate anthocyanin content by near-infrared spectroscopy (NIR), using UV-Vis spectroscopy as a reference method. The anthocyanins profile was determined through high performance liquid chromatography (HPLC). The highest anthocyanin contents were found in C11-IXT maize grain samples from Tlaxcala, México; containing up to 1989.97μg Pel g-1 DW. The highest percentages of cyanidin 3-glucoside, pelargonidin 3-glucoside and peonidin 3-glucoside were 48.79 %, 39.84 % and 12.14 %, respectively. Samples of the BOZM342 accession were outstanding for its cyanidin 3-glucoside content of 628.32 μg Pel g-1 PS. Thirty two calibration models were developed and analyzed, and two of them fulfilled the parameters for a robust NIR calibration, with high coefficients of determination for cross validations (0.64 and 0.65). The NIR models presented here can be used for determination of total anthocyanins and provide support for blue maize breeding programs.
    Publication
  • Lineamientos para el control de calidad de semilla y grano de maíz de alta calidad proteica (QPM): experiencia en el desarrollo y promoción de QPM en Latinoamérica
    (CIMMYT, 2017) Palacios-Rojas, N.; Twumasi Afriyie, S.; Friesen, D.; Chere, A.T.; Dagne Wegary Gissa; De Groote, H.; Rosales Nolasco, Aldo; Narro, L.A.; Chassaigne, A.A.; Padilla, R.; Vargas-Escobar, E.A.; López, K.; Bowen, C.; Prasanna, B.M.
    Este manual está compuesto de dos partes, una traducción del manual en ingles elaborado por el CIMMYT en 2016 y una serie de experiencias en Latinoamérica en el desarrollo y promoción del maíz de alta calidad proteica (QPM, siglas en inglés de Quality Protein Maize). El manual proporciona recomendaciones y ofrece una base para monitorear la calidad de los QPM. Los lineamientos se basan en la genética, el mejoramiento, las características y los beneficios nutricionales del QPM. El manual también incluye una lista de variedades QPM basadas en germoplasma del CIMMYT que han sido liberadas mundialmente. Asimismo, explica los conceptos de control de calidad, producción y sistemas de certificación de semilla; la definición de la calidad proteica y los métodos para analizar la calidad proteica del QPM; los procedimientos de muestreo para enviar muestras al laboratorio para que sean analizadas; y cómo encontrar un laboratorio de análisis de calidad. Incluye también recomendaciones para controlar la calidad tanto del grano como de la semilla reciclada de QPM. El objetivo de este boletín técnico es que sirva como documento de referencia para establecer estándares nacionales para el control de la calidad de la semilla y el grano en los países donde se produce y comercializa el QPM.
    Publication
  • Lime cooking process: nixtamalization from Mexico to the world
    (CIMMYT, 2016) Palacios-Rojas, N.; Vázquez, G.; Rodriguez Garcia, M.F.; Carvajal, M.; Molina Macedo, A.; Rosales Nolasco, Aldo; Marrufo-Díaz, M.L.; Domínguez-Rendón, E.
    Maize is the major food staple in Africa and Central America with high per capita consumption (103 kg/year), and contributes 31% of calories and 28% of protein supply. Maize was introduced in Africa by the Portuguese sailors in the 16th century. Due to its wide adaptation to diverse environments, low rate of damage by birds unlike sorghums and millets, and its relative ease of growing, storing and processing, white kernel maize rapidly replaced the indigenous cereals in the fields and in diets. This pattern of use of maize in Kenya and other east African countries mirrors that of Mexico where maize originated. Paradoxically, Mexico exported maize seed to Africa but not the technologies for its utilization. Whereas Mexicans have in excess of 600 products from the maize plant, African countries can hardly count more than 10 uses of maize. Maize in African countries in general is prepared for consumption as kernels either whole or decorticated. Whole kernels are prepared for consumption by boiling in admixture w th beans and then stewed with potatoes or green vegetables. This mixture is referred to as Githeri by communities in Central Kenya who are its main consumers.
    Publication
  • Cell wall composition and biomass digestibility diversity in Mexican maize (Zea mays L) landraces and CIMMYT inbred lines
    (Consiglio per la Ricerca e la sperimentazione in Agricoltura, Unità di Ricerca per la Maiscoltura, 2013) Muttoni, G.; Palacios-Rojas, N.; Galicia, L.; Rosales Nolasco, Aldo; Pixley, K.V.; Leon, N. de
    Maize is one of the most important crops worldwide. Historically, breeding efforts in this crop have been primarily focused on the improvement of grain yield and stability and just recently also on the potential utility of maize stover (above ground biomass excluding the grain) as a source of biomass for the production of feed, fiber and cellulosic ethanol. The International Maize and Wheat Improvement Center (CIMMYT) holds one of the largest maize germplasm collections in the world and therefore is an important source of phenotypic and genetic diversity for many traits. Our objectives were to assess the phenotypic diversity for cell wall composition and biomass digestibility in Mexican tropical, subtropical and highland maize landraces and elite maize lines (CMLs) in the CIMMYT germplasm collection, as well as to evaluate the relationship between place of origin of these materials and phenotypic expression of biomass compositional traits. The range of variation for neutral detergent fiber for three groups of landraces was from 47 to 73%. Slightly larger levels of phenotypic variation were observed for this trait in the set of CMLs evaluated (42 to 78%). Some of the inbred lines, such as CML 507, presented superior characteristics in terms of cell wall composition and digestibility. The Tuxpeño tropical-subtropical race, widely used in CIMMYT breeding programs, formed a cluster characterized by high cell wall content and low biomass digestibility. The CIMMYT germplasm collection appears to be a vast source of untapped genetic and phenotypic variation for the improvement of maize biomass composition.
    Publication