Wheat
Permanent URI for this collection
Information and knowledge outputs of Global Wheat Program (GWP) and its projects. Includes topics about wheat improvement / breeding, phytopathology, physiology, quality, and biotech.
Browse
Browsing Wheat by Subject "ABA"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Foliar abscisic acid-to-ethylene accumulation and response regulate shoot growth sensitivity to mild drought in wheat(Frontiers, 2016) Valluru, R.; Davies, W.; Reynolds, M.P.; Dodd, I.C.Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early–stage selection tool aiding genotype selection for stress tolerance.
Publication - Fructan and hormone connections(Frontiers, 2015) Valluru, R.Plants rely on “reserve” (stored) carbon (C) for growth and survival when newly synthesized C becomes limited. Besides a classic yet recalcitrant C reserve starch, fructans, a class of sucrose-derived soluble fructosyl-oligosaccharides, represent a major store of C in many temperate plant species including the economically important Asteraceae and Poaceae families (Hendry, 1993). Dicots typically accumulate inulin-type fructans as long-term storage (underground organs) whilst grasses and cereals accumulate fructans as short-term reserves in above-ground parts (Pollock and Cairns, 1991; Van Laere and Van den Ende, 2002). Unlike chloroplast-based water-insoluble starch, fructans are semi-soluble, possess flexible structures (Phelps, 1965; Valluru and Van den Ende, 2008), can be synthesized at low temperatures (Pollock and Cairns, 1991), and are degraded by a single type of fructan hydrolases, fructan exohydrolases (FEHs). Unlike starch that store in plastids, fructans store in vacuoles, which is physically less stressful to the active constituents of, and allows more C synthesis by, the photosynthetic cell, which may be different in dicots where fructans do not typically accumulate in green parts.
Publication