Insect Resistant Maize for Africa (IRMA) Project

IRMA in 2005 Briefs

IRMA Project Document No. 21

November 2005

syngenta foundation for sustainable agriculture

Insect Resistant Maize for Africa (IRMA) Project

1.1-

IRMA IN 2005 BRIEFS

IRMA Project Document No. 21

November 2005

The Kenya Agricultural Research Institute (KARI) was established in 1979 with the express mission of increasing sustainable agricultural production by generating appropriate technologies through research, and disseminating these to the farming community. Inherent to this mission is the protection, conservation, and improvement of the basic resources, both natural and human. Such resources are critical for Kenya's agricultural development and expansion of the nation's scientific and technological capacity. KARI has an extensive history of productive collaborators with national and international institutes and universities, as well as with the private sector.

CIMMYT® (<u>www.cmmnyt.cgiar.org</u>) is an internationally funded, nonprofit scientific research and training organization. Headquartered in Mexico, the Center works with agricultural research institutions worldwide to improve the productivity, profitability, and sustainability of maize and wheat systems for poor farmers in developing countries. It is one of 16 similar centers supported by the Consultative Group on International Agricultural Research (CGIAR, <u>www.cgiar.org</u>). The CGIAR comprises about 60 partner countries, international and regional organizations, and private foundations. It is co-sponsored by the Food and Agriculture Organization (FAO) of the United Nations, the International Bank for Reconstruction and Development (World Bank), the United Nations Development Program (UNDP), and the United Nations Environment Program (UNEP). Financial support for CIMMYT's research agenda also comes from many other sources, including foundations, development banks, and public and private agencies.

The Syngenta Foundation for Sustainable Agriculture is dedicated to fostering sustainable development in poor countries of the South through its support of programs and projects in the areas of sustainable agriculture, health, and social development. It is also an active player in development policy debate through its preparation and dissemination of research analysis. The Foundation provides major funding for the IRMA project. Further information about the Foundation may be found at its web site (<u>www.syngentafoundation.com</u>).

The Insect Resistant Maize for Africa (IRMA) Project was launched in 1999 as a collaborative effort between CIMMYT and KARI. Its primary goal is to increase maize production and food security for African farmers through the development and deployment of maize that offers resistance to destructive insects, especially stem borers. To achieve this goal, project scientists will identify conventional and novel sources of resistance to stem borers and incorporate them into maize varieties that are both well adapted to Kenya's various agro ecological zones and well accepted by its farmers and consumers. Varieties and technologies that are appropriate for other African nations may be extended to them for their use.

© International Maize and Wheat Improvement Center (CIMMYT) 2004. All rights reserved. Responsibility for this publication rests solely with CIMMYT. The designations employed in the presentation of material in this publication do not imply the expressions of any opinion whatsoever on the part of CIMMYT or contributory organizations concerning the legal status of any country, territory, city, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. CIMMYT encourages fair use of this material. Proper citation is requested.

The views expressed in this document are the authors' and do not necessarily reflect the views or policies of the respective institutions.

Correct citation: KARI and CIMMYT. 2005. Insect Resistant Maize for Africa: IRMA in 2005 Briefs. IRMA Project Document No. 21,

AGROVOC Descriptors	Africa; Kenya; Maize; Zea mays; Plant production; Food production; Food security; Production factors; Pests of plants; Plant breeding; Transgenic plants; Pest resistance; Biological control; Bacillus thuringiensis; Production increase; Yield increases; Diffusion of research; Technology transfer; Innovation adoption; Research projects
Additional Keywords	KARI; CIMMYT
AGRIS Category Codes	E10 Agricultural Economics and PoliciesE14 Development Economics and PoliciesE30 Plant Genetics and Breeding

Cover Photo: The first Bt maize confined field trial at the Open quarantine Site KARI Kiboko during 2005B season

Nairobi, Kenya: KARI and CIMMYT.

Contents

Insect Resistant Maize for Africa (IRMA) Project 2005 Briefs

1.	Bt MAIZE EVENT ANALYSIS, DEVELOPMENT OF BT SOURCE LINE, &	
	HUMAN HEALTH SAFETY ASSESSMENT	1
2.	DEVELOPMENT OF CONVENTIONAL AND BT PRODUCTS, AND	
	COMPOSITIONALANALYSIS	4
3.	ENVIRONMENTAL IMPACT ASSESSMENT	8
4.	INSECT RESISTANCE MANAGEMENT AND CONTINGENCY PLANS	9
5.	REGULATORY ISSUES	10
6.	IPR/LICENSING	12
7	SEED PRODUCTION	12
8.	MARKET ASSESSMENT AND ANALYSIS	12
9.	ECONOMIC IMPACT ASSESSMENT	13
10.	COMMUNICATION / PROMOTION, CAPACITY BUILDING & ADMINISTRATION	14
Арр	bendices	
Арр	endix 1. Reviewed IRMA Project 2005 work plans	21
Арр Мее	endix 2. List of participants and program for IRMA Review and Planning ting, 7-8 November 2005	30
App 23-2	endix 3. Invitees and program for joint IRMA-TAB and IRMA scientists, 24 November 2005	34
App	endix 4. Invitees and program for the IRMA Stakeholders meeting, 25 November 2005	38

Insect Resistant Maize for Africa (IRMA) Project - 2005 Briefs

1. Bt MAIZE EVENT ANALYSIS, DEVELOPMENT OF BT SOURCE LINE, & HUMAN HEALTH SAFETY ASSESSMENT

S. Mugo, J. Danson, C. Taracha, A. Pellegrineschi, S. McLean, G. Mwimali, J. Songa, D. Bergvinson, and S. Gichuki

1.1 Bt Event Analysis

- In Kenya, J. Danson's work on the protocols for Bt gene detection using the PCR method for both Cry1Ab and Cry1Ba was tested and found to work on Events 10, 58, 216 and 223. The reliability of the PCR method offers an alternative during selection—one of the useful applications of molecular marker technology. The method can be used to detect gene flow/contamination when the Bt materials are grown commercially in farmers fields.
- KEPHIS contracted Kenyatta University to assist in developing Bt GMO detection protocols. The two institutions requested IRMA project to provide positive controls. The samples were taken from the backcross generations in CFT Trial 1 on 7 Sept 2005. No results from this analysis have been received by the time of reporting.

1.2 Development of Bt source lines

- The last of the mock trials at the open quarantine site (OQS) at Kiboko that were grown for the purpose of training staff and other stakeholders in advance of the Bt maize confined field trials was harvested in January 2005. Non-target organisms were collected from the maize both during cropping and after harvesting (maize-free conditions) to generate baseline data.
- In the laboratory in Mexico the development of 11 second generation lines of Cry 1C and the development of the Cry 2Aa events continued. The transformants with Cry2A events was effective against fall army worm (*Spodoptera frugiperda*) that is closely related to *B. fusca* and had IRMA team excited for a while to the extent of drafting an application "Introduce Maize Seeds Containing the Bt Genes *cry2Aa* and *cry1Ca* for Evaluation, Seed Increase, and Make Crosses in a Biosafety Greenhouse Containment" as control of *Busseola fusca*, could be of real interest for use in Kenya. These events cannot be tested against *B. fusca* in Mexico as the pest is not found there. However, Southern blot analysis to confirm the number of copies of the gene for each of the five events showed the genes to be absent in the effective events, indicating presence of somaclonal effects. However, this was being confirmed at the time of reporting. It is also apparent that events 685 and 687 have a promoter for which FTO cannot be obtained. Other Cry2Aa events have the ST-LS1 promoter derived from chloroplast of potato that expresses in green tissue based on tobacco experiments. These control *S. frugiperda* and will be tested further. However, this promoter is similar to PEP-Carboxylase that mainly expresses in green tissue which means that the whorl of the plant may not be protected. This will be tested to provide guidance.
- The first insect-resistant transgenic Bt maize seeds were sown in Kenya on 27 May 2005, at the open quarantine site (OQS) at Kiboko in a confined field trial (CFT) of nine Bt maize events. A separate trial in the CFT was also sown for conversion of additional maize inbred lines to Bt using the backcrossing breeding method. Infestation with the spotted stem borer (*Chilo partellus*) was done on 17 June 2005. Leaf damage scores on plants two weeks after field infestations with *C. partellus* indicated that Bt maize events controlled *C. partellus*. Leaves from the CFT were harvested for bioassays with the African stem borer (*Busseola fusca*), the sugarcane borer (*Eldana saccharina*) and the pink stem borer (*S. calamistis*) on 29 June 2005. Leaf bioassays were done on 30 June 7 July 2005. Tests using the leaf damage scores from these leaf bioassays with the three other pests in the biosafety greenhouse complex indicate that control was found for E. saccharina and S. calamistis but not for *B. fusca*. To achieve effective stem borer control in all maize growing ecologies in Kenya. additional Bt genes or events will need to be sought and tested.

- In early July 2005, it was found out that an unfortunate and regrettable inadvertent application of a systemic insecticide prevented the observation of the effects of the Bt delta-endotoxins beyond the early season vegetative stage of the crop in Trial 1. The evaluation of Bt cry gene events in the confined trial (CFT) at the KARI Kiboko OQS. The problem was identified on observation that newly emerging leaves were clean even on plants previously showing extensive leaf damage including the non-transgenic CML216 control. This indicated that the larvae may have died after feeding on the leaves and may not have burrowed into the stems to cause tunneling. While this may be expected in resistant plant on rare occasions, it has not been observed in CML216. It was, therefore, suspected that an additional factor may have caused the death of larvae, thereby preventing extensive damage even on susceptible plants. It was found that the field technician, with good reasons to control white grubs *Phyllophaga* spp. that were destroying plants thereby reducing the plant stand, applied Furadan®, a systemic insecticide without prior consultations with the principal investigators. Furadan® remains in the plant for up to 60 days after uptake and reinfestation would not offer solution to this problem. Without stem damage expected, carrying the trial to 14 weeks as planned was not to be worthwhile. The NBC was briefed and requested that the trial be terminated and a second season planting be done.
- Harvesting of the evaluation of the Bt Maize confined field trial (CFT) at the open Quarantine Site (OQS) at KARI Kiboko was done on 31 Aug 2005 when the plants were at the equivalent of grain filling stage. Leaves were stripped off the plants and the number of stem borer moth escape holes counted. The stems were then split and the cumulative tunnel length measured. As expected, there were no significant differences in insect damage among the nine Bt maize events and from the non-transgenic CML216 control, due to the pesticide reported above. To demonstrate compliance to biosafety condition of detasseling, ears on the plants in the test rows and in the hybrid border rows were dehusked to expose any seed. Only five seeds were recovered from the border rows, which were attributed to rudimentary anthers on the ear tips that are now known to be characteristic of H513. However, the 5 seeds compared to the potential of 1M seeds is a small percentage (5x10-6%), which shows that detasseling was effective as expected.
- The materials from harvest of trial 1 were disposed by cutting and drying on site for one week, followed by burning and covering the ashes in the trenches within the OQS on 7 Sept 2005. Though the disposal was successful by using kerosene and diesel, several lessons were learned. First, one week of drying the succulent stalks is not adequate. We need a minimum of two weeks to dry adequately. Second, the liquid fuels used are not efficient. It was thought that solid fuels like charcoal or firewood placed in layers could have been more efficient even if a little liquid fuel could be added. Third, the smaller tissue like leaves and stalk chippings should be taken directly to the trenches as they tend to disintegrate and could easily scatter, hence become difficult to recover fully when dried at the trial site. Fourth, since the regulators required that plant stumps be uprooted after

Leaf damage scores from Chilo partellus stem borer for Bt maize events

harvesting, it might be more efficient to uproot at harvest time to have whole plant dried out before burning.

- Following the harvesting of CFT trial 1, the trial site was marked out with permanent concrete beacons, irrigated and the first post harvest monitoring of Bt maize CFT Trial 1 at the open Quarantine Site done on 21 Sept 2005. Scouting was done by plot areas, borders, and the isolation. No volunteer maize seedlings were found at the site and in the isolation vicinity. Only sparse weeds were observed at the site. We propose to establish mucuna after the second month of post harvest monitoring.
- The request for the second planting of trial 1 was approved by NBC as detailed in the regulatory section. KEPHIS spelt out new phytosanitary conditions that includes monthly reporting on biosafety and general management practices. The trial was sown at Kiboko on 3 November 2005.
- Several other activities were performed in the BGHC:
 - BT-BGH-06A-1 Conversion of nine maize inbred lines to Bt transgenic in the BGHC at KARI NARL during 2006A Season
 - BT-BGH-06A-3 Seed increases of Bt maize events in the BGHC during 2006A season.
 - INS-BT-BGH-06A-4 Formation of F2 generation of crosses involving Bt maize inbred lines at the BGHC sown September 2005.
- Harvesting of transgenic Bt maize seeds in the BGHC was done on various occasions. In all cases, the cobs were shelled, and seeds dried, treated and stored in the appropriate biosafety seed cabinet in the secure seeds store. These seeds are being used for the various tests that are either in progress or planned, including non-target, IRM and expression studies, and crossings and field tests in the OQS.
- Tests were carried out to confirm homozygosity with progenies from 54 inbred plants from the nine events that will be grown in the OQS. Those plants that showed homozygosity will be advanced and used for various studies.

1.3 Human Health safety Assessment

• There were no major activities on this during the year. This will mainly be a literature study, which continues to be gathered.

2. DEVELOPMENT OF CONVENTIONAL AND BT PRODUCTS, AND COMPOSITIONAL ANALYSIS

S. Mugo, J. Ininda, M. Gethi. J. Songa, O. Odongo, G. Ombakho, J. Gethi, O. Oyoo, P. Likhayo, and D. Bergvinson

1.1 Conventional

- KEPHIS presented data from the NPT 2004B season to the 2005 NPT meeting on 2-3 February 2004. The meeting decided to have the six insect resistant varieties tested for a second year before making a decision on release. Early, medium and mid-late insect resistant OPVs are being grown in NPTs by KEPHIS at diverse locations in the country. Nine sites were sown with the insect resistant NPT special kit, where the IRMA team assisted KEPHIS technicians with infestations and data recording. Various IRMA scientists and technicians attended the 2005 maize national performance (NPT) tours where insect resistant maize OPVS entered by KAR1 Katumani, Embu and Kakamega centers and were being tested. These sites were harvested between August and October 2005, and data analysis is being done by KEPHIS. Descriptors for the OPVs in the NPT were developed from plantings plots at Kiboko during 2005B season. These will be forwarded to KEPHIS together with seed for DUS testing.
- Thirty-two (32) double cross hybrids were grown at Mtwapa, Kiboko, Embu, and Kakamega during 2005A season and good ones were identified and will be nominated to the 2006 NPTs. Thirty two (32) OPVs were evaluated at Mtwapa and Kiboko for resistance to *Chilo partellus*. Good ones were identified and some of these will be nominated to the 2006 NPTs.
- Forty-five (45) three way cross insect resistant maize hybrids were formed at Kiboko using single cross hybrids of insect resistant maize inbred lines identified from evaluations of diallel crosses. These 45 are being tested during the current 2006A season and good ones will be nominated to the NPTs in February 2006.
- Work on LGB resistance was advanced with six sets each of 250 S1 LGB-resistant lines being advanced to the S2 generation. These are now being screened for resistance to LGB in the laboratory. A further 129 S4 LGB-resistant inbred lines were advanced to the S5 generation.
- In Mexico, Dr. Bergvinson increased 280 white and 180 yellow lines and formed test crosses with three white African testers (CML312SR, CML395 and CML442). These lines and their test crosses are being tested for resistance to *B. fusca* at Embu and for *C. partellus* at Kiboko during the current 2006A season.

Scientists visit maize NPT trial at KTI, Kutus, Kirinyaga

- Gene flow study trials were carried out at three of the locations where they were planted, namely Kiboko, Mtwapa, and Kakamega. The Embu and Katumani sites will be planted during the 2006A (short rains) season. Geneflow studies will be repeated at Kikoko, Mtwapa, and Kakamega sites during the 2006A season as well.
- The development of maize with resistance to weevil (Sitophilus zeamais) and larger grain borer (Prostephanus truncatus) that was initiated in collaboration with CIMMYT-Mexico and CIMMYT-Zimbabwe, using germplasm identified at the three sites, progressed well in 2005. Six F1 Bulks of LGB resistant inbred lines with CML204, CMOL206, CML442, CML444, and an MBR-derived inbred line were formed, and advanced to the S1 generation. Out of these,
 - 1. A bulk was advanced to the F3 generation to form very early generation LGB resistant OPVs, while
 - 2. The S2 were being screened for resistance to LGB and the best advanced to the S2 generation for further improvement.
 - 3. Locally adapted and LGB resistant maize germplasm will be developed from those. The first lot of larger grain borer (LGB) resistant synthetics were evaluated for agronomic performance at five locations Kiboko, Mtwapa, Embu, Katumani, and Kakamega. Screening for LGB resistance is going on in weevil warehouses at the various locations and from grains at a central location Kiboko. Inbred line testercrosses were made to 104 LGB resistant inbred lines and are being evaluated for performance at Kiboko during the 2006A season and across environments and for resistance to LGB at various KARI centers during the current 2006B season.

1.1.1 Screening Maize Germplasm for Resistance to the Larger Grain Borer and Maize Weevil

Maize germplasm from the breeding activities are evaluated to identify sources of resistance to P. truncatus and S. zeamais to be backcrossed to Bt maize to provide a broad-based resistance to both field and storage insect pests. Laboratory bioassays were carried out on 110 maize genotypes (46 inbred lines, 32 open-pollinated varieties and 32 double cross hybrids) during season 2004B and 62 genotypes (30 open-pollinated varieties and 32 double cross hybrids) in season 2005A. Thirty unsexed 3-week-old P. truncatus or S. zeamais were assayed in each of three replicates containing 50 g grain (moisture content =12.4%) and incubated for 90 days at 26±2 o C and 60±5% r.h. Flour production, grain weight loss and progeny emerged were parameters measured as indicators of resistance. For season 2004B, there were significant differences (p < 0.05) for only P. truncatus damage to complete diallel inbred lines and LGB resistant inbred line parents. No significant differences were detected for the three parameters measured for both test insects on ITS varieties or double cross (DC) hybrids. Arbitrary progeny spread scores, on a scale of 0 - 20 (highly resistant), 21-40 (resistant), 41-60 (modestly resistant), 61-80 (susceptible) and ³ 81 (highly susceptible) demonstrated that ITS and DC hybrids lack resistance to P. truncatus. There were no significant differences in progeny counts. Parameters measured during season 2005A differed significantly (p<0.05) among genotype for both test insects. Variety ITS2 TG2 Bcox751B POP.390 MIRT exhibited modest resistance to P.truncatus and ITS1 ST G1 Bco F2 Bulk to S. zeamais. Surprisingly, one of the checks (DH01) showed some resistance. These results will be confirmed in a repeat bioassay.

1.2 Development of Bt Maize germplasm

A backcrossing program was initiated to convert Kenyan germplasm to Bt as mentioned in section 1.1. To start with, BC₀F₁s of six maize inbred lines and two OPVs and various Bt maize events were formed and advanced BCs made in the BGHC and the OQS at Kiboko. To ensure adequate Bt maize germplasm to cover the various maize growing ecologies of Kenya, conversion of 10 additional maize inbred lines to Bt transgenic was initiated in a mid-August planting in the BGHC at KARI NARL. The objective was to convert enough maize inbred lines to be used to develop germplasm for all maize growing environments where the spotted stem borer (*Chilo partellus* Swinhoe) is the major stem borer pest, which include the Humid Coastal Lowlands (HCL), Mid-altitude Early Maturity (MAEM), Mid-altitude Medium Maturity (MMM). Mid-altitude Late Maturity (MLM), as represented by Mtwapa, Katumani, Embu, and Kakamega area, respectively. Hybrids and OPVs will

be desirable and hence OPVs and inbred lines will be converted for the various ecologies. The activities are as follows

- 2005A season BC0F1s of CIMMYT Germplasm CML202, CML204, CML312, CML144, CML159, CML395, & Pool 15 QPM-SR-OPT-1 and KARI Germplasm - Katumani made in the BGHC.
- 2005B season BC1F1s of CIMMYT Germplasm CML202, CML204, CML312, CML144.
 CML159, CML395. & Pool 15 QPM-SR-OPT-1 and KAR1 Germplasm Katumani made in the OQS at Kiboko.
- 2006A season BC0F1s of CIMMYT Germplasm BCML332, CML390, CML442, CML444, and KARI Germplasm EM11-133, EM12-210, MUL-509, MUL-619, KML-1, KML-2 being made in the BGHC in a Sept 2005 planting.
- 2006A season BC2F1s of CIMMYT Germplasm CML202, CML204, CML312, CML144, CML159, CML395, & Pool 15 QPM-SR-OPT-1 and KARI Germplasm – Katumani being made in the OQS at Kiboko in a 3 Nov 2005 planting.
- The backcrossing to convert Kenyan germplasm including inbred lines and OPVs was planted at the same time as the evaluation trial that was terminated earlier (see section 1.2). However, the conversion process went through the full season. BC0F1 crosses made in the BGHC at KARI NARL from the donor Bt maize events and the recipient non-Bt inbred lines were sown, and controlled pollination carried out successfully for all BC0F1s, and the trial was harvested on 26 October 2005. In all these crosses, Bt lines are the donor while non-Bt are the recipient recurrent parents. For biosafety reasons, the transgenic BCs served as the male parents to allow their detasseling.
- Harvesting was done at full maturity and dry-down of the plants. The BC1F1 ears were harvested individually, shelled, and packaged into labeled cob envelopes. The cobs and undesirable kernels were collected into a garbage can and later burnt together with other plant materials. The seeds were then packaged into polythene Ziploc bags and the 207 seed envelopes packed into a metal box that was locked and transported under escort by KEPHIS plant inspectors Mr. Macharia and Mr. Nyamwaro to the BGHC at KAR1 NARL. The seed envelopes were counted and packaged into net bags and hung inside the double door spaces of GH-1, GH-2 and GH-3 for further dry down before storage in the secure seed store. The number of seeds from each ear was recorded; a total of 67,606 seeds were harvested.
- As the plant materials were mostly dry, they were destroyed the same day in the following manner. Plants were uprooted by pulling them from the soil (this was facilitated by some rain the previous night and on the morning). Whole plants from among the Bt females, non-Bt recurrent parent males and the hybrid border plants were placed in small bunches at a time into the trenches and burning continued using alternating layers of plant material and a bag of charcoal, together with diesel fuel as a starter. Later all leaves and seeds were recovered, including by sweeping the trial area. The ashes were then buried in the trenches.

Formation of BC F,s of germplasm conversion to Bt in the BGH during 2005A season

Left – BC0F1 plants (L) with recurrent male parents (R); Center, BC_1F_1 ears; Right, BC_1F_1 seeds packed in readiness for transport to the BGHC

- The trial area was irrigated the following day, 27 Oct 2005, to germinate any volunteer seeds which may have fallen during harvest. These will be uprooted and destroyed like the trial materials. Monitoring for volunteers will be done every 2 weeks for 6 weeks and later once a month over a period of 12 months after 26 Oct 2005.
- Mr. G. Murenga enrolled for his Master's degree in plant breeding at the University of Nairobi. His
 research thesis will focus on whether expression of Bt toxins changes with generations of breeding.
 Inbred lines, F1, F2 and F3 generations of Bt x Bt, Bt x non-Bt and non-Bt x non-Bt plants will be
 compared for expression using insect bioassays, protein analysis and HPLC to determine the levels
 of expression. The non-Bt lines being used are CML144 and CML159, while the Bt lines are Events
 127 and Event 223. The F2s are being developed at the time of reporting.

Mr. Geoffrey Murenga with Bt cry-proteins expression experiments

3 ENVIRONMENTAL IMPACT ASSESSMENT

J. Songa, D. Bergvinson, and S. Mugo

- *Preserving reference collections.* The preserved arthropod specimens were re-organized according to sites of collection, and family/species groups and into more preservation boxes, in order to facilitate technical referencing during the field monitoring phase.
- *Databuse:* A digital database was developed in MS Excel, to link digital images with data on location, trap type and date of collection. With this information, particular groups of insects can be monitored using a particular trap-type during specific periods of the cropping season.
- Monitoring of arthropods in the confined field site. A report on the non-targets arthropod biodiversity at the Kiboko OQS site during mock trials was attached to the compliance document to facilitate issuance of the permit to plant Bt maize confined trials at the OQS.
- Monitoring of non-target organisms in Bt and non-Bt plots. This was done at the CFT in Kiboko over the first season. Basin and pitfall traps were installed in the Bt and non-Bt trial plots to generate data that is comparable in the two environments. The arthropods trapped were sampled once every two weeks and then identified up to family level for the generalists. For the beneficial insects such as parasitoids, and some key predators, identification was up to the genus/ species level. The first results on the arthropod biodiversity at the confined field site at Kiboko during the long rains 2005 showed that the hybrid Bt maize plots (BC₀F₁s of Bt maize CFT Trial 2) had a higher number of some of the common predators such as the ants, lady bird beetles and spiders than the non-Bt maize inbred lines. The same case applied for other generalist arthropods such as the ones in the family Sarcophagidae. The traps have been set up for the second season trials, and monitoring will continue during the post-harvest monitoring period.
- Greenhouse/laboratory studies on impacts of Bt maize on bionomics of key parasitoids (*Cotesia flavipes* and *Cotesia sesamiae*) of maize stem borers: Mock trials using non-transgenic CML202 maize inbred line were carried out at the BGHC. The objective of the mock trials was to optimize the protocols to be used in the non-target studies and also to get basic information on the development of the stem borers and the respective parasitoids in the laboratory.
- Fate of pollen Impact on non-target insects: Construction of traps for use in trapping of arthropods that may be potentially exposed to Bt maize pollen in farmers' maize fields. was completed. The traps will be set up in farmers' maize fields within a 10 m distance along the edges of farmers' maize fields in the five maize growing regions during the short rains season starting November 2005.
- It was confirmed that ecotoxicity studies on model animals among birds, fish, mammal, and an aquatic invertebrate could be done at the Chiromo Campus of the University of Nairobi. These will be done once adequate seeds of appropriate Bt maize germplasm are available.

Basins to trap non-target arthropods at the QQS Kiboko

Arthropod diversity in Bt and non-Bt maize plots at CFT OQS Kihoko during 2005B season

4. INSECT RESISTANCE MANAGEMENT AND CONTINGENCY PLANS

M. Mulaa, D. Bergvinson, S. Mugo, M. Gethi, and J. Songa

- Using a Hot Spot Analysis (Getis-Ord Gi*) within ArcView 9, specific regions where there is sufficient refugia at a significance level of 0.05 were identified. However, several districts do not contain adequate refugia within one or both of the maize growing seasons. For these districts, conventional resistance should be promoted along with other alternate hosts (e.g. sorghum or Napier grass) that are economically attractive for farmers to cultivate.
- Refugia suitability trials were harvested and data compiled over the four years of trials so as to
 provide robust estimates of refugia value for the different alternate crops commonly used in different
 mixed cropping systems within Kenya. Data analysis (2001-2005) was completed for stem borer
 damaged plants and exit holes, while analysis of yield data is still being done.
- One area where data was lacking was the relative value of rice as an alternate host for *Chilo partellus*. This information could be obtained by monitoring emergence holes in rice relative the those in neighbouring maize plots. This could not be done within the existing refugia trials, given the flooding requirement for rice cultivation. David Bergvinson and Stephen Mugo went to Mwea rice scheme for a day, and assessed stem borers in rice, with the hypothesis that rice could serve as a refugia crop for maize stem borers. However, no maize borers were present in rice. The results were verified in the greenhouse; the rice borer species collected at Mwea did not survive on maize, and vice versa.
- Regina Tende, a Master's degree student from the University of Nairobi, continued her studies on screening for resistance development in *B. fusca* and *C. partellus* to Bt delta-endotoxins. The project aims to complete four cycles of selection for *B. fusca* and eight for *C. partellus* (Eastern, Mixed and Coast colonies). Data were generated for second-generation *B. fusca* and *C. partellus* Eastern and for first-generation Chilo Mixed and Chilo Coast colonies. The information obtained from this study will be useful for development of IRM strategies for Bt maize in Kenya. Preliminary analysis of the number of surviving larvae over four generations showed no development of resistance in either *C partellus* or *B. fusca*.

9

Some refugia species

5. REGULATORY ISSUES

S. Gichuki, and S. Mugo

- An "Application for Field Testing Maize Seeds Containing the Bt Genes Cry1Ab and Cry1ba for Evaluation, Seed Increase and Backcrossing into Other Maize Lines Under Field Confinement in the Open Quarantine Site at Kiboko", which had been approved by the KARI Institutional Biosafety Committee on 15 Dec 2004 went through the following steps:
 - 9 Feb 2005. Approval by the Kenya National Biosafety Committee (NBC)
 - 4 April 2005. NBC communicates its approval decision to KARI
 - 12 April 2005. KEPHIS phytosanitary conditions on the CFT sent to KARI
 - 20 April 2005. IRMA prepares a compliance document and KARI sends a copy of the same to KEPHIS.
 - 10 May 2005. KEPHIS sends an authorization permit (No. 1/kcft/2005) to conduct Bt maize CFT at Kiboko.
 - 20 May 2005. The Director-KARI signs letter of commitment to KEPHIS
 - 27 May 2005. The Bt maize confined field trials (CFT) sown at the KARI Kiboko OQS
- Kenya broke historic agricultural ground in a protected field on 27 May 2005 when it sowed its first transgenic maize seeds into local soil. The field trials were undertaken to verify the results from trials held at a biosafety greenhouse. The trials serve two purposes: first, to determine the effectiveness of various Bt genes against common Kenyan stem borers; and second, crossing with Kenyan maize lines as part of a breeding process that will produce Bt maize varieties adapted to Kenyan growing conditions. These trials were conducted in strict accordance with the terms proscribed by the KEPHIS, the KARI Institutional Biosafety Committee (KARI-IBC), and the National Biosafety Committee (NBC). The open quarantine site where the confined trials were planted was built to specifications that include many biosafety and security measures to ensure that pollen, seed, or plant materials do not escape the trial area or cross inadvertently with maize not included in the experiment.
- In early July 2005, it was discovered that an inadvertent application of a systemic insecticide had been made in Trial 1 of the OQS. This prevented observation of the effects of the Bt delta-endotoxins beyond the early season vegetative stage of the crop in Trial 1, the evaluation of Bt *cry* gene events in the CFT, as reported in section 1.2.
- Following the unfortunate interference in the evaluation trial of Bt maize CFT Trial 1 at the OQS at Kiboko in early July, the NBC was briefed on this during their visit to the site on 18 July 2005. The committee recommended that the trial be terminated, preferably at the 7-8 weeks stage, and a second planting be made so as to obtain results over a full season. It was worth noting that no biosafety conditions have been breached from planning, planting, transportation of materials as well as management of the trial. All major activities had KEPHIS inspectors participating as in the appended schedule of activities. All other records for compliance were up to date and available for inspection at the site. Secondly, the germplasm conversion to Bt run to date as planned as detailed under Bt maize development above. Preliminary results of efficacy of Bt maize Cry proteins against Kenyan maize stem borers A Mid-term Report to the Kenya National Biosafety Committee (NBC) on the Bt maize Confined Field trial at KAR1 Kiboko, with a request to terminate the trial and approve second planting, was submitted to the NBC on 22 July 2005. Dr. S. Gichuki presented this report to the KAR1 IBC in July 2005 and attended the NBC meeting on 8 September 2005 where this report and request were discussed.
- An approval for second planting was granted subject to KEPHIS developing conditions for agronomic and phytosanitary practices within four weeks stating 8 Sept 2005. The NCST sent the NBC an approval for the second planting on 21 Sept 2005. KEPHIS sent the new phytosanitary conditions on 19 Oct 2005. KARI sent a notification to replant on 1 November 2005. Replanting of the trials was done on 3 November 2005.
- KEPHIS plant inspectors were involved on various occasions as detailed below:
 -- Observation of harvesting of transgenic Bt maize seeds in the BGHC on 19 July 2005. These were selfed Bt maize plants for seed increase and the seeds were harvested, shelled, treated and stored in the appropriate biosafety seed cabinet in the secure seeds store.

- Observation of harvesting of transgenic Bt maize seeds from Bt x Bt and Bt x non-Bt crosses for Mr. Murenga's MSc thesis research in the BGHC. The harvested seed were shelled, treated and stored in the appropriate biosafety seed cabinet in the secure seeds store.
- Harvesting of the evaluation of the Bt Maize confined field trial (CFT) at the open quarantine site (OQS) at KAR1 Kiboko on 31 Aug 2005.
- Disposal of plant material from CFT trial J through burning and covering the ashes in the trenches within the OQS on Wed 7 Sept 2005.
- The fist post harvest monitoring of Bt maize CFT Trial 1 at the OQS at KARI Kiboko on 21 Sept 2005. No volunteer maize seedlings were found at the site and in the isolation vicinity.
- The second post harvest monitoring of Bt maize CFT Trial 1 at the OQS at KARI Kiboko on 5 Oct 2005. No volunteer maize seedlings were found at the site and in the isolation vicinity.
- The harvesting of BC₁F₁ seeds from backcrossing of Bt and non-Bt maize germplasm at the CFT Kiboko on 26 Oct 2005. This included disposal of plant materials on site.
- Biosafety Regulatory Issues in Kenya have remained crucial to IRMA's success. There are
 regulations and guidelines for biosafety in biotechnology operating at ministerial level, while the
 Biotechnology and Biosafety Policy and a Biosafety Bill for Kenya are still under development.
 Through these regulations, the IRMA project has achieved guidance through CFTs twice, harvesting
 Bt maize including seeds, disposal, & post harvest monitoring.
- IRMA Project's Contributions to the regulatory system in Kenya include direct inputs, such as training of regulators from KEPHIS and NBC through formal courses and visits to research sites in Kenya, Mexico and the USA. Other contributions are availing Bt maize as a product through which applications has offered opportunities for interaction with NBC and IBC on Bt maize dossiers, and IRMA scientists' participation in the development of the biotechnology and biosafety policy and bills. The results from this involvement are:
 - Shortening of time between application and decisions
 - Increased science based decision making
 - Improved communication among stakeholders
 - Increase in the number of applications.
- The regulatory team continued to follow the developments in biosafety and bio-regulation in the Kenyan legislative system, as the draft Biosafety Bill continues to be debated by stakeholders. The ministry of Education, Science and Technology is committed to moving the Biotechnology Policy and Bill to parliament. A critical parliamentary motion that had been suggested during the last session was overtaken by events and will not be debated unless brought afresh during the current session. There is a particularly negative analysis of the proposed Biosafety Bill by ActionAid, which is leading a group of anti GMO activists in Kenya. ABSF has led the efforts to address these issues, and IRMA has contributed to these efforts.

Disposal of Bt plant materials

6. IPR/LICENSING

S. Mugo, D. Bergvinson, S. Gichuki, O. Oluoch

Negotiations on the commercial use of the Ubi: cry1Ab construct developed by the University of Ottawa (UoO) were carried out. Letters from CIMMYT were sent to Monsanto Technology, Bayer Bioscience, Dow Agrosciences, and Syngenta requesting that they release CIMMYT from a research-only MTA were sent off on 10 June 2005. Dr. Altosaar provided the history surrounding the development of the constructs in an affidavit that he sent to D. Bergvinson on 16 June 2005. The construct synthesis was based on a sequence published by Monsanto in 1986 for Bt cotton (cry1Ab and cry1Ac). While the University filed for patent protection, their application was filed much later than Monsanto's, and so for this construct to be used some type of sublicensing arrangement may need to be made between Monsanto and the University and between the University and CIMMYT. Dr. Altosaar (UoO) also clarified issues raised regarding an MTA from ICI-AstraZeneca that could potentially place Syngenta in a liability position; basically the technology associated with the MTA was not used to generate the constructs under consideration. He also mentioned that the University's legal council has been in contact with Monsanto, Canada and they had agreed to sign the letter of intent sent by CIMMYT. We await this action.

7 SEED PRODUCTION

O. Odongo, S. Mugo, W. Muasya

Nearly 2 tons of seeds were produced for use in various activities, key of which was the national
performance trials and associated activities. This included about 0.5 tons of seed produced during
the 2005A season and from about 1.5 tons from about 500 rows harvested during the 2005B season.
These were all produced at Kiboko and included various materials from nurseries (hybrid maize and
seed increases from inbred lines and breeding populations).

8. MARKET ASSESSMENT AND ANALYSIS

Martins Odendo, Hugo De Groote, Lutta Mohammed, J. Wanyama

- The outlines for presentation of marketing component of the baseline survey were refined, and data cleaned further data, analyzed, and literature search made. Data on the impact of market liberalization on maize marketing was also analyzed. The work plans and budgets for the year's activities were refined, and planning for 2006 activities done.
- Major activities included a survey of millers and processors' awareness and attitudes towards GMOs. Maize millers and processors were identified, and survey instruments developed.
- A survey of grain traders and sources of grain was started and is ongoing. Preliminary data showed that maize surplus zones like Kitale account for 57% of the area, while maize deficit zones like Kakamega account for 27% of the area.
- A study on the analysis of the use of maize for feed (grain, stovers, by products) was deferred to 2006.
- A study of the Kenya seed and biosafety regulatory system showed that: The seed market was liberalized, a seed act is in place, and many new local, regional and multinational companies including KARI have come to the market, leading to new variety releases. However, the process of variety release is still costly, there is a problem with seed imports, and quality control at the retail level. There are no new entries for highlands, and hybrid 614 still accounts for 50% of seed sales. Biosafety regulations and a draft Biosafety Policy is in place, and the process of application for GMO introductions is improving in quality and speed. However, a law is not yet in place, and this could be problematic for IRMA at the commercialization stage.
- In Tanzania, maize seeds and grain market were liberalized but the regulations in place, and new
 companies have entered the market. However, TANSEED a major company collapsed and there
 have been decrease in sales of improved seed, while quality declared seed is now limited. In
 Ethiopia, a plant breeders' rights document has been finalized and awaits approval. However, the
 government still has monopoly. In the developments of biosafety guidelines, a Stakeholder workshop

Farmer interviews

took place in 2005 and a draft of biosafety guidelines is circulating for review. For Uganda, seed markets were liberalized, and many seed companies are now engaged. Biosafety regulations are in place which allowed the opening of a genetic engineering lab where experiments are planned for GM bananas.

9. ECONOMIC IMPACT ASSESSMENT

- Hugo De Groote, James Ouma Okuro, Lutta Mohammed, j. Wanyama, C. Bett, and K. Dada
- IRMA social scientists analyzed data from previous research, especially baseline data, and worked on editing and submitting papers for presentation and publication.
- A first draft of the CD of the IRMA I Social Scientists' papers and presentations was compiled and is being reviewed before printing copies and posting it on the Web. Papers presented at conferences last year (KARI conference, American Agricultural Economics Association, and African Association of Agricultural Economics) were also finalized for the proceedings or for submission to journals. A summary of our synthesis paper was published in the Information Systems for Biotechnology (ISB) News Report of February 2005 (http://www.isb.vt.edu/ news/2005/feb05.pdf).
- The social science theme leaders took part in the IRMA II work plan meeting in Nairobi on 15 March 2005. The different activities we had planned in the annual meeting of November 2004 were reviewed and brought in line with the available budget. Some were cut and others reduced, and different members of the group were assigned to develop a more detailed work plan and budget for this year's activities.
- A proposal for geo-referencing and spatial analysis of the distribution of local OPVs at the coast was developed. The purpose is to quantify gene flow and develop control methods), literature review, developing and testing the methodology, sampling of the transects to be measured.

10 COMMUNICATION / PROMOTION, CAPACITY BUILDING & ADMINISTRATION

D. Ouya, D. Poland, G. Kimani, S. Mugo, and H. De Groote

Communication / promotion

Develop and produce publications that track the project's progress

- Mulaa, M., S. Mugo, B. Muli, and D. Poland (Editors). 2005. Report of a Workshop on Integrating Pastures, Fodders and Cereal Crops as Refugia for Stem Borers in the Farming Systems of the Humid Coastal Kenya, 26-29 July 2004: IRMA Project Document No. 17. Nairobi, Kenya and Mexico D.F.: KARI and CIMMYT.
- KAR1 and CIMMYT. 2005. Insect Resistant Maize for Africa Annual Report 2003-2004 KAR1/ CIMMYT IRMA Project. Project Document No. 20. Mexico D.F.: KARI and CIMMYT.
- KAR1 and CIMMYT. 2004. Insect Resistant Maize for Africa: IRMA in 2005 Briefs. KAR1/ CIMMYT IRMA Project. IRMA Project Document No. 21. Nairobi, Kenya: KAR1 and CIMMYT.
- D. Poland, S. Mugo, M. Mulaa, and D. Ouya (eds.). 2004. Insect Resistant Maize in Africa Project: Fourth Stakeholders Meeting. IRMA Project Document No. 19. Nairobi, Kenya: KARI and CIMMYT.
- Mugo S., M. Gethi, J. Songa, O. Odongo, G. Ombakho, J. Gethi, K. Njoroge, J. Ininda, and D. Bergvinson. 2003. Development of Locally Adapted Insect Resistant Maize in Kenya Data for 2005. KARI/CIMMYT IRMA Project. IRMA Project Document No. 18. Nairobi, Kenya: KARI and CIMMYT.

Solicit and convey public input to project scientists and managers

- The Fourth Annual IRMA Stakeholders Meeting was held on 9 December 2004 to solicit input and questions from project stakeholders and the media. Stakeholders were also shown the research in the biosafety greenhouse complex.
- The sixth Annual IRMA Stakeholders Meeting will be held on 25 November 2005. Stakeholders, including the media, will be shown the research in the biosafety greenhouse complex and the OQS at KARI Kiboko.
- The clipping service was maintained during 2004 with Picasso Productions.

Produce materials to inform diverse audiences about insect resistant maize technologies Print, and audio materials

- A compiled IRMA Updates, Issues 1-3, Volume 6, were produced and distributed as hard copy and electronically.
- A press release was produced and distributed on the first planting of the Bt maize confined field trial at Kiboko on 27 May 2005.
- A press release was produced for fifth Annual IRMA Stakeholders Meeting (2005).
- An IRMA poster for use in agricultural shows in Kenya was prepared, printed and was used at
 agricultural shows in Kenya. Copies have been sent to all KARI centers and are being used for
 training purposes.
- The revision of IRMA brochure continues. This will reflect the IRMA II aspirations as well as capture the achievements of IRMA 1.
- IRMA flyers one describing the project, and the other on frequently asked questions about GMOs, were distributed at three Agricultural shows in Kenya, namely: Nakuru 13-16 July, Mombasa 24-28 August, Nairobi 26 Sept-2 October. Geoffrey Murenga and Grace Kimani were on hand to answer questions from show Goers. Although it had been planned to display the IRMA poster at the agricultural shows, this was not possible, since the KARI stands at the shows did not have a special biotechnology section.

Media relations

 The outstanding event was the first planting of the Bt maize confined field trials at Kiboko on 27 May 2005. Event press release and press packet were prepared, with quotations provided by KARI Director R. Kiome and IRMA Project Manager S. Mugo. Three media houses attended the event and coverage on television, print and electronic media was extensive. The historic planting, and the IRMA project was covered on Nation and KBC Television broadcasts in Kenya. The project was also featured in an article in The New York Times. The International Herald Tribune (see below), The Standard, The Daily Nation, The East African. The Kenyan Spectator, and other newspapers and magazines in Kenya. The event also appeared on Reuters wire service; SciDev.net website; Lettrinfopgm website (a free info letter on transgenic plants from University of Grenoble 1(http://tamise.ujf-grenoble.fr /wws/info/lettreinfopgm): Truth about Trade Technology (http://www.truthabouttrade.org / article.asp?id=3921), and many other websites around the world.

- Daisy Ouya briefed a Senior Producer at BBC World Service (Mr. Gray Phombeah) on IRMA Project activities.
- The IRMA project was featured in an article in the February 2005 issue of the online journal New Agriculturist (www.new-agri.co.uk), which is published by WRENmedia and funded by DFID. The article titled 'An important milestone for Bt maize' is available at <u>www.new-agri.co.uk/05-2/</u> <u>focuson/focuson8.html</u>. It describes the project's background and important milestones, including the recent approval for field testing of Bt maize in open quarantine at Kiboko.
- The IRMA project was featured in an editorial entitled "Genes and Hoe," in the New York Times (15 June) and the International Herald Tribune (16 June), two of the most influential and prestigious newspapers at the international level. The NY Times interviewed Dr. Bergvinson, and support for the writing was provided by D. Poland and D. Mowbray at CIMMYT-Mexico.
- IRMA scientists Stephen Mugo, Simon Gichuki, Catherine Taracha, and KARI Director Dr. Romano Kiome, were interviewed by BBC journalist Andrew Luck- Baker for the program Discovery. Daisy Ouya accompanied the journalist to KARI Hq and Kiboko, and facilitated (translation to/from Kiswahili) the interviews with three farmers there. The broadcast was aired on 13 July. The BBC program *Discovery* was aired on 13 July, and it featured the project prominently. Archival CD copies of the broadcast have been received.
- CIMMYT Annual Report-05. A story on the IRMA project has been written, and will appear in the CIMMYT 2005 annual report.
- Coverage of the termination of the field trial at Kiboko, following the inadvertent application of Furadan, was intensive, in both the local and international media, giving the false impression that Kenya had stopped Bt maize experiments altogether.

BBC Reporter interviews S. Gichuki

Capacity building - Training

- The newly recruited Writer/Editor, Daisy Ouya, went to CIMMYT-Mexico for one month between February and March 2005, for orientation and training. Arrangements for covering IRMA editorial and PR duties were discussed, as well as logistical arrangements, which required consultations among the Head of Corporate Communications David Mowbray, ALP Director M. Banziger, D. Poland, and D. Ouya.
- Two trainings courses were held on operations and management of CFT, one at Kiboko and the other at Busia as mentioned in section 5. The first was held as a refresher training to prepare for planting the Bt maize confined field trial on Monday 18 April 2005. This was held at the site at KARI Kiboko Farm, and attended by 35 participants. The second was on-site compliance training for trial managers and inspectors of confined field trials held at Alupe, Busia, Kenya, 26-27 April 2005. This was attended by S. Gichuki, S. Mugo, J. Mbithi and E. Mwasame. The trainers were mainly from KEPHIS and Program for Biosafety Systems (PBS), USA.
- At their request, 12 members of the National Biosafety Committee (NBC), led by chairman J.K. Ng'eno, visited the Bt maize confined field trials in Kiboko on Monday, 18 July 2005 as mentioned in section 1.2. NBC members were informed of an experimental error—the application of a systemic pesticide to one of the plots in mid-June. Because of this, one trial (trial 1) had to be harvested and disposed, on August 31 and September 7 respectively. A fresh application was lodged for its replanting.
- Margaret Mulaa visited some institutions dealing with Bt maize in South Africa 28 May-1 June 2005. The objective was to learn procedures followed and methodologies used to manage insect resistance and conduct environmental risk assessments. In addition procedures used to screen for effective Bt genes, the regulatory system, and any other lessons that IRMA could learn from South Africa. She visited the Agricultural Research Council (ARC) in Potchestroon and Pretoria, and Monsanto Seed Company in Gauteng Province. Other Information gathered included statistics on total maize production and Bt maize acreage, varieties produced, yield loss due to stem borers, and the perception of Bt Maize in South Africa by the government, consumers, scientists, NGOs . farmers and other stakeholders. Other issues were the South African regulatory system and examples of applications made by Monsanto to plant Bt maize, as well as the procedures for storing and tracking germplasm through lab and field trials, marketing and monitoring of Bt maize in the field by Monsanto in South Africa, and use of refugia. Some farmers do not plant refugia and there is a risk of resistance developing. Stacked genes when back-crossed to some parents cause gene draft reducing yields Methodology to determining a discriminating dose for monitoring resistance for B.

NBC visits Bt marze CFT at Kiboko

fusca is being developed. The efficacy of Cry1Ab protein against second generation *B. fusca* larvae is lower, requiring stacking of genes (cry1Ab + cry2Ab) or increasing the initial dose. South A fricans do not conduct risk assessment studies because they are expensive; instead data generated from the USA and other countries is used to assess risks to non-targets arthropods, humans, and the environment. The South African Bureau of standards contracts a third party to verify what South African scientists are doing with the Bt technology.

- The BGHC continued to be a focal point for informal training through visits by major groups.
- Likewise, the OQS at Kiboko continued to be a focal point for informal training through visits by major groups. The most significant were the NBC and a group of 50 participants of a maize improvement course at CIMMYT. A total of 575 entrants were registered representing 55 national and international institutions at the OQS during the May – October 2005.
- Science within the IRMA Project was presented to a group of 50 Maize improvement course participants who also visited the BGHC and OQS during 29 Aug – 10 Sept 2005.

Capacity Building - Facilities & Capital items

- Minor works were done in the BGHC including fixing hooks to suspend shade netting in the BGHC from the inside and without affecting biosafety features of the facility.
- Each of the seven participating KARI centers received a digital camera to be used to capture important research and events.
- A photocopier and a scanner were purchased for the KARI communications office to enable production of important project materials.
- An LCD PowerPoint projector is being purchased for use at the KARI Biotechnology Center.
- One motor vehicle is yet to be purchased.

Workshops, Seminars, and Presentations

- S. Mugo attended a GMO cotton public forum organized by the cotton stakeholder's forum at the Safari Park Hotel, Nairobi, on 5 May 2005. The KARI Monsanto Cotton project activities were presented and responded to by a large number of mainly representatives of NGOs. KEPHIS and the NCST were very well represented and made presentations.
- S. Mugo attended the national maize variety release committee meeting at the Ministry of Agriculture headquarters in Nairobi on 26 May 2005. Mugo also attended a number of maize improvement meetings by Ministry in June 2005.
- S. Mugo attended and presented IRMA Project activities to the ABSF Regional Biotechnology Workshop, held 7 April 2005, Jacaranda Hotel, Nairobi, Kenya.
- IRMA Project was represented and presented at the First Syngenta Foundation for Sustainable Agriculture workshop, Basel, Switzerland, 4-10 June 2005. IRMA was represented by Stephen Mugo, Simon Gichuki and Hugo DeGroote. The purposes of the workshop were 1) For staff and key collaborators to meet and establish a cross-projects network, 2) to provide participants with an overview of the work of the Foundation. Other purposes were 3) to identify and discuss ways of measuring and improving impact, and 4) To look forward 5 and 10 years to the possible roles and activities of the Foundation. The workshop attracted about 40 participants (from various projects, SFSA staff, Syngenta Company, and SFSA consultants) from more than 10 countries. IRMA was one of the six projects at the workshop; others included projects from Mali, Eritrea, Brazil, Uganda, and India. Visual materials including posters and photos were availed including one for the IRMA project. The presentations called for an in-depth analysis of the relevance of each project. The workshop was the first of a series of workshops with only a summary of the proceedings expected. More important was the creation of a common understanding among participants on the work of the SFSA.
- S. Gichuki and S. Mugo attended a Rockefeller funded and CIP organized "A Roadmap Towards Making the Benefits of GM Crops Available to Resource-poor Farmers in Africa", at the Bellagio Study and Conference Center – Italy, September 13-17, 2005. The IRMA Project was presented and various recommendations from that meeting will be available from CIP.
- Various IRMA scientists and technicians attended 2005 maize national performance (NPT) tours
 where insect resistant maize OPVs were entered by KARI Katumani, Embu and Kakamega centers
 and are being tested by KEPHIS. Fred Manyara from KARI Embu, Wilson Muasya and J. Mbithi

from KARI Katumani, and S. Mugo attended the Early Maturity Mid Altitude NPT sites at Kangundo, Kiboko, Kathiani, Katumani, and Isinya during 12-13 July 2005. F. Manyara, J. Mbithi and S. Mugo participated in the Mid-Altitude Medium Maturity Embu NPT kit at various sites across the country including Meru, Embu, Kirinyaga, Nyeri, Lanet, and Siaya during 9-12 August 2005. Christine Ndinya and S. Were from KARI Kakamega joined F. Manyara, J. Mbithi and S. Mugo in the Mid-Late Medium Maturity Kakamega NPT kit at various sites across western Kenya including Lanet, Siaya, Busia, Bungoma, and Kabianga during 10-12 august 2005. Kiboko and Katumani, Embu, and KTI, and Kabianga and Kakamega were the special sites where artificial infestation was done for the Early, Medium and Mid-Late NPTs respectively. The Kiboko and KTI sites were the only ones where very good infestation data will be found. The Katumani and Embu sites will give average data, while infestations at Kabianga and Kakamega were interfered with by heavy rainfall soon after infestation. Poor plant stands were common in the Early Maturity sites, while good results are expected from the Medium and Mid-Late kits. The official report of these tours will be prepared by KEPHIS and be presented to the NPT meeting in February 2006.

S. Mugo presented IRMA Project to the visiting American Farm Bureau Federation (AFBF) organized by the Foreign Agricultural Service USDA Office in Nairobi and by ABSF, at the Nairobi Show ground on 29 Sept 2005. The six officials from the American Farm Bureau Federation (AFBF) were: Charles Kruse - President Missouri, Steve Bccus-President Kansas, Larry Wooden-President North Carolina, Barry Bushue-President Oregon, Craig Lang-President Iowa, and Michelle Gorman (AFBF). The visitors mainly focused on the adoption of biotech crops by American farmers, why American farmers grow biotech crops, the safety of biotech crops, the importance of science based regulatory process, opportunities for agricultural biotechnology in African agriculture (an American farmer's point of view) and international trade in biotech products among others. ABSF organized the meeting in collaboration with NCST.

Papers (journals and conferences)

- M. Mulaa, S. Mugo, B. Muli, and D. Poland (Eds). 2005. Report of a Workshop on Integrating Pastures, Fodders and Cereal Crops as Refugia for Stem Borers in the Farming Systems of the Humid Coastal Kenya, 26-29 July 2004: Insect Resistant Maize for Africa (IRMA) Project. IRMA Project Document No. 17. Nairobi, Kenya: KARI and CIMMYT.
- KARI and CIMMYT. 2005. Annual report 2003-2004. Insect Resistant Maize for Africa (IRMA) Project. IRMA Project Document No. 20. Nairobi, Kenya: KARI and CIMMYT.
- S. Mugo. S. Gichuki, D. Poland, D. Ouya, H. De Groote, and M. Mulaa (Eds). 2005. Insect Resistant Maize for Africa (IRMA II) "Delivering Products to Farmers" (2004-2008) Fifth Stakeholders Meeting, Hilton Hotel, Nairobi, Kenya, 9 December 2004. IRMA Project Document No. 19. Nairobi, Kenya: KARI and CIMMYT.
- De Groote H. and S. Mugo. 2005. Can Bt maize alleviate poverty in Africa? Paper presented at the XIIIth International Molecular Biology Seminar, Paris, February 24-15, 2005.
- De Groote H., S. Mugo, E. Sikinyi and F. Kanampiu, 2005. The regulatory system for maize seed in East Africa: Help or hinder for poor farmers? Paper prepared for presentation at the 9th International Conference on Agricultural Biotechnology: Ten Years After, organized by the International Consortium on Agricultural Biotechnology Research (ICABR), Ravello (Jtaly) July 6 – 10, 2005.
- CIMMYT and KARI, 2005. IRMA Updates Vol. 6, Issue 1, March 2005. CIMMYT, Mexico

CIMMYT and KARI, 2005. IRMA Updates Vol. 6, Issue 2, June 2005. CIMMYT, Mexico

- CIMMYT and KARI, 2005. IRMA Updates Vol. 6, Issue 3, September 2005. CIMMYT, Mexico
- S. Mugo C. Taracha, S. Mclean, J. Songa, A. Pellegrineschi, and S. Gichuki. 2005. Status of Development of Insect Resistant Maize Using Bt Technology in Kenya. Paper presented to the ABSF Regional Biotechnology Workshop, held 7 April 2005, Jacaranda Hotel, Nairobi, Kenya
- Mugo S., H. De Groote, S. Gichuki, D. Bergvinson, J. Songa, M. Mulaa, and A. Pellegrineschi. 2005. Developing Bt Maize for Resource-poor Farmers – Recent Advances in the IRMA Project. Paper proposed for the special December review issue of African Journal of Biotechnology.
- S. Mugo and S. Gichuki. 2005. Preliminary results of efficacy of Bt maize cry proteins against Kenyan maize stem borers. A Mid-term Report to the Kenya National Biosafety Committee (NBC) on the BT maize Confined Field trial at KARI Kiboko, CIMMYT ALP< Nairobi, Kenya.
- Tende R.M., J.H. Nderitu, S. Mugo, J.M. Songa, F. Alubayo, and D. Bergvinson. 2005. Screening for development of resistance by the spotted stem borer *Chilo partellus* Swinhoe (Lepidoptera: Pyralidae) to Bt-Maize Delta-Endotoxins. Paper to be presented at the 7th Conference of the African Science Society. Kampala, Uganda.
- De Groote H., S. Mugo, E. Sikinyi and F. Kanampiu, 2005. The regulatory system for maize seed in East Africa: Help or hinder for poor farmers? Paper prepared for presentation at the 9th International Conference on

Agricultural Biotechnology: Ten Years After, organized by the International Consortium on Agricultural Biotechnology Research (ICABR), Ravello (Italy) July 6 - 10, 2005.

Simon Chege Kimenju, Hugo De Groote, Joseph Karugia, Stephen Mbogoh and David Poland (2005) Consumer awareness and attitudes toward GM foods in Kenya. *African Journal of Biotechnology* Vol. 4 (10), pp. 1066-1075.

Administration

- The IRMA IJ Agreement was signed off among KARI, CIMMYT and SFSA to cover 2004-2008.
- Dr. Simon Gichuki was appointed Head of KARI Biotechnology Program, and KARI Biotechnology Center, following the demise of IRMA Co-Coordinator Dr. Benjamin Odhiambo. With this appointment, Gichuki assumed the role of KARI's primary contact on the IRMA Project, and also serves as the IRMA Project Internal Regulatory Affairs Officer. He has developed efficiency in applications for field-testing of Bt maize through to approval.
- A planning and budgeting meeting was held on 15 March 2005. This brought together various project theme team leaders to align the activities with the actual budget available. A total of 15 participants attended the one-day event at KARI Headquarters.
- IRMA project Technical Advisory Board. The composition was proposed as Dr. Romano Kiome, Dr. Willy De Greef, Dr. Rob Tripp, Mr. Obongo Nyachae, Dr. Carl Pray, and the Agro business consultant who will be joining the Rockefeller Foundation. This committee should be well placed to handle the technical issues associated with efficacy, regulation, and release. All were sent invitation letters and TORs and all accepted, save for the RF consultant position, which had not been filled. The project documents (including the decision tree) were sent to the team for their comments. Subsequently they were asked to provide an informal review and a set of questions sent out to them. IRMA-TAB was represented by Mr. Obongo Nyachae during the June 2005 EC meeting. A joint meeting of the TAB and IRMA scientists is planned for 23-24 November 2005 ahead of a joint meeting with the EC meeting on 25 November 2005.
- IRMA Executive Committee met and visited the Bt maize confined field trials at Kiboko on 13-14 June 2005. The IRMA Executive Committee is the body created to oversee IRMA II as IRMA I was run by a steering committee. EC members at the meeting included Dr. R. Kiome the Director KARI, Dr. Masa Iwanaga, Director General CIMMYT, Mr. J.K. Ng'eno representing the Director of Agriculture in the Ministry of Agriculture in Kenya, and Dr. Andrew Bennett, the Executive Director of the Syngenta Foundation for Sustainable Agriculture (SFSA). The representative of the Rockefeller Foundation sent an apology. Also present was Mr. Obongo Nyachae, the Executive Officer Seed Trade Association of Kenya (STAK) who was representing the IRMA-Technical Advisory Board (IRMA-TAB), Dr. M. Banziger, CIMMYT-ALP Director, and Dr. Jost Frei, SFSA consultant among other scientists and collaborators. The EC decided to meet during mid-year to deliberate on important issues facing the project. These included: project updates, workplans and budgets, Kenyan legislation and regulatory issues, MTA on cry1Ab and cry2Aa genes, new initiatives to support IRMA, IRMA-TAB, funding gap, and schedule of key events in 2005. After the meeting the EC toured the level 2 biosafety greenhouse complex (BGHC) at KARI-NARL, escorted by Ms. Catherine Taracha, Scientist-in-Charge. On Tuesday the 14th the EC visited the KARI-Kiboko Field Station, primarily to see the recently established Bt maize CFTs there. Minutes of the EC June meeting were prepared and circulated.
- The IRMA Annual Project Meetings will be held on various dates in November 2005 at the Safari Park hotel as follows:
 - 07 08 Nov 2005 IRMA Annual Review and Planning meeting To be attended by IRMA theme leaders, the complement of KARI and CIMMYT Scientists in the IRMA project, and any IRMA project Executive Committee (EC) Members or IRMA Project Technical Advisory Board (IRMA-TAB) members who may be available.
 - 23-24 Nov 2005 Joint IRMA theme leaders and IRMA-TAB meeting
 - 25 Nov 2005 (Morning) Annual Stakeholders' meeting To be attended by more than 100 stakeholders' representatives, including the media.
 - 25 Nov 2005 (Afternoon) Executive Committee meeting Combined meeting with IRMA-TAB
 - 26 Nov 2006 Optional visits to the Biosafety Greenhouse complex at KARI NARL and Confined field trials at the Open Quarantine Site at KARI Kiboko.

Participants at the IRMA Review and planning meeting held at Safari Park Hotel 7-8 Nov 2005

Vork Plans
iject 2005 V
IRMA Pro
Reviewed
Appendix 1:

ļ																	
code	code		ACIVILIES	Lype of work	Creep	(INVIDA	remeasible	5	2	ð 2	Estimated	Actual Case (11SE)		REAL			Status
1. Be	Event	analysis. Development	of source line and hu	man health safety as	sessta en f					-			2				
-	-	Donor Organism	Maize biology description adapted to the merions	Literature study	Breeders	Literature study	SM. AP. CT	×	<u> </u>		\$00	250	0	8	520	8	Partially donc/on-
-	~	Donor Organism	Bacillus Thurmensis	Learning study	Molecular Biology	Luterature study	SM AP CT	Ť	╞	╀	905	140	╞		240	- 10	ands done
-	^	Donor Organisa	Other innerted Genetic elements	V N	N.N	N A	AP		1	Ļ.	0	ð	•	•	•	5	N.
-	7	Vectors and transformation methods	Storage of reference semples of constructs	Long term storage	Molecular Biology	Plasmid isolation	٨P	×	-		000'1	250	•	c	•	2501	Partually done. Siornee
	۳.	Vectors and transformation methods	Storage of reference	Long term storage		Maintenance of the specimens		×	×	×		ð	8	0	•		Jone
-	9	Voctors and transformation methods	Genetic constructs description	Experiment description	Molecular Biology	Report	٨P	×	+-	-	1.000	250	•	•	•	7301	Jone/Report
-	-	Vectors and transformation methods	Description of the effect of the rese	Lit. study / lab / BGH observation	Molecular Biology	Report	AP, CT, JD		+	-	1.000	0	0	•	0		Jona/Report
-	-	Vectors and transform stron methods	Transformation experiment	Exp. cr. 2.A / Descrip.of the exp. protocol	Molecular Biology	Report/transgenic pizats des elopment	٩٨	×	×	×	30,000	13,440	0	3,440	0	1000'01	Done/Report
	2	Molecular characterization of the event	No. of copies	Experiment	Molecular Biology	Report	AP A	×			5.000	2,240	0	240	2,000		'arually dona/Report whinitied/Continuing
-	9	 Molecular characterization of the creat 	Other taserted DNA	Experiment	Molecular Biology	Report	4P	×			3,000	2,240	3	240	•	2,000	artsally done/Report ubmitted/Continuing
-	=	I Molecular characterization of the event	Structure of the later	Experiment	Molecular Biology	Report	٩٨	×			10,000	4,480	0	0 8 7	3	4,000	artially done/Roport ubmitted/Continuing
-	2	 Molecular charactorization of the event 	Sequencing of the insert	Experiment	Molecular Biology	Report	AP	×	×		5,000	2,240	0	240	<u>с</u>	2,000	artially done/Report ubmitted/Continuing
-	<u> </u>	3 Molecular characterization of the event	Insertion locus determination	Experiment	Molecular Biology	Report	٨P	×	×		5,000	2,240	0	0	6	2,240 F	artially done/Report ubmatted/Continuing
-	-	4 Molecular charactenzation of the eveni	Vontification of no insert un ORF	Experiment	Molecular Biology	Report	AP	×	×	×	15,000	6,720	0	•	•	6,720 7	artially done/Roport ubmitted/Continuing
	\$1	5 Molecular characterization of the creat	Peer Review of the results	Report	Molecular Biology	Report	٨P	×	×	×	5.000	2.240	°	012.1	•	1.000	ertually done/Report ubmitted/Continuing
-	16	6 Expression analysis of unserted genes	Study in contained environment	experiment .	Molecular Biology	Protein sampling/ bioassays	CT. AP . JD	×	×	×	1.500	610	0	\$00	•	180	Jone/Continuing
-	1	7 Expression analysis of inserted genes	Experiment stability in environsient	exportmont	Molecular Biology	Protein in different environs	CT. AP, JD		Ê	×	10,000	4.450	8	2.480	2,000	3	Jone/Continuing
-		Expression analysis of inserted genes	Methods for Lategrin of new variety	Experiment	Molecular Biology	× 7	CT . AP. JD				•	ð	5	•	3	6	V)
-	6	9 Detection toolkit development	Dev set of protein based detect. kits	Available- outsource ('ryfBd	Molecular Biology	Experiment			<u> </u>	×	•	8	0	c	3	0	o out-source ommerally
-	67	() Detection toolkit development	Quantitative test for regulatory test	Outsource	Molecular Biology	Test effectiveness of the kit				×	•	0	0	-	8	0	lot done

À	Activity	Preducts	Activities	Type of work	Group	Activity	Persons	50 10	S	2	Cstimated	Actual	KARI		CIMINT		tu e
ð١	<u>ا</u> ي					1	responsible	-	;	-			12 2 2	ESA .	RF SFG	s i	
		Detection toolkit development	Cheap Qualitative test for field use	Outsource	Molecular Biology	Lest effectiveness of the kit			×		5		.	5	.	5	done
	ដ	Detection toolkit development	Dev. a set of DNA based detection lat	Experiment	Molecular Biology	Experiment Ke/Mx (feedback)	JD. CT. AP	x x	×		5,000	645	0	145	•	500 To o	out-source
	5	Detection toolkit development	Real-time PCR, event specific	Experiment	Molecular Biology	Experiment Ke/Mx (feedback)	JD, CT, AP	×	×		10,000	1.290	0	290	0	10N 000.	done
	4	Detection toolkit development	Real-time PCR, event specific	Experiment	Molecular Biology	Experiment Ke/Mx (feedback)	JD, CT, AP		×	×	10,000	1,290	0	290	0	1000 Not	done
	z	Detection toolkit development	Negotiate contract with commercial toolkit developer	Negotiation MTA	Managoment	Negotiation MTA	LCA. KARI/CIMM/Y T	×	×	×	10.000	1,290	0	790	0	000 Not	done - To chane commercially
	36	Detection toolkit development	Discuss GMO detection standards with Kenyan authorities	Workshops	All	Workshops	JD, CT, AP, SM, GC	x x	×	×	10,000	1,290	° –	290	•	000 Not	doue - defered
	27	Detection toolkit development	Organize production and availability of reference materials	Production commitment / publications	IIV	Production commitment /publications	JD, CT, AP, SM, GC	x x	×	×	10.000	1,290	0	290	500	S00 Net	relevant
<u> </u>	8	Allergenicity	Stability in SGF	Experiment	Molecular Biology	Outsource (?)	6		×	×	2,000	258	0	ò	0	260 Not	done
	2	Allergenicity	Confirm AA sequence identity	Experiment	Molecular Biology		AP. JD	× ×			5,000	645	0	0	0	645 Not	i done
	30	Allergenicity	AA sequence analysis compared to database	Experiment	Molecular Biology		AP. JD				5.000	•	0	8	0	No.	l done
+ · · · · · · · · · · · · · · · · · · ·	16	Allergenicity	Follow evolution of codex activities on allergenicity	Experiment	Molecular Biology		AP. JD				10,000	0	0	•	0	5 5	l done
	32	Allergenicity	Alternative: get file of another tech developer		Regolatory expert		£.				õ	0	0	8	8	NON O	l done
								Η	Ц		177,500	30,090					an a
	clopmer	nt of conventional an	ad Bt products, and c	ompositional analysis													
	-	Inbred lines	Inbred lines	Breeding	Breeding	Develop descriptors	SM.JG		<u> </u>		4,800	8	0	0	0	0 Not	t dome
-	~	Hybrids	Development of hybrids	Breeding	Breeding	Nominate for NPT	5			Ľ	4,500	0	0	0	0	oNo	i done
_	m	Hybrids	Development of hybrids	Breeding	Breeding	Evaluate NPT	GO, SM, JI	-			4,000	0	0	Ó	0	0 Not	l done
<u> </u>	7	Hybrids	Development of hybrids	Breeding	Breeding	Monitor & evaluate NPT	GO, CM, WM, SM, JI., JG	-			1,750	•	8	•	0	No.	t dome
1	~	Hybrids	Development of hybrids	Breeding	Breeding	Form TWC hybrids					0	2,000	0	ŝ	2,000	-500 Dee	2
	و	Hybrids	Development of hybrids	Breeding	Breeding	Conduct multi- location on-farm trials	CM, OM, MO, WM, GO, JI, JG	×	×	×	7,000	6,000	2,000	3.000		1,000 Dec	ž
	٢	Hybrids	Development of hybrids	Breeding	Breeding	DUS tests	JG, SM, JJ		ļ		5,400	3		-	8	No.	t done
	×	OPVs	Development of OPVs (2)	Breeding	Breeding	Pre-release OPVs	5	\vdash	<u> </u>		750	0		ō	8	9 <u>0</u> 0	t done
1	9	opv's	Development of OPVs (2)	Breeding	Breeding	Evaluate in NPT	GO, SM, JI	×	×		4,000	4,500	2.000	2,500	٥	0 Dor	e
1	9	OPV'S	Development of OPVs (2)	Breeding	Breeding	Monitor & evaluate NPT	CM, OM, NO, WM, GO, JI, JG		×		1.750	1,750	750	0		1,000 Dor	2

· ·

•

Group	p Activity	y Products	Activities	Type of work	Group	Activity	Pertone	ē		2	f Fatime	ted Actua		KARI		MVT	Ctatue
cotte	corte				•		responsible	, ,	۲ ۱	×	COST	Cost (U	S) RF	SFSA	, T	SFSA	
~	=	OPV5	Development of OPVs (2)	Breeding	Breeding	Variety evaluation trials	JA, SM, WM	×	<u> </u>	×	24,	000	8	0 2,95	0	1.500	Done
2	2	0PVs	Development of OPVs (2)	Breeding	Breeding	Conduct DUS trials	JG. SM, JI	×	Ĵ,	× J	4	3,0	8	3.00	0	0	Done
2	5	OPV5	Development of OPVs (2)	Breeding	Breeding	Increase seed	SM, WM	+	+		1	8	0	0	0	0	Done
2	7	OPV5	Development of OPVs (2)	Breeding	Breeding	Identify commercial seed production	Ц	-			s	8	8	0	0	0	Not done - Not released
2	5	Resistance to storage	Postharvest	Breeding	Breeding	Screening for storage	PL, DB	+	+	+	-	8.1	8	0	0	1.800	Done
~	9	Resistance to storage pests	Insect infestations & evaluations	Entomology	Environ. Assesment	Rear, infest & rate trials	JS, SM	×		×	20,	000	8	0 2,00	0	8,000	Done
"	17	Product Development- Bt	Development of cry2As source lines	Biotech	MolBiol	Development of cry2As source lines	٩٢	×	Ê.	×	30	<u>5</u> ,0	8	0	0	5.000	Done
~	8	Product Development- Bt	Evaluating CML216 cry1Ab	Breeding	Breeding	Evaluate in Kiboko OQS	Df 'WS	×	-		15,	000	8	0 2.00	0	8.000	Done & Ongoing
~	6	Product Development- Bt	Evaluating CML216 cry1Ab		Breeding	Evaluate in BGH						9.0	00	0 4,00	0 2.000	0	Done
2	¢;	Hybrids	Backcrossing of cry l Ab into adapted lines	Breeding	Breeding	BC1F1 made with adapted lines to lead events in Kiboko OQS	SM, JI, JG		^	×	õ	5,0	8	<u>8</u>	8	1,500	Done
2	17	Hybrids	Regulatory	Breeding	regulatory	Submit application to grow in Kiboko OQS	SM	×	-	×	7	500 2.0	8	0 0	0 1.800	0	Done
7	2	Hybrids	Regulatory		regulatory	Develop BC0F1	SM, JG, CT	×	Ĵ			0 5.0	8	3.00	000 2,000		Done
~	ເ າ	Bi OPVs	Development of cry1Ab OPVs	Breeding	Br eed ing	BC1F1 made with OPVs to lead events in Kiboko OQS	SM, JG, JI		~	×	10	2'0	00	0 0 0	005.1	0	Done
	24	Bt hybrids	Development of cry1Ab hybrids & OPVs		Breeding	Expression analysis	GM		-			3,6	8	0 2,50	8	200	Ongoing
2	25	Bt OPV5	Development of cry1Ab OPVs	Breeding	Regulatory	Application for Kiboko OQS	SM, SG	\vdash		-	~	80	0	0	0	ð	Done
7	56	Resistance to stem borer pests	Insect infestations & evaluations	Entomolotgy	Environ. Assesment	Rear, infest & rate trials	JS, SM	×	r x	×	50	10.0	8	0.90	9	4,000	Dose
7	27	Compositional analysis of Bt maize	Identify an analytical lab and make contract	Negotiation & Contract	Regulatory	Identify analytical lab	SM, BK, SG				-	8	20	8	6	550	Defired
ы	28	Compositional analysis of Bt maize	Identify an analytical lab and make contract	Negotiation & Contract	Regulatory	Contract negotiation	SM, BK, SG				4	8	0	0	0	•	Diffreed
7	58	Compositional analysis of Bt maize	Identify 6 locs for rep. field trials	Search	Br ee ding						2,	00	8	¢	0	0	Initiated at Embu
2	30	Compositional analysis of Bt maize	Train staff at 6 locations & mock trials	Search	regulatory						6.	80	0	0	0	0	Deffred
	_								e la		200					32,356	

	tus		going	soing	information	information	information	information	information	information	ck mals on-going	embled Literature	ty done from OQS	going	joing.	going	done - Deffroed 006	going.
	8 8		0	5 0	00 00	000	0 Got	000 Got	000 Get	0 Got	000 Mo	0 V	S00 Part	6 0	000 Ou	ð o	000 Not to 2	40. 3
	SFS	5						ŝ	5		7		2		21		51	
	RF CIN		0	1.000	0	0	0	0	5	1,000	2,000	0	1,000	0	1.000	0	0	ð
	SFSA		15,000	0	0	° -	e.	200	0	0	0	0	0	0	0	0	0	0
	KAR		5.000	° –	0	0	0	1,500	2,000	1,000	1,000	6	000'1	0	1.000	•	ō —	0
	la l		000	000	•	0	°	000	000	000	000.	0	500	0	000	0	00,	0
ļ	Cost (1		27					-		~	~		ľ		-			0
	Estimated cost		20,000	1,000	10,000	10,000	10,000	10,000	10,000	2,000	5.000	1,500	1,500	9.50	1,500	4,000	5.000	1.000
t	8	1	×	×						×	×		×		×		×	
	8		×	×				×	×	×	×		×		x		×	
ļ	8	1	×	×	1			×	×	×	×		×		×		×	ļ
ł	õ		×	×	<u> </u>				[ļ
	Persons responsible		JS, SM	JMS, DB	UON.' Chiromo	UON/Chirome	UON/ Chiromo	UON/Chirom	UON/ Chiromo	JMS, DB, Student	JMS, DB. student?	JMS, DB	JMS, DB	JMS, DB & collab.	JMS, DB	JMS. DB	PL, DB	JMS. DB
	Activity		Rear, infest & rate trials		Bird experiment	Fish experiment	Mammal experiment	Invertebrate experiment	Aquatic invertebrate experiment		Exper. & hierature							
	Group		Environ. Assesment	Environ. Assesment	Environ. Assesment	Environ. Assesment	Environ. Assesment	Environ. Assesment	Environ. Assesment	Environ. Assesment	Environ. Assesment	Environ. Assesment	Eaviron. Assesment	Environ. Assesment	Environ. Assesment	Environ. Assesment	Environ. Assesment	Environ. Assesment
	Type of work		Entomololgy	Bioassays	Experiment & Literature	Experiment & Literature review	Experiment & Literature review	Experiment & Literature	Experiment & Literature review	Bioarsays	Biomsays	Bioassays	Bioassays	Bioassays	Bioessays	Bioassays	Bioussay's	Determine lepidoptera and weed species within 10 mt of maize
	Activities	It	Insect infestations & evaluations	Impact on Lepidoptyera herbivores: Helicoverpa armigera : (BSGH lab > 005> 0pen	Ecotox	Ecotox	Ecotox	Ecotox	Ecotox	Impact on Cotesia flavipes (BSGH/ lab> OQS> Open field)	Impact on the development and survival of predators: lady bird beetles & Earwigs: (BSGH/ lab > OQS> Open field)	Impact on the development and survival of honey bee larvae (BSGH & Lab)	Impact on ants (predators) - OQS	Impact on soil micro- organisms. (BSGH' lab - -> OQS> Open field) (BSGH, OQS)	Monitor arthropods / Natural enemies in (OOS)	Monitor arthropods ' Natural cnemics in the field: On-station> on- farm)	Impact on non-target non-lepidopten: LGB & Sitophilus zeamais	Fate of pollen impact on non-target insects
	Products	atal Impact Assessme	Resistance to stem borer peats	impact on non-targets	Envronmental toxicity	Envronmental toxicity	Envronmental toxicity	Envronmental toxicity	Envronmental toxicity	Impact on non-targets	Impact on non-targets	l impact on non-targets	Impact on non-targets	Impact on non-targets	Impact on non-tragets	I Impact on non-targets	i Impact on non-targets	impact on non-targets
-	Activity	ronmen	~	c1		4	s	9	7	80	0	10	=	21	5	1	21	16
ľ	sroup /	9. Envir	r.	e	r.	r.	e,	r.	<u>م</u>	۳.	m	m	er	r.	ir.	r	6	··.

Status		Partly done from gene flow studies	Partly done from gene flow studies	Partly done from gene flow studies	and the second		Partialy Done	Done, Msc Project	Partialy Done	Done, Msc Project	Not done	Partially Done			Done	Done	Done	Not done
۳ ۲	SFSA	1,000.1	9	24.500 F	42,000		9 P	1,000,1	5,000	1,000,1	300	6,000 I	13,300		10	0	800	<u>to</u>
CIMMN	1	1,000	0	Ó	1,000		0	0	0	0	0	0	20		0	0	0	o
	SA	2,000	0	0,000	1,500		0	2,000	0,000	3,500	200	6,000	1,700		300	400	0	ŏ
KARI	22	0	0	۳ 0	8		0	0	0	0	0	0	0 2		150	0	0	0
	RF		8	8.	21			0		0	0				0	6		
Actual	Cost (USS	4,000		-	54,50			3,000	15,000	4,50	20	12,000	35,00		45	6	8	
Estimated	cost	5,000	0	0	107,900		10,000	4,000	30,000	7,000	500	15,000	66,500		300	400	800	5,000
ş		×		×				x	×	×				ĺ	×			
8		x	×	×				×	×	×					×			
õ	_	×	×	x					×	×	×	x			×		×	
õ		×		x					×	×	x II			Ĺ	×	x	×	
Persons	responsible	SM,DB	SMDB	SM,DB			DM, MM	JS, DB	DM, MM	JS, DB	SM, DB, JG,				SM / SG	SM / SG	SM / SG	SM/SG
Activity		Jutcrossing rate to ocal maize var	Dutcrossing to other plant species (lit iearch)	Horizontal gene ransfer				Cycles of selection for esistance started		4 cycles for Bf and 6 cycles for CP completed	A seed recycling strategy is developed as a working paper to retain Bt in OPVs	Training workshop GIS	and the second		Attend regulators meetings	Visit BGHC by regulators-	visit field trial at Kiboko by regulators	Visit other regulatory centres and organizations in the region, Familitialise with Regulatory developments in the region
Group		Breeding	Breeding	Breeding 1 t			IRM	IRM	IRM	IRM	IRM	IRM/SocEC			Regulatory	Regulatory	Regulatory	Regulatory
Type of work		Gene flow exp	Gene flow exp	Literature study			Experiment	Experiment	Experiment	Experiment	Design strategy	capacity building			Develop intensive communication	Develop intensive communication	Develop intensive communication	Participate in meetings. offer experts
Activities		i Distance of pollen flow (Field / OQS, on- farm, Literature)	Competitiveness of the F1s (Literature)	Gene flow experiments		d contingency plans	Design IRM plan to take account of OPV route	Quantify sensitivity of Chilo and Busseola to Cry. including variations	Design IRM plan to take account of OPV route	Quantify sensitivity of Chilo and Busseola to Cry including variations	Design an introduction plan of OPVs	training GIS			Interact intensively with Kenyan national regulations development	Interact intensively with Kenyan national regulations development	Interact intensively with Kenyan national regulations development	Follow regulatory developments in the region
Products	,	Gene flow information	Gene flow information	Gene flow information		ince management an	Insect resistance management plan	Insect resistance management plan	Insect resistance management plan	Insect resistance management plan	Insect resistance management plan	Capacity built		Issues	Regulatory developments	Regulatory developments	Regulatory developments	Regulatory developments
Activity	code		8	61		t resista	-	C)	"	4	s	9		latory	-	7	3	4
Group	code	m i i i i	m	۴.		4. Insec	4	4	-3	4	4	*1		5. Regu	5	٩	5	v

Ground	Activity	· Praducte	Activities	Tyne of work	Groun	Activity	Partone	6	10	2	Preferrant				0.00		
code	code						responsible	;	×	5	cost	Cost (USS)	RF 5	SFSA		SFSA	0181US
s	Ś	Regulatory	Follow developments in	Participate in public	Regulatory	Develop internet	SM / SG	×	×	×	3,000	3,000	3,000	0		0	Done
		accelopments	Carragena riviotor			inukage, ramicipate in public sector consultations											
s	Q	Regulatory developments	Follow the developments on liability and readdress	Current literature	Regulatory	Organise a stake holders meeting to collect views	SM / SG	×	×	×	4,000	4,000	0	2,000	0	2,000	Dagoing
S	٢	Regulatory developments	Follow the developments on liability and readdress	Current literature	Regulatory	Attend regional meetings	SM / SG				5,000	3.500	0	0	0	3,5001	Vot done
s	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Regulatory skills development	Dev. functions of RA manager at KARI and CIMMYT	commitment of personnel	Regulatory	Attachment and training of project manager and regulator to a private company (e.g. SBI)	SM / SG		×	×	25,000	12,000	0	6,000	0	6.0001	Deffered to 2006
s	6	Regulatory skills development	Training of staff at KARI centers in hendling GM maize	Development of training programme	Regulatory	Develop training materials	SM / SG	x			000'1	1,000	٥	1,000	0	6	Vot done
S	01	Regulatory skills development	Training of staff at agricultural research stations in handling GM maize	Development of training programme	Regulatory	Conduct training at six KARI centers for scientists and technicians	SM / SG	×	×		4,000	4,000	0	3.000	0	1,000	Jone in NARL. Cakamega, Kiboko Ind Alupe
5	=	Regulatory skills development	Develop SOPs for all activities in the project	Administrative exercise	Regulatory	Drafting, Editing, publication SOP document	SM/SG/DP	×	×		4,000	1,000	ð	500	0	2001	Oone with KEPHIS
Ś	12	Contingency plan	Regulatory	Planting out varieties	Breeding	Characterization of local varieties	JC' SW' JI				39,000	0	0	0	0	0	Jugoing
s	13	Contingency plan	Plan for withdrawal of the Bt maize if required	Design withdrawal plan, and foresee testing	Regulatory		SM, SG	×	x	×	10,000	5,000	0	2,500	0	2,500	Jone witihin compliance docs
				NO X	All the second						98,508	35,150	3,150	15,700	0	16,300	and the second
6. IPI	R/licensi	ing															
9	-	IPR/licensing	dI.	Negotiation	IPR	Inlicensing agreements	AATF (?)	x	-		1,000	5,600	0	909	5,000	0	Jugoing
9	č i	IPR flicensing	đ	Negotiation	IPR	Patenting of event(s)	AATF		x		8,000	0	0	0	0	8	Vot done - not elevant, FTO more mportant
¢	ń	IPR/licensing	٩I	Negotiation	IPR	Training on IP for project members	AATF		×		15,000	5,000	0	2,500	600	1,900	Vot done - Legal counsels left KARI & CIMMYT
Q	4	JPR /hcensing	IP	Negotiation	IPR	Discuss the process outlicensing the IRMA events	AATF			×	10,000	1,000	0	500	0	5001	vot done - not elevant, FTO more mportant
											34,000	11,600	0	3,600	S,600	2,400	

.

Grou	> Activit	ity Products	Activities	Type of work	Group	Activity	Persons	ō	õ	63	183 7	imated	Actual	¥.	R	CIM	МҮТ	Status	_
Code	code						responsible			-	_	Cost	ost (USS)	RF	SFSA	RF	SFSA		_
2	ad Prod	Auction																	_
5 r	-	Seed	Seed production	TAN	Seed production	Seed production	MM	×		F	$\left \right $	400	1 700	1 150	ē	1055		Om-enine	_
2	~	Seed	Seed production	SUG	Seed production	Seed production	MM		×	\dagger	╀	760	1 700	1.150	0	550		onsoins	-
5	~	Seed	Seed production	Descriptors	Seed production	Seed production	MM	×	ſ	┢	┝	93	1.600	1.200	0	300	00	Done	-
~	7	Seed	Seed production	Ear to row planting	Seed production	Seed production	8		F	×	┢	6 9	8 9	o	Ö	0	400	Not done varieties	-
•	<u>،</u>	Seed	Seed production	Ear to row planting	Seed production	Seed production for	MM			×	\vdash	8	500	1.000	0	6-	2 0	Not done varieties	
		5							14	5	-							not released yct	_
						المحموات مرايكه الأساب وم	「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	4		8	2 3		一一つたい					1. m	-
8. M	arket ar	nalvsis								1						1			-
										┢	┝	F							
œ	-	Report on cooperation and seed trade in the	Market analysis	Administartion activity	market assessment	Literature review, survey and analysis	ΓW			×		1.000	1.000	1,000	0			Partly done-to complete in 2006	_
		regions												-					-
80	~	Report describing major	Communicate with food	Describe sector,	market assessment	Survey on these	KD, JW & SK			×	×	11.000	11.000	2,500	6,500	2,000		On going & to	
		processors, activities and opinion on GM	a processors, millers and distributors as needed	quantitative, and opinions		groups, distribute handouts ness												complete in 2005.	-
						education on GM			_		_	-							_
×	er.	Reccommendation of	Seed subsector analysis	Cooperation with seed	Market assessment	Informal and formal	HdG, SM, &			×	-	2,000	0		0			On going	
		how IRMA can		traders in the region		discussions	LM				_			-					_
		collaborate with other	-																
٥									1		+	1							_
0	\$	A description of current patterns of maize grain trade	commercial grain suo- sector analysis	market analysis	Marker assessment	Survey of grain traders and sources of grain	MORIN		×	×		2:000	5,000	4.000	0	1,000	0	On-going in collaboration with FAO	
SS SS	S	Description of the seed	Seed subsector analysis,	market analysis	market assessment	Visit Tz, Ug and	HdG, LM &		×	×	×	10,000	10,000	4.000	0	2,000	4.000	Visits to Ethopia	
		systems in East Africa(Kenya, Tanzania, Uganda and Ethiopia)	and international collaboration			Ethiopia	8											dome. Visits to Ug & 1Z in 2006	
æ	6	Report on the use of	Market analysis	survey (PRA and	market assessment	Analysis of the use of	HdG & 6	Ī	×	×	×	30.000	ō		0			Defered to 2006	
		maize for feed		quantitative)		maize for feed (grain, stover, byproducts)	KARI econs.			!									
								Π			-			10.500	6.668	2005	A Post		-
5 6	cio-eco	nomic Imnact assesmen	ti -																_
	-			East state and	Eres inner eres		80		ſ	ŀ	\mathbf{F}	22.2				ſ			-
•	-	Account on Goop loss/increase and ecnomic analysis of new varienes	economic impact assessment	economic analysis	ccon impact asses.	collection of input/output data, analyze and write	9					995'A	7,000	0	5	0	2,000	Not done. Defrered to 2006 in the kat area	
4	ľ								Ţ	1	┥								_
>	N	Georeterencing of UPV1	I IKM (conomics)	Mapping and modeling of opy patterns by place and time	Econ impact asses.	Document growing patterns of OPVs in the region (group and hh int)	KD, CB. &SK		×	×	×	10,000	7,000	6.000	0	000.1	0	Done at the coast. 2006 for mid-altitude areas	
đ	ñ	Development of varietie acceptable to all stakeholders	evaluations	Participatory variety evaluation	Econ impact asses.	Conduct participatory farmer evaluation	CB	×	×	×	×	10,000	8,000	1,500	5.500	000'1		Defired to 2006	_

tatus		o be done during SR 005 season at Kat.	ATP. Western in				one (as poster)	iew folder drafted. ill using old one.	one	artially done	ot done	artially done	beferred		Done	lot done, maize not et released	iot done	Done	artially done	Done	one	artly done
WYT IS	SFSA	<u>7</u>	4			ſ	5.000 E	2.000 N	1.500 d	400	5	8	8	<u>6</u>	1,000.1	5.	2,000	2,900 E	1.400	3	6.000 D	<u>a</u>
CIM	RF	3,000								<u>8</u>	3,500	2,400		2,000								
	SF3A	4.000				F	0	•	•	0	0	8	•	0	0	0	0	0	0	0	•	0
X	R	0				ŀ	2,000		8		1,500	808	2,000	3,000	1,000			8	400		1.500	
Actual	ost (USS)	7.000				Γ	7,000	2,000	2,000	200	5,000	3,200	2,000	5,000	2,000	0	2,000	3,000	1,800	0	7,500	¢
Estimated	C Set	8.000					8,000	2,000	1,000	ŝ	5.000	200	0	5.000	5,000	1,000	2.000	3,600	200	10.000	8,000	10,000
3	,			5 W 1		F			×	×			×	×				×	×	×	×	
60	,	x							×	×		×	×	×			x	x	x		×	
0	,	×	_					<u> </u>	×	×	×		×	×				×	×		×	×
ē		×		-		┝	×	×	×	×	×		×		×	×	<u> </u>	×	×		×	
Persons	responsible	HdG					DP, DO, GK, SM, RN	DP, DO	AII, DP, DO, GK	DO. DP, GK	AII, DP, DO, GK	8	DO, DP, GK, RN, AO	DO, DP, GK	GK, DO, DP, SM, contract	DO, GK, DP SG, SM	DP, DO, MK others	DP, DO, GK, collaborators	DO, MK, DP GK, all	GK, DP, DO Cimmyt offic	DO. DP. GK	£
Activity		Collection and analysis of local	varrietses				writing, publishing, distribution	writing, publishing	writing, publishing. distribution	Coltecting, organizing, publishing	editing, review, publishing.	writing, publishing	writing, scenning news	Develop materials for booth and handouts. video, familization of those maming booths, monitor (Surveys)	Organizing, press release, video documentation	Organizing, press release	Presentations, organization	Clipping service, web browsing	Writing, editing, review, distribution	Organization, publications, media relations	Writing. editing. publishing.	Develop & disseminate security plan for BGH & OQS
Greup		Econ impact asses.					Comm.all	Comm	Comm. all		Comm	Com, Socio-Econ	Comm, ISAA, ABSF	Comm. Ext/MOA/KARI	Comm, All	Comm, Prod. , Reg. Prod Deve	Comm, ISAAA, ABSF, universities. others	Comm, contract	Comm, ISAAA, ABSF, others	KARI, CIMMYT, Comm	Contra	Regulatory
Type of work	:	Planting out varieties			tration		Writing. editing publishing	Writing, editing publishing	Writing, editing publishing	Writing, editing publishing	Writing, editing publishing	Writing, editing publishing	Writing, editing publishing	Prepering materials & participating	Preparing materials & participating	Preparing materials & participating	Preparing materials & participating	Follow up	Writing, editing publishing	Preparing materials & participating	Writing, editing publishing	Preparing materials & participating
Activities		Regulatory			raining and Adminis		Communications	Communications	Communications	Communications	Communications	Communications	Communications	Communications	Communications	Communications	Communications	Communications	Communications	Communications	Communications	Develop & disseminate security plan for BGH & 00S
Products		Conting en cy plan			ation / promotion / T		IRMA brochure	IRMA folder	IRMA Updates	IRMA Document complilation	IRMA Fact Sheets	Ag industry fly er	Kilimo News, ag papers, monthly Nation	Ag Fairs 5+	Press event 1 or 2?) for Bt planting at OOS	Press event for pre- release of Conv Res Maize	Junk Sci Wksp	Press monitoring	Policy briefs	Stak cholders Meeting	IRMA documents	Capacity Building
ctivity	ate	7			munic		-	~.	۳.	7	Ś	ه	2	90	o	<u>e</u>	=	2	£:	4	15	16
TOND A	ode C	5	ł	-	0. Com		10	10	0	01	0	10	10	10	10	01	9	01	10	91	10	=
0	ŭ			_	-	L.,																

28

-

Γ		1			Ŀ	or Bt)S not		r NARL			lem			
Status		Done for NAF	scientists		Done as part o	preparations for	maize CFT	Not done - OC	established	Partly done fo	scientists	Not completed	Isolation prob			
MYT	SFSA	0			15			3,0001		3.000		-6,000		22,200		\$170.095
CIMI	RF	5.000			7.000							8.000		28,000		\$66.300
RI	SFSA	3,000			2,000			800		0		8,000		13,800		\$161.405
KA	RF	2,000			1,600			007		2,000		0		18,000		\$61.450
Actual	ost (USS)	10,000			10,000			4,000		5,000		10,000		82,000		\$403.750
stimated	cost C	10,000			10,000			10,000		10,000		30,000		131,800		911.170
Q4 E					×			┝		×		-			-	-
63		-						-				×			-	
ő												×			-	1
ō												×				
rsons	ponsible				-							~				
Pe	res	Ê			ŝ			SG		R		SN	_		_	{
Activity		BGH operations	course(a NARL for	scientists	OQS operations	course at Kiboko	(Technicians)	OQS operations	course @Embu OQS	Genetic engineering	course @NARL	Establish OQS	@ Embu			
Group		Regulatory			Regulatory			Regulatory		Regulatory		Breeding				
Type of work		Preparing materials &	participating		Preparing materials &	participating		Preparing materials &	participating	Preparing materials &	participating	Administartive exercise				
Activities		BGH operations	course(a NARL		OQS operations course	at Kiboko (Technicians)		OQS operations course	(a Embu OQS	Genetic engineering	course (wNARL	Establish OQS (a Embu				
Products		Capacity Building			Capacity Building			Capacity Building		Capacity Building		Capacity Building				
Activity	code	17			18			61		50		71				
Group	code	Ξ			=			=		Ξ		=				Total

.

Appendix 2: List of participants and program for the IRMA Review and Planning Meeting, November 7-8 2005

No.	Name	Institution	Title/Discipline
1.	Dr. Mugo Stephen	CIMMYT - Kenya	IRMA Coordinator
2.	Dr. De Groote Hugo	CIMMYT - Kenya	Agricultural Economist
3.	Ms. Daisy Ouya	CIMMYT - Kenya	Science Writer/Editor
4.	Dr. Simon Gichuki	KARI - Biotechnology	Molecular Breeder
5.	Mr. Simon Kimenju	CIMMYT - Kenya	Agricultural Economist
6.	Mr. Charles Bett	KARI - Katumani	Agricultural-Economist
7.	Dr. Lutta Mohammed	KARI - Katumani	Senior Research Officer, Socio-economist
8.	Dr. Josephine Songa	KARI - Biotechnology	Maize Component Manager
9.	Ms. Catherine Taracha	KARI - NARL	Senior Research Officer
10.	Mr. Paddy W. Likhayo	KARI - Biotechnology	Research Officer (Entomologist)
11.	Dr. Omari Odongo	KARI - Kakamega	Center Director
12.	Mr. Martins Odendo	KARI - Kakamega	Socio-Economist
13.	Dr. Jane Ininda	KARI - Muguga	National Maize Research Coordinator
14.	Mr. Wilson Muasya	KARI - Kiboko	Maize Breeder
15.	Dr. Macharia Gethi	KARI – Embu	Center Director
16.	Dr. Charles Mutinda	KARI – Embu	Principal Maize Breeder
17.	Mr. James Ourna	KARI – Embu	Socio-Economist
18.	Dr. George Ombakho	KARI - Kitale	CRO/Breeder
19.	Mr. Danda Kengo	KARI - Mtwapa	Research Officer
20.	Mr. Japhether Wanyama	KARI - Kitale	Socio Economist
21.	Dr. Margaret Mulaa	KARI - Kitale	SPRO Entomology
22.	Ms. Grace Kimani	KARI – HQ	Information Officer
23.	Ms. Regina Tende	KARI - Biotechnology	Student
24.	Mr. Geoffrey Murenga	KARI - Biotechnology	Student

Appendix 2a: List of Participants

Appendix 2b: Program for Annual Review and Planning Meetings, 7-8th November 2005

Chair	: Dr. Hugo De Groote		
Sunday, 6 Nov. 2005		Arrivals	D. Nanzala
MON	DAY, 7 NOVEMBER 2	005	
Sessic	n 1: Opening		
08:30	Registration		D. Nanzala
09:00	Welcome and	Introductions	S. Mugo
Brief	Reports - highlights		
09.15 09.30 09.45	Bt maize Event analy Product Development Environmental Impac	sis, & human health safety assessment (convent. Bt) and comp. Analysis t Assessment	J. Danson / C. Taracha S. Mugo / J. Ininda J. Songa / D. Bergvinson
10.00	10.00 Insect resistance management and contingency plans 10.15 Regulatory		S. Gichuki / S. Mugo
10:30	Tea Break		
10.50	1IPR/Licensing		Oluoch / H. De Groote
11.05	Seed production		O. Odongo / S. Mugo
11.20	Market assessment an	d analysis	M. Odendo / H. De Groote
11.35	Economic impact asse	ssment	H. De Groote / O. Okuro,
11.50	50 Communication / PromotionD. Ouya / G. Kimani		
12.00	Session II - Discussio	ns on key issues affecting IRMA Project	

- Germplasm conversion to Bt appropriateness of methods and types S. Mugo
 Bt testing methods in lab, BGHC and field appropriateness of methods C. Taracha

 Strategies for the release of Bt Maize across Kenya and for the post release resistance monitoring and management – M. Mulaa

02.00 <u>Session II - Discussions on key issues affecting IRMA Project (continued)</u>

- 4. The status of biosafety legislation and how this affects IRMA project S. Gichuki
- 5. Lack of control for *B. fusca* by *cry1Ab* and *cry1Ba* genes should Bt maize carrying these genes should be released in Kenya M. Mulaa
- 6. The IPR issues surrounding *cry1Ab*, *cry2Aa*, and *cry1Ba* genes O. Odongo
- 7. Should IRMA project consider testing and using a commercial Bt events M. Odendo

^{01.00} Lunch Break

- 8. IRMA ICIPE collaboration J. Ouma
- 9. Publicity Giving / receiving, how to deal with unfavorable publicity D. Ouya
- 10. How can IRMA intra-project collaboration be improved to enhance progress -/ J. Ininda
- 11. Environmental Impact assessment J. Songa

04.00 SESSION III - DEVELOP ELEMENTS OF WORK PLANS FOR 2006 BY 10 PROJECT

THEMES

Chair: S. Gichuki

- 1. Bt maize Event analysis, & human health safety assessment
- 2. Product Development (convent. Bt) and comp. Analysis
- 3. Environmental Impact Assessment
- 4. Insect resistance management and contingency plans
- 5. Regulatory
- 6. IPR/Licensing
- 7. Seed production
- 8. Market assessment and analysis
- 9. Economic impact assessment
- 10. Communication / Promotion

05.00 Adjourn

TUESDAY, 8 NOVEMBER 2005

08:00 am Develop detailed work plans for 2006 by the 10 project themes (Continued)

- a) Bt maize Event analysis, & human health safety assessment
- b) Product Development (convent. Bt) and comp. Analysis
- c) Environmental Impact Assessment
- d) Insect resistance management and contingency plans
- e) Regulatory
- f) IPR/Licensing
- g) Seed production
- h) Market assessment and analysis
- i) Economic impact assessment
- j) Communication / Promotion
- 10.30 am Tea / Coffee Break

11.00 pm Plenary - Presentations of Workplans 2006

J. Danson / C. Taracha S. Mugo / J. Ininda J. Songa / D. Bergvinson M. Mulaa / D. Bergvinson S. Gichuki / S. Mugo Oluoch / H. De Groote O. Odongo / S. Mugo M. Odendo / H. De Groote H. De Groote / O. Okuro, D. Ouya / G. Kimani

J. Danson / C. Taracha S. Mugo / J. Ininda J. Songa / D. Bergvinson M. Mulaa / D. Bergvinson S. Gichuki / S. Mugo Oluoch / H. De Groote O. Odongo / S. Mugo M. Odendo / H. De Groote H. De Groote / O. Okuro, D. Ouya / G. Kimani

- a) Bt maize Event analysis, & human health safety assessment
- b) Product Development (convent. Bt) and comp. Analysis
- c) Environmental Impact Assessment
- d) Insect resistance management and contingency plans
- e) Regulatory
- f) IPR/Licensing
- g) Seed production
- h) Market assessment and analysis
- i) Economic impact assessment
- j) Communication / Promotion

J. Danson / C. Taracha S. Mugo / J. Ininda J. Songa / D. Bergvinson M. Mulaa / D. Bergvinson S. Gichuki / S. Mugo Oluoch / H. De Groote O. Odongo / S. Mugo M. Odendo / H. De Groote H. De Groote / O. Okuro, D. Ouya / G. Kimani

01:00pm Lunch Break

02:00pm Preparations and inputs for other IRMA 2005 Annual meetings

- 1. IRMA Technical Advisory Committee (IRMA-TAB) and Theme leaders meeting
 - Program
 - Presentations
 - Inputs documents
 - Outputs
 - Field visits
- 2. IRMA Annual Stakeholders meeting 2005
 - Program
 - Presentations
 - Inputs documents
 - Field visits
- 3. IRMA Project Executive meeting 2005
 - Program
 - Presentations
 - Inputs documents
 - Optional visits to the BGHC and OQS Kiboko

05:00pm Closing remarks and adjourn

WEDNESDAY, 9 NOVEMBER 2005

09:00am Departures

Appendix 3: List of invitees and program for joint IRMA-TAB and IRMA scientists on 23-24 November

No.	Name	Institution
1.	Dr. Mugo Stephen	CIMMYT – ALP
2.	Dr. Hugo De Groote	CIMMYT - ALP
3.	Dr. Simon Gichuki	KARI - Biotech
4.	Mr. Charles Bett	KARI - Katumani
5.	Dr. Lutta Mohammed	KARI - Katumani
6.	Dr. Josephine Songa	KARI – NARL
7.	Mr. Paddy W. Likhayo	KARI - NARL
8.	Dr. Omari Odongo	KARI – Kakamega
9.	Mr. Martins Odendo	KARI - Kakamega
10.	Dr. Jane Ininda	KARI - Muguga
11.	Dr. James Gethi	KARI - Katumani
12.	Mr. Wilson Muasya	KARI - Kiboko
13.	Dr. Macharia Gethi	KARI - Embu
14.	Dr. Charles Mutinda	KARI - Embu
15.	Mr. James Ouma	KARI - Embu
16.	Dr. George Ombakho	KARI - Kitale
17.	Mr. Danda Kengo	KARI - Mtwapa
18.	Mr. Japhether Wanyama	KARI - Kitale
19.	Dr. Margaret Mulaa	KARI - Kitale
20.	Ms. Grace Kimani	KARI - HQ
21.	Ms. Regina Tende	KARI – Biotech
22.	Mr. Geoffrey Murenga	KARI - Biotech
23.	Mr. Maurice Oyoo	KARI - Mtwapa
24.	Ms. Catherine Taracha	KARI - Biotech
25.	Dr. David Bergvinson	CIMMYT – Mexico
26.	Mr. David A. Poland	CIMMYT – Mexico
27.	Jost Frei	Syngenta Foundation for Sustainable Agriculture
28.	Juerg Buergi	Syngenta Foundation for Sustainable Agriculture
29.	Willy De Greef	Syngenta Foundation for Sustainable Agriculture
30.	Mr. Obongo Nyachae	STAK
31.	Ms. Daisy Ouya	CIMMYT – ALP
32.	Dr. Jedidah Danson	CIMMYT – ALP
33.	Mr. Simon Kimenju	CIMMYT – ALP
34.	Dr. Marianne Banziger	CIMMYT – ALP
35.	Dr. Romano Kiome	KARI - HQ
36.	Dr. Joseph De Vries	Rockefeller Foundation

Appendix 3a: List of Invitees

syngenta toundation for sustainable agriculture

Appendix 3b: Program for the Joint IRMA Team and IRMA Technical Advisory Board (IRMA-TAB), 23-24th November 2005

Chair: Dr. Ephraim Mukisira

Session 1: Opening

08:30	Registration	D. Nanzala
09:00	Welcome and Introductions	S. Mugo
09.15	Introductory remarks by KARI	Director
09.25	Introductory remarks by CIMMYT	M. Banziger
09.35	Introductory remarks by Syngenta Foundation	J. Frei
09.45	Introductory remarks by Rockefeller Foundation	J. DeVries

Progress Reports by theme leaders (1999-2005)

10.00	Product Development (conv & Bt maize) and comp. Analysis	S. Mugo
10.15	Bt maize Event analysis, & human health safety assessment	J. Danson

10.30 Coffee/Tea break

10.45	Environmental Impact Assessment	J. Songa
11.00	Insect resistance management and contingency plans	M. Mulaa
11.15	Regulatory	S. Gichuki
11.30	IPR/Licensing	D. Bergvinson
11.45	Seed production	O. Odongo
12.00	Economic impact assessment	O. Okuro
12.15	Market assessment and analysis	M. Odendo
12.30	Communication / Promotion	D. Ouya

12.45 Lunch Break

01.45 Session II – Discussions on key issues affecting IRMA Project

Chair: H. De Groote

.

01.45 pm	Bt testing methods in lab, BGHC and field -	
02.15 pm	Germplasm conversion to Bt – appropriateness of methods	C. Taracha
ľ	and types –	S. Mugo
02.45 pm	Lack of control for <i>B. fusca</i> by <i>cry1Ab</i> and <i>cry1Ba</i> genes – should Bt maize carrying these genes be released in Kenya –	M. Gethi
03.15 pm	Should IRMA project consider testing and using a commercial Bt events –	G. Ombakho
03.45 pm	Coffee / Tea Break	
03.45 pm 04.00 pm	Coffee / Tea Break The IPR issues surrounding cry1Ab, cry2Aa, and	
03.45 pm 04.00 pm	Coffee / Tea Break The IPR issues surrounding <i>cry1Ab</i> , <i>cry2Aa</i> , and <i>cry1Ba</i> genes –	D. Bergvinson
03.45 pm 04.00 pm 04.30 pm	Coffee / Tea Break The IPR issues surrounding <i>cry1Ab</i> , <i>cry2Aa</i> , and <i>cry1Ba</i> genes – Strategies for the release of Bt Maize across Kenya and for the post release resistance monitoring and management –	D. Bergvinson M. Mulaa

05.30 pm Adjourn

Day 2 - Thursday 24 Nov 2005

08.00 am Session II – Discussions on key issues affecting IRMA Project (Continued)

.

Chair: Dr. O. Odongo

08.00 am	Environmental Impact assessment –	J. Songa
08.30 am	The status of biosafety legislation and how this affects IRMA project –	S. Gichuki
09.00 am	Publicity – Giving / receiving, how to deal with unfavorable publicity –	D. Ouya
09.30 PM	SESSION III - FEEDBACK FROM THE IRMA-TA	AB ON PROGRESS
	REPORTS AND MAJOR ISSUES	O. NYACHAE
10.00 am	Coffee / Tea Break	
10.30 am	SESSION IV – TOWARDS A FEASIBLE DECISIO	ON TREE

Chair: Dr. M. Gethi

10.30 am	Draft decision tree	S. Mugo
11.00 am	Discussions on elements of the decision tree	Chair
12.00 noon	Break out groups to flesh out technological options	
	(Conventional, public, private)	Chair

01.00 pm	Lunch break	
02.00 pm	Continue break out groups (milestones)	Chair
03.00 pm	Plenary – presentations from breakout groups (Gro	oups 1-3) Group reps
03.00 pm	Coffee / Tea break	
03.30 pm	Feed back from IRMA-TAB	Willy Degreef
04.00 pm	Way forward	S. Mugo
04.30 pm	Closing remarks for Joint Meeting - SFSA - RF - KARI CIMMYT	J. Frei J. DeVries Director M. Papaiger
		w. Banziger

-

.

Appendix 4: List of invitees and program for the IRMA Stakeholders Meeting, November 25 2005

Appendix 4a: List of invitees

No.	Name	Institution	Title/Designation
1.	Mr. Michael Omondi	Topic Africa Magazine	Journalist
2.	Ms. Agatha Muthoni		Farmer, Embu
3.	Ms. Ruth W. Ngaruiya		Farmer, Githunguri
4.	Mr. Drecky E. Okeno		Farmer, Butere
5.	Mr. Paul Omondi Okong'o	Tatro Central Farmers'	Farmers
		Group	Representative
6.	Ms. Odhiambo	C/o KARI/Mtwapa RRC	PDA Coast Province
7.	Dr. Rahab Muinga	KARI/Mtwapa Regional	Center Director
		Research Center	
8.	Dr. Charles Kariuki	KARI/Katumani NDFRC	Center Director
9.	Mr. Elias Njiru Ndwiga	KARI/Kiboko National	Officer-in-Charge
		Range Res. Center	
10.	Dr. Francis M. Ndambuki	Kenya Seed Co. Ltd.	Research Manager
11.	Dr. Chagema Kedera	KEPHIS	Managing Director
12.	Prof. Norah Olembo	African Biosafety	Director
		Stakeholders Forum (ABSF)	
13.	Mr. Henry Wahinya	The People Daily	Journalist
14.	Mr. Otula Owour	African Sciences	
15.	Mr. Arthur Okwemba	African Women and	
		Children Information	
		Network Ltd.	
16.	Mr. Francis Miano	BAYER East Africa	Technical Manager
17.	Dr. Dennis Rangi	CAB International	
18.	Prof. Christian Borgemeister	ICIPE	Director General
19.	Dr. Florence M Wambugu	A Harvest Biotech	Executive Director
		Foundation International	
		(AHBF)	
20.	Dr. Samuel Wakhusama	ISAAA Africentre	
21.	Ms. Mercy Karanja	Kenya National Farmers	
		Union	
22.	Mr. Benjamin Sogomo	Horticultural Crops	Managing Director
		Development Authority	
	Mr. Casharia	(HCDA)	Managing Diverter
23.	Mr. Gachanja	Pest Control Products Board	Managing Director
24.	Mr. Harrison K. Macharia	National Council for Science	
25	Brof C Kinglania	National Council for Science	
25.	FIOT G. NING OTTA	and Technology (NICST)	
26	Mr. Barack Cogo	Picasso Production	
20.	Dr Joseph Agunda Alaa	CARE Kenya	Senoir Technical
21.	Di. Joseph Agunda Aloo		Officer
28	Dr. T. Remington	Catholic Relief Services	Ontei
20.	Dr. Nanyo	Tegemen Institute of	Director
29.	Di. Inguyo	A gricultural & Policy	Difector
		Development	
30	Dr. Patricia Kameri-Mbote	Faculty of Law	Chair Department of

			Private Law
31.	Ms. Grace Thitai	Kenya Wildlife Services	
32.	Mr. Jacob Pwanali	MOARD	PCO R/V
33.	Mr. John Njoroge	Kenya Institute of Organic	
		Farming (KIOF)	
34.	The Managing Director	Department of Resource and	
05		Survey & Remote Sensing	
35.	Dr. John Ndiritu	University of Nairobi, Kabete	
36.	Dr. Alubayo	University of Nairobi	Crop Scientist
37.	Dr. Fred Kanampiu	International Maize & Wheat	
		Improvement Center	
- 20			
38.	Mr. John Smith	Uchumi Super Markets	The Managing
			Director
39.	Mr. Atul Shah	Nakumatt Holding Ltd.	The Managing
- 10			Director
40.	Prof Katemo Michieka	National Environment	The Director
		Management Agency	
41	Hop Drof Manager Mathe	(INEMIA)	The Director
41.	FION. Prof. Wangari Mathai	Green Peace and Greenbelt	I he Director
42	David Nyamaina	Correct Creation	Chief Executive
42.	David Nyameino	Cereal Growers Association	A grigultural
			Agricultural
13	Dr. Paul Pwambo	Ricoustoma Pasauraa	The Director
43.	DI. Faul Kwalibo	Management (K) I td	The Director
44	The Director	Broadbase Promotions I td	
45	The Director	Agro-Business Consultants	
46	The Director	National Cereals and	
40.	The Director	Produce Board	
48.	Mr. Hosea K. Sitienei	Kenva Seed Co. Ltd	The Managing
		Renya beeu eo. Eta.	Director
49.	Mr. Craig Neilson	Pannar Seed (K) Ltd.	Marketing
•••			Development
			Manager
50.	Dr. Charles Gbedemah	United Nations	Regional
		Environmental Programme	Coordinator for
		0	Africa - Biosafety
51.	The Managing Director	Unga (K) Ltd	
52.	Mr. Evans Mwasame	KARI/Biotechnology Center	Technologist
53.	Dr. Pete Veal	Syngenta EA Ltd	Managing Director
54.	Mr. Johnson Thaiya	Monsanto	Manager
55.	Mr. Saleem Esmail	Western Seed Co. Ltd	Chief Executive
			Officer
56.	Mr. Spencer Muthoka	Kenya Industrial Property	Director
		Institute	
57.	Dr. Stanley M. Wokabi	KARI- NARL	Center Director
58.	Mr. Maurice Oyoo	KARI - Mtwapa	Research Officer
59.	Mr. Joel Mbithi	KARI - Kiboko	Farm Manager
60.	Ann Mikia	KBC	Journalist

-

61.	Daniel Otunga	ABSF	Journalist
62.	Dann Okoth	East African Standard	Journalist
63.	Dennis Nauki		Journalist
64.	Otula Owuor	ABSF	Journalist
65.	Kimani Njoroge		Journalist
66.	Naisola Supiyo		Journalist
67.	Musa Radoli		Journalist
68.	Irene Odero		Journalist
69.	James Okeno	AHBF	Journalist
70.	Leakey Soukoyo		Journalist
71.	Merecia Juma		Journalist
72.	Aghan Daniel	BTA	Journalist
73.	Regina Ndolo	UTAFITI	Journalist
74.	Anne Nyokabi		Journalist
75.	Ben M. Kanyenji		Journalist
76.	Charles Njeru		Journalist
77.	Ebby Wamatsi	Biosafety News	Journalist
78.	Mildred Barasa	Kenya Times	Journalist
79.	Hussein Mohammed	The Standard	Journalist
80.	Cryspin	Citizen T.V.	Journalist
81.	Ann Kamondi	The Standard	Journalist
82.	Lilian Omariba	AFP	Journalist
83.	Zablon Odhiambo	East African Business Week	Journalist

syngenta foundation for sustainable agriculture

Appendix 4b: Program for IRMA Stakeholders Meeting - 25 November 2005, Safari Park Hotel, Thika Road, Nairobi

Chair:	To be determined
Rapporteurs:	Dr. M. Mulaa (Entomologist, KARI Kitale) and
	Mr. Paddy Likhayo (Entomologist, KARI NARL).

Thursday 24Nov 20055.00 p.m.Arrival

Ms. D. Nanzala

Friday 25 Nov 2005

Stakeholders Meeting

9.30 a.m.	Registration
10.00	Welcome and introductions
10.15	Opening speech by Director- KARI
10.45	IRMA Project: Status and Progress (CIMMYT)
11.00	Remarks by Syngenta Foundation for Sustainable Agriculture
11.15	Remarks by the Rockefeller Foundation
11.30	Remarks by CIMMYT
11.45	Question and answer session
12.30 p.m.	Vote of thanks
12.30	Press Conference

Lunch & departure

