Efecto de la Molienda de Trigo Harinero (*Triticum aestivum* L.) y Trigo Duro (*Triticum durum* Desf.) sobre la Germinación de Teliosporas de *Tilletia indica* Mitra

Sara Delia Robles-Sosa, Roberto Javier Bautista-Peña y Guillermo Fuentes-Dávila, CIMMYT, km 12 Norman E. Borlaug entre 800 y 900 Valle del Yaqui, Apdo. Postal 140, Cd. Obregón, Sonora, México CP 85000 (Dirección actual del último autor: INIFAP-CIRNO, Apdo. Postal 515). Correspondencia: g.fuentes@cgiar.org

(Recibido: Septiembre 26, 2005 Aceptado: Octubre 22, 2005)

Resumen. Se evaluó el efecto de los procesos de molienda de grano de trigo en la obtención de harina, granillo/salvado, semolina, y pasta, sobre la viabilidad de las teliosporas de *Tilletia indica*. En ninguna de las evaluaciones se recuperaron teliosporas de la pasta. El porcentaje de germinación de las teliosporas recuperadas de los diferentes subproductos obtenidos de trigo duro y harinero tuvo fluctuaciones en las tres evaluaciones realizadas. La media del porcentaje de germinación de teliosporas recuperadas de harina, semolina y granillo/salvado de la variedad de trigo duro Altar C-84 fue de 5.75, 6.08 y 9.43, respectivamente, mientras que para las teliosporas recuperadas de harina y granillo/salvado de la variedad de trigo harinero Oasis F89 fue de 5.15 y 5.02, respectivamente. En el caso de granillo/salvado de trigo duro no se recuperaron teliosporas debido a contaminaciones presentes en el medio de cultivo. Las teliosporas de grano intacto (testigo) presentaron una media de germinación de 12.80%.

Palabras clave adicionales: Carbón karnal, *Neovossia indica*.

Abstract. The effect of the milling process of wheat grains was evaluated during the production of flour, shorts/bran, semolina, and pasta, on the viability of teliospores of *Tilletia indica*. No teliosporas were recovered from pasta. The percent germination of teliospores recovered from the different subproducts obtained from durum and bread wheat had fluctuations in the evaluations done. The average percent germination of teliospores recovered from flour, semolina, and shorts/bran from the durum wheat cv. Altar C-84 was 5.75, 6.08, and 9.43, respectively, while for teliospores recovered from flour and shorts/bran of bread wheat cv. Oasis F89 was 5.15 and 5.02, respectively. In the case of shorts/b bran from durum wheat, teliosporas were not recovered due to contaminations present in the culture medium. The average percent germination of teliospores from intact grain (check) was 12.80%.

Additional keywords: Karnal bunt, *Neovossia indica*.

El trigo (*Triticum spp. L.*) es el alimento que más se cultiva a nivel mundial ocupando alrededor de 240 millones de ha (Curtis, 2002) y una producción de casi 600 millones de ton (FAO, 2002). El 37% de la población lo utiliza como su principal cereal, aportando alrededor de 20% de las calorías consumidas por el hombre. Uno de los compuestos nutricionales más importantes del trigo es la proteína, cuyo contenido varía entre 6-25% dependiendo de las condiciones de crecimiento (Blackman y Payne, 1987). También contiene carbohidratos principalmente almidón, minerales, vitaminas y lípidos (Briggle, 1980). En México, el trigo se siembra en casi todos los Estados de la República y se adapta tanto a tierras pobres en nutrientes, como a tierras ricas, zonas húmedas, semisecas y secas; las zonas trigueras más importantes en México son: Sonora, Sinaloa, Baja California (Norte y Sur), el Bajío y Valles Altos en la parte central de México. Hasta 1997 se sembraron 687,000 ha de trigo bajo riego y 225,000 ha de temporal (Villaseñor-Mir, 2000). El carbón parcial (*Tilletia indica* Mitra) es la enfermedad del grano de trigo más importante en el noroeste de México. Los síntomas se presentan después del estado masoso del grano; no todas las espinas de la planta, ni todos los granos de una espiga son infectados, encontrándose ambos distribuidos al azar (Fuentes-Dávila, 1997). En general, los granos infectados son destruidos parcialmente y en ocasiones ocurre una destrucción total. Los granos severamente afectados sólo conservan sana una pequeña porción de la región concava dorsal. La penetración del hongo al embrión no necesariamente causa daño (Mitra, 1935; Chona et al., 1961). Los granos parcialmente infectados pueden producir plantas sanas, sin embargo, aquéllas severamente afectadas pierden su viabilidad, o presentan una germinación anormal (Rai y Singh, 1978). La enfermedad al exceder niveles de grano...
infectado mayores del 3% afecta las características orgánolépticas de la harina (Peña et al., 1992). También, las regulaciones y cuarentenas establecidas, tanto de carácter nacional como internacional, afectan la economía de los agricultores y productores de semilla, así como el intercambio de germoplasma experimental (Brennan et al., 1990; Delgado, 1984; SAGAR, 1987; 1995). La semilla y/o grano es el factor principal de diseminación de las teliosporas de _T. indica_, sea por presentar infección o por contaminación superficial. Este aspecto tiene una gran relevancia en lo referente a la movilización tanto regional, nacional e internacional de dichos productos, así como en las prácticas regulatorias. El objetivo de este trabajo fue evaluar los efectos de los procesos de obtención de harina y subproductos del trigo harinero y duro sobre la viabilidad de las teliosporas de _Tilletia indica_ agente causal del carbón parcial del trigo.

MATERIALES Y MÉTODOS

El estudio se realizó en el Campo Experimental del Valle del Yaqui, Sonora, México, y en el laboratorio de calidad de trigo del Centro Internacional de Mejoramiento de Maíz y Trigo, localizado en el Batán, Texcoco, Edo. de México. Para la movilización de las muestras se siguieron estrictamente las indicaciones estipuladas en el permiso expedido por la Dirección General de Sanidad Vegetal.

Preparación de las muestras. Se tomó 1 kg de grano sano de la variedad de trigo cristalino Altar C-84, a la cual se le agregaron teliosporas procedentes de 150 gramos completamente infectados. También, se tomó una muestra con 950 g de grano sano de la variedad de trigo harinero Oasis F-89 y 50 g de grano infectado. Se evaluó el efecto de los procesos físicos que implican la molienda del grano y la elaboración de productos tales como harina, semolina y pasta. Antes de proceder a la molienda, el trigo se acondicionó a la humedad deseada (15% para trigo harinero y 16.5% para trigo cristalino). La molienda se efectuó en un molino neumático experimental Buhler (Buhler, Suiza), 24 h después del acondicionamiento en el caso del trigo harinero, y de 48 h en el caso del trigo cristalino. El molino Buhler cuenta con dos unidades independientes: la unidad de quebrado la cual consta de 3 juegos de rotillos corrugados y la unidad de reducción, la cual cuenta con 3 juegos de rodillos lisos. En el caso de trigo harinero, se utilizaron ambas secciones del molino, quebrado y reducción, mientras que para la obtención de semolina sólo se utilizó la sección de quebrado para obtener partículas gruesas de endospermo, las cuales forman la semolina. En la molienda de trigo harinero se obtuvieron las fracciones: harina, granillo y salvado, mientras que a partir de trigo cristalino: semolina, harina fina, granillo y salvado. La humedad, proteína y cenzías en harina se determinaron utilizando métodos oficiales de la American Association of Cereal Chemists (AACC, 2000). El valor de sedimentación de harina, un estimador de la fuerza de gluten, se efectuó con la prueba de sedimentación con dodecil sulfato de sodio (SDS) de Dick y Quick (1983) modificada por Peña et al. (1990). Las propiedades viscoelásticas de las harinas fueron evaluadas con el alvéografo de Chopin (Trippete y Renaud, París, Francia) siguiendo el instructivo del aparato. La calidad de panificación se evaluó utilizando el método directo de panificación 10-10 de la AACC (AACC, 1979). El color de harina y color de migas de pan se evaluaron con el aparato sensor óptico Hunter Lab (Hunter Associated Laboratory Inc. Virginia, EVA) en la escala L, la cual mide lo blanco u oscuro de la muestra analizada. Las pastas se obtuvieron mezclando semolina con una cantidad de agua correspondiente al 28-30% del peso de la semolina en una amasadora Hobart. El producto final fueron grumos de masa dura. Este producto se introduce en el extrusor, el cual extruye los grumos bajo condiciones de vacío. La salida del extrusor posee un molde con orificios cubiertos de teflón, por los cuales salen a presión las tiras de espagueti fresco. El espagueti fresco se sometió a un secado bajo condiciones controladas de humedad y temperatura (16 h de secado, a 40°C, hasta alcanzar una humedad relativa de la cámara de secado de 65%). La pasta ya seca posee un contenido de humedad de aproximadamente 6-8%.

Evaluación de la germinación de las teliosporas. De cada producto se centrifugaron muestras de 2 g disueltos en 15 mL de agua destilada, recolectándose el precipitado hasta obtener suficientes teliosporas para los lavados. En la centrifugación se obtuvo una separación de las diferentes capas de almidón, de tal manera que las teliosporas quedaron entre la capa de almidón más pesado y más ligero, es decir, en la parte superior del tubo con una pequeña capa de almidón fino encima. El almidón ligero fue removido por medio de una espátula y posteriormente se hizo lo mismo con las teliosporas, recolectándose en un vaso de precipitado de 50 mL conteniendo 10 mL de agua destilada estéril (se siguió esta metodología las veces necesarias hasta obtener una cantidad de teliosporas suficiente para lavarlas). Posteriormente, se dejaron reposar por 24 h. Después, las teliosporas se desinfestar en hipoclorito de sodio al 10% (v/v. cloralex comercial al 6% i.a.) mientras se centrifugaban a 1.300 rpm, luego se lavaron-centrifugaron en una solución de agua destilada estéril-tween 20 tres veces y se sembraron en cajas Petri con agar-agua al 1.5% distribuyéndolas uniformemente sobre la superficie e incubándose a 22 ± 1°C con un fotoperiodo de 14 h. En algunos casos fue necesario tamizar la muestra recuperada para eliminar sólidos de mayor tamaño, previo al lavado; tal fue el caso del granillo y salvado, los cuales prácticamente no presentaron capa de almidón fino durante la centrifugación. Después de sembrar las teliosporas en las cajas, se seleccionaron campos al azar tratando de tener 300 teliosporas por caja como mínimo. Para cada subproducto se manejaron cuatro cajas, haciendo un total de 1200 teliosporas aproximadamente. Las evaluaciones se realizaron a los 10, 20 y 30 días después de la siembra de las teliosporas, considerándose germinadas aquéllas que presentaron promicelo. El experimento se repitió tres veces. Se llevó a cabo el análisis de varianza mediante el sistema SAS 6.08,
utilizando un diseño de bloques completos al azar, considerando cada experimento como bloque, y después de la transformación de los porcentajes de germinación mediante la raíz cuadrada de $x + 0.5$. Se realizaron comparaciones entre tratamientos mediante contrastes ortogonales.

RESULTADOS Y DISCUSIÓN

En ninguna de las evaluaciones se recuperaron teliosporas de la pasta. El porcentaje de germinación de las teliosporas recuperadas de los diferentes subproductos obtenidos de trigo duro y harinero tuvo fluctuaciones entre las diferentes evaluaciones realizadas, siendo consistientemente menor la media del porcentaje de germinación en la primera evaluación con un rango de 0.22 a 2.06 (Fig. 1); en el caso de granillo/salvado de trigo duro, no se recuperaron teliosporas debido a contaminaciones presentes en el medio de cultivo. El rango del porcentaje de la media de germinación de teliosporas en la segunda evaluación fue de 1.87 a 12.9, mientras que para la tercera evaluación fue de 5.86 a 14.31%. El testigo tuvo una media de 17.2, 12.07 y 9.10% para la primera, segunda y tercera evaluación, respectivamente. El rango de la media del porcentaje de germinación de teliosporas obtenida de los diferentes subproductos del trigo fue de 5.02 a 9.43, mientras que la media del testigo fue de 12.81 (Fig. 2). Para los subproductos de la variedad Altar se tuvo un orden creciente de la media del porcentaje de germinación de teliosporas obtenidas de harina (5.75), semolina (6.08) y granillo/salvado (9.43); en el caso de los subproductos del trigo harinero Oasis, la media del porcentaje de germinación fue similar entre las teliosporas obtenidas de harina y granillo/salvado con un nivel del 5%. A pesar de las tendencias indicadas, el porcentaje de germinación de teliosporas en las diferentes repeticiones presentó gran variación; desde 0 hasta 25%; en cambio, en el testigo la variación fue de 6.82 a 22.76%. Los resultados del análisis de varianza no permitieron detectar diferencias significativas entre tratamientos (Cuadro 1). Cada subproducto tiene un proceso de elaboración diferente, sin embargo, en todos los casos existen parámetros físicos que podrían afectar la presencia y viabilidad de las teliosporas de *Tilletia indica*, como el efecto de fricción que existe en los rodillos utilizados para la obtención de los subproductos primarios. Los porcentajes de germinación obtenidos en este trabajo presentaron una fluctuación parecida a la reportada en otros trabajos (Bansal et al., 1983; Dufier et al., 1987; Krishna y Singh, 1982; Mathur y Ram, 1963; Smilanick et al., 1985; Zhang et al., 1984); la tendencia hacia porcentajes menores del 50% es mayor, y no se han reportado niveles mayores al 90%. La tendencia general en este experimento fue el de un nivel de germinación menor de las teliosporas obtenidas de los diferentes subproductos, que el nivel obtenido en el testigo. El hecho de que las teliosporas presenten tamaños similares a los granos de almidón, sugiere que dicha tendencia general se debió a la destrucción de teliosporas por el efecto físico de la molienda y a efecto en la viabilidad por el calor generado mediante la fricción de los rodillos durante la molienda. Los trigos se pueden industrializar de diferentes maneras y preparar gran variedad de productos como diferentes tipos de panes, galletas, pasteles, tortillas, pastas, etc. Los procesos mecánicos usados para la industrialización también pueden tener un efecto adverso para la integridad de las teliosporas, así como para su viabilidad. Las teliosporas sometidas a un ambiente húmedo y tratadas con bromuro de metilo presentan un porcentaje bajo de germinación (Fuentes-Davila y Lawn, 1992), mientras que las tratadas en un ambiente seco presentan un mayor porcentaje de germinación (datos no publicados). Similarmente, teliosporas expuestas a un ambiente húmedo
Cuadro 1. Contrastes y significancia estadística de tratamientos de molienda de trigos duro y harinero, sobre la germinación de teliosporas de *Tilletia indica* a los 10, 20 y 30 días después de sembrarse en agar-agua.

<table>
<thead>
<tr>
<th>Contraste</th>
<th>SC</th>
<th>CM</th>
<th>Fhub</th>
<th>Pr > 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3.87515644</td>
<td>3.87515644</td>
<td>5.37</td>
<td>0.0407</td>
</tr>
<tr>
<td>C2</td>
<td>1.35014465</td>
<td>1.35014465</td>
<td>1.87</td>
<td>0.1985</td>
</tr>
<tr>
<td>C3</td>
<td>0.008301149</td>
<td>0.008301149</td>
<td>0.01</td>
<td>0.9165</td>
</tr>
<tr>
<td>C4</td>
<td>3.21679576</td>
<td>3.21679576</td>
<td>4.46</td>
<td>0.0583</td>
</tr>
<tr>
<td>C5</td>
<td>0.03372978</td>
<td>0.03372978</td>
<td>0.05</td>
<td>0.8327</td>
</tr>
<tr>
<td>C6</td>
<td>4.08871350</td>
<td>4.08871350</td>
<td>5.67</td>
<td>0.0364</td>
</tr>
<tr>
<td>C7</td>
<td>0.02610931</td>
<td>0.02610931</td>
<td>0.04</td>
<td>0.8525</td>
</tr>
<tr>
<td>C8</td>
<td>0.00005418</td>
<td>0.00005418</td>
<td>0.00</td>
<td>0.9932</td>
</tr>
</tbody>
</table>

C.V= 36.9%

C2: Altar Harina+Altar Semolina+Altar Granillo/Salvado+Altar pasta=Testigo
C3: Oasis Harina=Oasis Granillo/Salvado=Testigo.
C4: Oasis Harina=Oasis Granillo/Salvado
C5: Altar Harina=Altar Pasta
C6: Altar Harina=Altar Granillo/Salvado.
C7: Oasis Harina=Oasis Harina=Oasis Granillo/Salvado

presentaron menor porcentaje de germinación conforme el periodo de exposición fue mayor (Smilanick et al., 1988). La preparación de esta variedad de productos es posible debido a que el trigo tiene un grupo de proteínas insolubles en agua, las glicininas y gluteninas, que en presencia de agua se hidratan e interaccionan para formar un cuerpo visco-elástico llamado gluten, el cual permite la elaboración de masas que retengan al gas producido durante la fermentación. El gluten fuerte y extensible permite la elaboración de masas de harina con buena capacidad de retención de gas durante la fermentación, que pueden expandirse para producir panes de alto volumen y migas suave y esponjosas. El gluten medio fuerte a débil y extensible es adecuado para producir masas que puedan laminarse y extenderse para así elaborar panes planos (tortillas), o productos de panadería. El gluten tenaz permite formar masas firmes, adecuadas para la extrusión en la elaboración de pastas alimenticias, tales como el espaguetti. Este último es el tipo de gluten que se requiere en los trigos cristalinos, en los cuales la firmeza de la pasta cocida está relacionada con la fuerza y tenacidad del gluten. La exposición de las teliosporas a ambientes húmedos y posteriormente a altas temperaturas durante la elaboración de los diversos productos afecta la viabilidad de las mismas. El hecho de que no se obtuvieron teliosporas de pastas, es un indicativo de que en este proceso se elimina en gran medida el número de teliosporas presentes en las muestras de trigo, ya sea como contaminantes o en granos infectados, por lo que es importante que se considere y se normalicen los niveles aceptables de granos infectados para la elaboración de pastas en el sector industrial.

CONCLUSIONES

Teliosporas de *Tilletia indica* recuperadas de los diferentes subproductos obtenidos de trigo duro y harinero mostraron viabilidad y fluctuación en los porcentajes de germinación en las tres evaluaciones realizadas. En ninguna de las evaluaciones se recuperaron teliosporas de la pasta.

Agradecimientos. Se agradece el apoyo técnico del personal del laboratorio de calidad del CIMMYT.

LITERATURA CITADA

