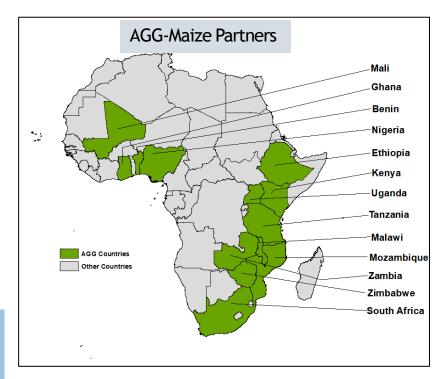
AGG-Maize Year 3 Major Achievements and Next Steps

Yoseph Beyene

CIMMYT-Regional Maize Breeding Coordinator and AGG Maize Project Leader

Presentation to Accelerated Genetic Gain (AGG-Maize) Annual Review and Planning Meeting: July 4- 5, 2023; online meeting

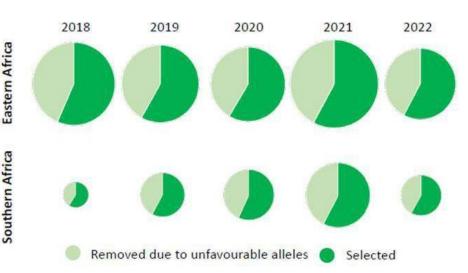


The AGG-Maize Project has Two Objectives

- Support the CIMMYT and IITA maize breeding programs to accelerate genetic gains;
- Support the modernization of breeding by NARS partners in sub-Saharan Africa.

The project aims to facilitate the production and adoption of over **150,000 metric tonnes** of multiple stress-tolerant maize seeds on an annual basis in 13 target countries in SSA, planting an estimated area of **6.17 M** ha and benefiting over **64 million people.**

Spillover countries include Angola, Lesotho, DRC, Eritrea, Somalia, Cameroon, Burkina Faso South Sudan, Rwanda, Burundi



PO1: Optimization of innovative breeding tools and methods

- Forward breeding for MSV and MLN prior to field phenotyping enabled the elimination of 13,351 susceptible lines, saving an estimated US\$ 52,070.
- In West Africa, forward breeding for Striga resistance was initiated and leading to the selection of over 80% of the 4,500 lines carrying favorable alleles.
- QC/QA: 1,400 lines were genotyped and 96% of the lines were found to be genetically pure.
- RCGS was implemented in Eastern Africa and West Africa product pipelines

	KASP marker	KASP marker				
Number o lines	of snpZM00179	snpZM00185	snpZM00186			
Resistant allele	3918	3911	3501			
Susceptible						
allele	408	286	724			
Heterozygou	s 40	249	228			
Unused	143	63	56			
Total	4509	4509	4509			

Key Achievements: DH line production development

Product profiles/Organizati	# of populations submitted	#(# of DH linesdelivered	
on				
Product profiles				
EAPP2	50		15478	
EAPP1	52		17048	
EAPP3	13		1683	
SAPP1	15		2213	
SAPP2	6		870	
	136		37292	
Partner organizations				
IITA	2		771	
NARO-Uganda	6		696	
KALRO-Keya	20		1178	
IIAM-Mozambique	3		1218	
EIAR- Ethiopia	2		465	
DR & SS-Zimbabwe	3		85	
Egypt	8		2151	
Advanta	4		1018	
Western Seed Co	6		957	
	54		8539	
_ ·				

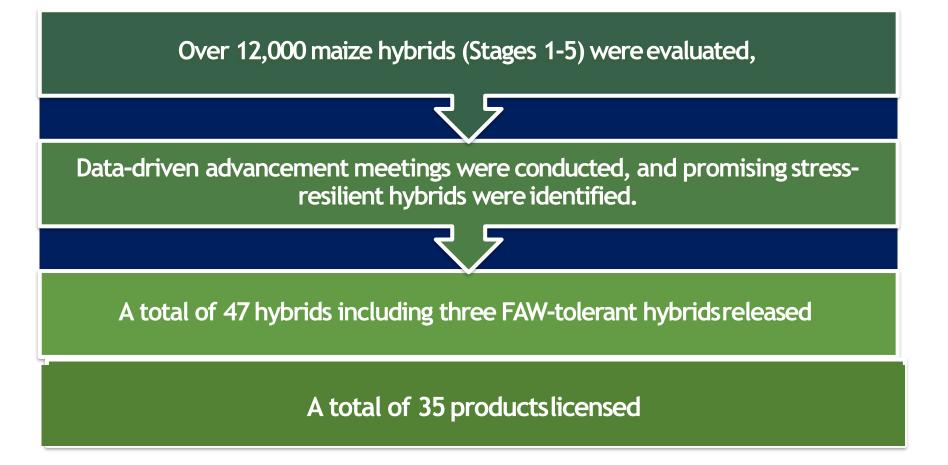
The average # of DH lines per population is 241.

Managed drought

Artificial MNL inoculation

PO2: Multiple stress-tolerant and input-responsive varieties developed across product profiles

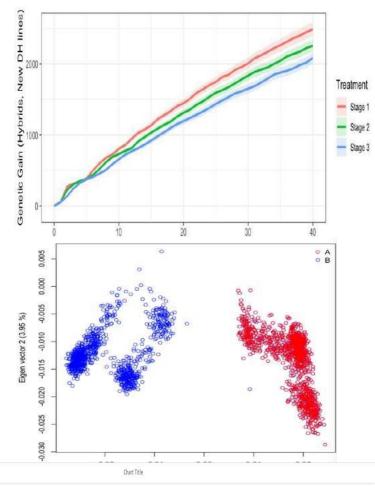
		Est.
Pipeline Code	Target Countries	Area (M ha)
EA-PP1	Ethiopia, Kenya, Uganda, Tanzania (Northern) Ethiopia, Kenya, Uganda, Tanzania	3.17
EA-PP2	(Southern)	3.38
EA-PP3	Ethiopia, Kenya, Uganda, Tanzania (Southern)	1.75
SA-PP1	Mozambique, Zimbabwe, Malawi, Zambia, Tanzania (Southern); drought-prone smallholder farm areas in South Africa	3.74
SA-PP2	Zimbabwe, Malawi, Zambia, Tanzania (Southern), drought- prone smallholder farmers, about 2-3% of total maize area)	2.03
WCA-PP1	Benin, Burkina Faso, Cameroon, Chad, Mali, Nigeria, Senegal	2.74
WCA-PP2	Benin, Burkina Faso, Cameroon, Chad, Mali, Nigeria, Senegal	<u>3.1</u> 5.49
WCA-PP3	Benin, Burkina Faso, Cameroon, Chad, Cote d'Ivoire, DR Congo, Ghana, Guinea, Mali, Nigeria, Senegal, Togo	5.49
WCA-PP4	Cote d'Ivoire, DR Congo, Ghana, Guinea, Liberia, Nigeria, Sierra Leone, Togo	4.34
Total	29.74	

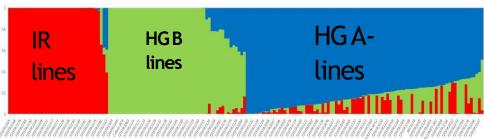


Key Achievements: Germplasm evaluated, announced, and released in 2022

Genetic gains in CIMMYT/IITA breeding pipelines were positive and ranged from 1.1 to 4.5% under different management

Key Achievements: Responding to emerging threats: FAW-tolerant hybrids


Reproductive stage


Harvest

Key Achievements: Breeding Schemes Optimization in AGG -Maize

- Recycling lines at an early stage of testing (reduced from 6 yrs. to 4 yrs.)
- Implemented suitable selection indices for parental selections (DESIER software)
- Identify an optimum number of testing locations and testers for recycling (implemented in selected PPs)
- Sparse testing and sparse genetic test crossing (implemented in selected PPs)
- Use of genomic selection (all stage 1 lines being genotyped with medium-density markers)
- Estimate predicted genetic gain (done in selected PPs)
- Incorporation of ex-PVP lines into tropical lines improved yield potential (ongoing)
- Refining and strengthening heterotic grou (ongoing)
- Responding to emerging threats (ongoing)

Accelerating Genetic Gains

PO3: Accelerated varietal turnover and wider adoption, particularly among women farmers

- The area-weighted average variety age (AWAVA) of improved maize varieties in farmers' fields declined
 - From 14 years in 2014 to 10 years in 2021 in ESA.
 - From 19.6 years in 2010/11 to 13.2 years in 2021/22 in WA
- This progress inmaize varietal turnover in SSA could be attributed to
 - Strengthening of seed systems, including the release of better genetics
 - Intensive deployment through _ public-private partnerships.
- However, the certified seeds demand and supply gap remains high, especially in WestAfrica.

An example M&E indicators based on data collected in 2020 and 2021 in West Africa

2%

PO4: Regional Collaborative Maize Breeding and Seed Systems Network formalization

- Retrospective **genetic gain analysis** of historical trial data is undertaking
 - Uganda; DR&SS of Zimbabwe;
 KALRO-Kenya
- Financial support has been given to maize breeding programs in 13 countries to strengthen their breeding capacity
- **Digitization equipment** ordered through CtEH support delivered to Zimbabwe, Zambia, Tanzania, and Ghana
- The Senior Maize Breeder training course was organized face to face in Kenya total of 39 (11 female, 28 male) participants attended
- CIMMYT and IITA scientists supervised 23 students (16 Ph.D.; 7 MSc of which 6 are females)
- The AGG Mid-Term Review and Planning Meeting was conducted on 25-28 July 2022.

PO10: Implementing improved data management, experimental designs, and breeding methods

Adoption Dashboard - Maize June 15

2

Tool to generate sparse phenotyping design, on-farm design, and selection index and developed and being used

in Maize and Wheat

Next steps in AGG-Maize

1. Focus on continuous improvement for increasing genetic gain

- Reducing the breeding cycle to 3 years
- Implementing sparse phenotyping/sparse test crossing in all product profiles to sample TPE
- Estimation of realized genetic trend using on-farm data
- 2. Facilitate accelerated variety turnover in the target countries
 - Identify bottleneck for adoption of new improved varietieshybrids
 - Provide high-quality breed seed
 - Scale out QA/QC for SMEs
- 3. Strengthened NARS -CG breeding network
 - Updates product profiles to align across CG, NARS, and SMEs
 - Continue joint CG and NARS annual stage-gate advancement meetings
 - Increase the level of integration of DH in breeding pipelines
 - Adopt EBS a primary breeding data management system in CG-NARS breeding programs

Accelerating Genetic Gains

Breeding progress for MLN resistance