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Genomic selection is revolutionizing plant breeding. However, its practical implementation is still very challenging, since predicted va
lues do not necessarily have high correspondence to the observed phenotypic values. When the goal is to predict within-family, it is not 
always possible to obtain reasonable accuracies, which is of paramount importance to improve the selection process. For this reason, in 
this research, we propose the Adversaria-Boruta (AB) method, which combines the virtues of the adversarial validation (AV) method and 
the Boruta feature selection method. The AB method operates primarily by minimizing the disparity between training and testing dis
tributions. This is accomplished by reducing the weight assigned to markers that display the most significant differences between the 
training and testing sets. Therefore, the AB method built a weighted genomic relationship matrix that is implemented with the genomic 
best linear unbiased predictor (GBLUP) model. The proposed AB method is compared using 12 real data sets with the GBLUP model that 
uses a nonweighted genomic relationship matrix. Our results show that the proposed AB method outperforms the GBLUP by 8.6, 19.7, 
and 9.8% in terms of Pearson’s correlation, mean square error, and normalized root mean square error, respectively. Our results support 
that the proposed AB method is a useful tool to improve the prediction accuracy of a complete family, however, we encourage other 
investigators to evaluate the AB method to increase the empirical evidence of its potential.
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Introduction
Addressing the demands of a rapidly growing global population 
requires a focused effort on bolstering food production. 

However, achieving a substantial production increase is a com

plex endeavor, given a host of challenges. These encompass the 

depletion of natural resources, the scarcity of arable land, and 

the unpredictable shifts in climate patterns. Consequently, in

novative strategies, such as the genomic selection (GS) method

ology introduced by Meuwissen et al. (2001), have become 

indispensable for driving genetic advancements in vital crops 

such as wheat, rice, and maize. The application of GS holds the 

potential to fortify yield stability, increase productivity, bolster 

disease resistance, and enhance the nutritional and quality attri
butes of these essential crops (Crespo-Herrera et al. 2021).

Genomic selection stands as a transformative paradigm within 
both plant and animal breeding, capitalizing on high-density mar
kers that span the genome's entirety. Its central premise revolves 
around the idea that genetic markers can (1) be in linkage disequi
librium with quantitative trait locus (QTL) responsible for a specif
ic trait (Meuwissen et al. 2001) and (2) capture relationship 
patterns (Habier et al. 2010, 2013). Genomic selection is redefining 
breeding practices through an array of innovative mechanisms, 
encompassing (1) proactive genotype identification, (2) heigh
tened selection precision, (3) resource optimization, (4) acceler
ated variety development, (5) intensified selection efforts, (6) 
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assessment of complex traits, and (7) enhanced selection accur
acy. In sum, genomic-assisted breeding selection represents a 
paradigm shift in both plant and animal breeding, reshaping the 
landscape through predictive analysis and precision driven selec
tion; its versatility and merits position GS as a potent instrument 
propelling progress and ingenuity in agricultural enhancement 
endeavors.

The challenge of achieving accurate genomic predictions stems 
from the intricate nature of genomic data and the intricate inter
play between genes and traits. While GS holds the potential to 
revolutionize breeding strategies, the precise prediction of com
plex traits based solely on genetic markers presents a formidable 
complexity. The polygenic nature of numerous agricultural traits 
adds to the complexity, as multiple genes with subtle effects col
lectively contribute to the phenotype. Additionally, the accuracy 
of predictions is intricately tied to the quality and representative
ness of the training population used to construct prediction mod
els. Inadequate or biased data can lead to suboptimal predictions 
and hinder breeding progress. Genetic interactions and environ
mental influences further complicate genomic predictions, as 
these interactions often remain incompletely understood or chal
lenging to incorporate into predictive models. Consequently, on
going research, advancements in data analysis techniques, 
improved genotyping technologies, and a deeper understanding 
of genotype–phenotype relationships are pivotal to address these 
challenges and fully unlock the potential of genomic prediction 
within agricultural breeding programs.

In the search to enhance the prediction accuracy of the GS 
methodology, various modeling approaches have been proposed. 
These ranges from Bayesian frameworks encompassing the 
Bayesian alphabet (BayesA, BayesB, BayesC, and Bayesian Lasso, 
etc.) to machine learning methodologies such as random forest, 
support vector machine, gradient boosting machine, and deep 
neural networks for genomic prediction. Nonetheless, mixed 
models remain prevalent in genomic prediction due to their reli
able performance in terms of prediction accuracy, computational 
efficiency, interpretability, and straightforward tuning processes.

However, despite the considerable promise held by GS and the 
diverse modeling approaches explored so far, translating these 
concepts into practical implementation remains a complex chal
lenge. This complexity arises from the multitude of factors that 
must be optimized to achieve high prediction accuracies. The sim
ultaneous optimization of these factors introduces intricacy, of
ten yielding unforeseen outcomes. Consequently, the successful 
integration of GS into real-world scenarios calls for ongoing re
search, robust methodologies, and a comprehensive understand
ing of the intricate interactions underlying these contributing 
factors. Addressing these challenges is imperative to fully realize 
the potential of GS and facilitate its seamless integration into 
breeding programs and agricultural practices (Montesinos-López 
et al. 2022).

Precisely predicting family performance is a cornerstone of ef
fective plant breeding, enabling the maximization of genetic 
gains, efficient allocation of resources, strategic parental selec
tion, and the tailoring of breeding strategies. Furthermore, it en
hances disease resistance, adaptability, end-use quality, and 
consistency in crop varieties. Accurate family prediction empow
ers breeders to channel their efforts toward superior families, 
leading to the development of enhanced and resilient crop var
ieties with desirable traits.

When crossing two diploid organisms, each offspring inherits 
one allele from each parent, and the selection of which specific al
lele an offspring inherits occurs through a stochastic process. This 

process creates genetic diversity within a family, a phenomenon 
referred to as Mendelian segregation variance or within-family 
variance. In statistical terms, the genetic value of a quantitative 
trait in an offspring is composed of the four alleles contributed 
by the two parents, guided by a Mendelian variable from each par
ent. Wang and Xu (2019) proposed a mixture model that allows for 
the dissection of the total genetic variance into between-family 
variance and within-family variance. With no inbreeding, the gen
etic variance is evenly split between-family variance and within- 
family variance. When inbreeding is present, there is an increase 
in the overall genetic variance due to an increase between-family 
variance at the expense of the within-family variance (Foulley and 
Chevalet 1981).

However, predicting family performance within plant breeding is 
fraught with complexities stemming from factors such as pro
nounced genetic diversity, intricate trait architectures, limited fam
ily sizes, erratic environmental variations, genotype-by- 
environment interactions (GE), data quality and quantity 
challenges, trait trade-offs, and extended breeding cycles. 
Overcoming these challenges requires advanced methodologies, re
fined technologies, expansive datasets, and a profound under
standing of intricate trait genetics. Despite these challenges, 
accurate family prediction is pivotal for the development of super
ior crop varieties and to address global agricultural challenges.

The interplay of genetic diversity, recombination, genetic 
segregation, population-specific variation, incomplete data, en
vironmental elements, and statistical intricacies collectively 
underscore the challenges associated with genomically predicting 
full siblings resulting from a single cross. While advancements in 
genomics and statistical methodologies continue to enhance pre
diction accuracy, achieving precise predictions of genetic related
ness remains a multifaceted endeavor, particularly when working 
with limited data from a single cross. Predicting full siblings from 
a single cross requires the handling of intricate relationships and 
uncertainties, further intensifying the complexity of the analysis 
and prediction processes.

As such, innovative methodologies to enhance family predic
tion accuracy are indispensable. In this pursuit, we explore the fu
sion of the adversarial validation (AV) approach proposed by 
Montesinos-López, Kismiantini et al. (2023) with the Boruta fea
ture selection method, as examined by Montesinos-López, 
Crespo-Herrera et al. (2023). Although the AV method adeptly de
tects training-testing mismatches and optimizes training sets, its 
efficiency may diminish when dealing with smaller training sets 
or moderate to high mismatches. Conversely, the Boruta method, 
a feature selection technique, effectively mitigates prediction er
rors by selecting a fraction of the most important features, but 
may not consistently elevate selection accuracy, since when the 
selected variables are not optimal, decreases prediction accuracy.

Thus, in this research, we introduced the AB method, which 
leverages the strengths of both AV and Boruta. The AB method 
primarily functions to mitigate disparities between training 
and testing distributions without reducing the training set and 
original inputs. This is achieved through the attenuation of 
weights assigned to markers that manifest the most substantial 
differences between the training and testing sets. In the AB 
method, a binary classifier is trained for each family using a com
bination of original and shuffled markers. Feature importance 
scores for the original markers are computed, and these 
weighted markers are employed to construct a genomic relation
ship matrix (GRM). This weighted GRM is then incorporated into 
the genomic best linear prediction model (GBLUP), forming the 
core of the AB method.
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We hypostatize that the AB method holds the potential to en
hance prediction accuracy and mitigate prediction errors, particu
larly in cases where a substantial disparity exists between the 
training and testing sets. Conversely, in scenarios where such a 
discrepancy is inconsequential, the AB will not affect the predic
tion performance. This assertion is grounded in the contention 
that the AB method addresses a notable limitation of the AV 
method (Montesinos-López, Kismiantini et al. 2023). Specifically, 
the AV method struggles when confronted with small datasets, ei
ther failing to identify an optimal training set or, when the dataset 
is so diminutive, adversely impacting prediction performance. In 
contrast, the AB method using all original inputs with appropriate 
weighting, circumvents these issues. By eschewing the selection 
of a mere sample or fraction of inputs, as seen in variable selection 
methods (Boruta method), the AB method sidesteps the pitfalls as
sociated with a suboptimal sample of inputs, which can detrimen
tally affect prediction performance. We assess the AB method 
against conventional GRMs without weights (GBLUP), utilizing 12 
real-world datasets.

Materials and methods
GBLUP model
The model used in this study can be represented as

Yij = μ + Ei + gj + gEij + ϵij, (1) 

where Yij denotes the response variable in the environment i and 

genotype j. Ei are the fixed effects of environments, gj, j = 1, . . . , J, 

denotes the random effects of lines, gEij denotes the random ef

fects of the genotype-by-environment interaction modeled 
through a compound symmetry structure, and ϵij denotes the ran

dom error components in the model assumed to be independent 

normal random variables with mean 0 and variance σ2. 

Furthermore, it is assumed that g = (g1, . . . , gJ)
T ∼ NJ(0, σ2

gG), 

gE = (gE11, . . . , gE1J, . . . , gEIJ)
T ∼ NIJ(0, σ2

gL(ZEZT
E ⊙ ZgGZT

g )), where 

ZE is the design matrix of environments of order n × I, ⊙ denotes 
the Hadamard product, and Zg is the design matrix of genotypes 

(lines) of order n × J, G is the genomic relationship-matrix com
puted using markers (VanRaden 2008). Let X denote the matrix 
of markers and let M, be the matrix of centered and standardized 

markers. Then G = MMT

p (VanRaden 2008), where p is the number of 

markers. The implementation of this model (1) using the com
puted G was done in the Bayesian Genomic Linear Regression li
brary of Pérez and de los Campos (2014).

Feature selection—Boruta algorithm
The Boruta algorithm was developed to identify covariates that 
have significant relevance to the response variable, whether 
strong or weak. Specifically designed for high-dimensional data
sets with noisy features, Boruta addresses the challenges of fea
ture selection in such datasets (Kursa and Rudnicki 2010). Its 
operation involves the creation of a shadow (permuted) feature 
set, which is a replicated version of the original feature set with 
values randomly permuted, i.e. shuffled. These shadow features 
act as controls to assess the statistical significance of the original 
features. The determination of the relevance of the original fea
tures is based on whether their importance scores significantly 
surpass the importance scores of their corresponding shadow 
features.

In datasets containing numerous noisy features, where con
ventional feature selection methods may face difficulties, Boruta 
proves to be an efficient solution. However, it is important to 
note that it can be computationally intensive and requires careful 
parameter tuning to achieve optimal results (Kursa and Rudnicki 
2010).

The Boruta algorithm operates through a series of well-defined 
steps for effective feature (marker in our application) selection. 
The process is as follows:

Step 1: A shadow feature set is generated by randomly permut
ing the values of each feature in the original dataset.

Step 2: A random forest model is trained using both the original 
feature set and the shadow feature set. This model serves as the 
foundation for assessing feature importance.

Step 3: The feature importance scores for each original feature 
are calculated by comparing them to the importance scores of 
their corresponding shadow features.

Step 4: The maximum importance score is determined for each 
feature based on the results obtained in Step 3.

Step 5: The Binomial test is employed to evaluate the statistical 
significance of each feature. If a feature's importance score is 
deemed statistically significant, it is marked as “important”; 
otherwise, it is labeled as “unimportant.” The Binomial test is a 
statistical evaluation used in Boruta to compare the observed 
number of successes (e.g. instances where a feature's importance 
score exceeds a certain threshold) with the expected number of 
successes under a null hypothesis. This test determines whether 
the observed results are statistically significant or merely due to 
chance. In Boruta, the Binomial test is applied to assess whether 
the feature importance scores are significantly higher than those 
of the shadow features, thereby indicating the relevance of the 
original features (Kursa and Rudnicki 2010).

Step 6: The process outlined in Steps 1–5 is repeated for a pre
determined number of iterations to ensure robustness and con
sistency in the feature selection process.

Step 7: Finally, the features are ranked based on their import
ance scores. Within Boruta, features are categorized as 
“Confirmed” if they are considered important, “Rejected” if they 
are deemed unimportant, and “Tentative” if further investigation 
is required or if they are considered less important. This categor
ization provides valuable insights into the relevance and contribu
tion of each feature to the predictive model.

The proposed AB method
Step 1. We assume that we have a multi-environment or single en
vironment data set in which there are at least 2 families and for 
each family there are some lines. Since our goal is to predict a 
complete family, the information of this family constitutes the 
testing set { Xtst, ytst}, and the information of the remaining fam
ilies is the training set { Xtrn, ytrn}. Then, in the original dataset { 
Xtrn, ytrn, Xtst, ytst}, we remove the original response variable 
column { ytrn, ytst}, and add a fictitious (new) response variable col
umn { yf trn, yf tst} that replaces the source of the data by 0 (that is, 
yf = 0) for samples (observations) on the training set and by 1 (i.e. 
yf =1) for the samples in the testing set (Montesinos-López, 
Kismiantini et al. 2023). In other words, the fictitious response vari
ables with 0 s correspond to the remaining families and the 1 s for 
the family we want to predict.

Step 2. We then implement the Boruta algorithm with inputs { 
Xtrn, yf trn, Xtst, yf tst} and we extract the variable important scores 
(IS) for each marker.
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Step 3. The next step is to compute the inverse of the IS as 
Inv_IS = 1/IS, then compute the final weights as w = Inv_IS ×p 
/sum(Inv_IS), where p denotes the number of markers.

Step 4. Each row of the standardized matrix of markers ( M) is 
then multiplied by the vector of weights (w), in matrix notation 
we build the diagonal matrix of squared weights, as D = Diag( 
w2

1, w2
2, . . . , w2

p), and finally, with this weighted matrix, a 
weighted GRM is computed as G∗ = MDMT

p . The implementation of 
model (1) using the weighted GRM (G∗) is what we call method 
AB. It is important to point out that the GBLUP and AB methods 
were implemented in the R statistical software (R Core Team 
2023).

The AB method works primarily from its capability to minim
ize the mismatch between the training and testing distribu
tions. This is achieved by diminishing the weight assigned to 
markers that exhibit the most pronounced differences between 
the training and testing sets. In simple words, the weights 
resulting from the AB method originate from a binary classifica
tion model and reflect the significance of each variable (marker) 
in distinguishing between training and testing sets. By assigning 
a value of one to observations belonging to the testing set and 
zero to those from the training set, the weights indicate the 
relative importance of independent variables (markers) in this 
differentiation process. In essence, higher importance scores 
associated with certain variables imply a more substantial con
tribution to the ability to differentiate observations between the 
training and testing sets. Also, it is important to point out that 
the proposed AB method is not restricted only to family predic
tion, since it can be used for any type of prediction where there 
is a significant mismatch between the training and testing 
distributions.

Data
Details of the 12 data sets are shown in Table A1 (Appendix).

Evaluation of prediction accuracy
The cross-validation approach used in this study involved leaving 
one family out. In each iteration, the data from a single-family 
served as the testing set, while the data from all other families 
constituted the training set (Montesinos-López et al. 2022). The 
number of iterations was equal to the number of families to en
sure that each family was used as the testing set exactly one 
time. This method was employed to assess the model's ability to 
predict information from a complete family using data from dif
ferent and diverse families.

To assess the predictive efficacy of the proposed AB method in 
contrast to the GBLUP model, three metrics were employed. 
Initially, the mean square error (MSE) was utilized to gauge the 
model's prediction accuracy by measuring the squared deviation 
between observed and predicted values on the testing set. 
Subsequently, the average Pearson's correlation (COR) was cal
culated to ascertain the strength and direction of the linear rela
tionship between the observed and predicted values on the 
testing set. Additionally, the normalized root mean square error 
(NRMSE), serving as another metric for prediction error, was 
computed. To derive this metric, we first calculated the square 
root of the MSE and then divided this value by the average of 
the observed values in the testing set. These evaluation metrics 
provided valuable insights into the performance of the proposed 
AB method relative to the GBLUP method in predicting informa
tion across an entire family.

In addition, we computed the relative efficiency (RE), in terms 
of MSE, NRMSE, and COR of each model with the following expres
sions:

REMSE =
MSE(MGBLUP)

MSE(MAB)

􏼒 􏼓

RENRMSE =
NRMSE(MGBLUP)

NRMSE(MAB)

􏼒 􏼓

where MGBLUP and MAB denote the models compared, the GBLUP 
and the AB model. The RE for COR was computed as:

RECOR =
COR(MAB)

COR(MGBLUP)

􏼒 􏼓

Across the three measures of relative efficiency (RE_MSE, 
RE_NRMSE, and RE_COR), a value greater than one signifies a su
perior performance of the AB method. Conversely, a value <1 indi
cate the GBLUP method's superiority. A value equal to 1 suggests 
equivalent performance between the GBLUP and AB methods.

Results
The results are organized into 5 sections. The 4 first sections present 
the results for Data 1 (GDM), Data 2 (Maize_1), Data 3 (Maize 2), and 
Data 9 (Soybean_4), while section 5 presents the results across all 
data sets under study. For each data set, we compared the results 
between the GBLUP and the proposed AB method in terms of MSE, 
COR, and NRMSE. The results for Data 1–3 and Data 9 and across 
data sets are shown in Figs. 1–5 and Tables 1–5, respectively.

Supplementary Material contains results for the rest of the 
data sets, Data 4–8 (Maize_3, Maize_4, Soybean_1, Soybean_2, 
Soybean_3, respectively) and Data 10–12 (Maize_Bi_2018, 
Maize_Bi_2019_D, and Maize_Bi_2019_O, respectively), are pre
sented in Supplementary Tables 1–8, respectively, and displayed 
in Supplementary Figs. 1–8, respectively.

Note that for simplicity purposes, Supplementary Materials
only show the description of results from Data 4–8 and of Data 
set 10 (Maize_3, Maize_4, Soybean_1, Soybean_2, Soybean_3, and 
Maize_Bi_2018, respectively) given in Supplementary Tables 1-6
and Supplementary Figs. 1-6. Although results from data sets 
Data 11 to 12 (Maize_Bi_2019_D and Maize_Bi_2019_O, respective
ly) are shown in Supplementary Tables 7–8 and Supplementary 
Figs. 7-8, respectively, they are not discussed in the text of 
Supplementary Material.

Data 1 (GDM data set)
In this section, we compared the GBLUP and AB methods for each 
family across traits for the “GDM” dataset. The comparison was 
done using three metrics (MSE, COR, and NRMSE) and for each 
metric, the RE was computed, comparing the GBLUP and AB meth
ods (Fig. 1 and Table 1).

In terms of MSE we found that in 11 out of the 13 families the RE  
> 1, this means that the AB method outperformed the GBLUP 
method in 11 out of the 13 families. However, across traits and 
families we got an RE = 1.061, meaning that, on average, the AB 
method outperformed the GBLUP method by 6.1% in terms of 
MSE (Table 1 and Fig. 1).

Furthermore, in terms of COR, we found that the AB method 
was better than the GBLUP method in 12 out of 13 families, since 
in 12 of these families, the RE, in terms of COR, was greater than 
1. Meanwhile, across traits and families, the gain of the AB method 
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regarding the GBLUP method was 1.6% since the RE = 1.016 (Fig. 1, 
Table 1).

Finally, in terms of NRMSE values, Fig. 1 and Table 1 show that 
12 out of 13 of the RE values are larger than 1, which means that 

the AB method outperformed the GBLUP method in 12 out of 13 
families. Across traits and families, we found an RE = 1.033, 
which means that the AB method gains the GBLUP method by 
3.3% in terms of prediction performance. In sum, across traits, 

Fig. 1. Data 1 (GDM). Relative efficiency (RE) between the proposed method (AB with Boruta for variable selection) and the GBLUP method for each family 
and across family (AF) in terms of a) mean square error, MSE; b) average Pearson’s correlation, COR; and c) normalized root mean square error, NRMSE. 
RE > 1 means that the AB method outperformed the GBLUP method, RE < 1 means that the GBLUP method outperformed the AB method and RE = 1 means 
that both methods performed equally.

Fig. 2. Data 2 (Maize_1). Relative efficiency (RE) between the proposed method (AB with Boruta for variable selection) and the GBLUP method for each 
family and across family (AF) in terms of a) mean square error, MSE; b) average Pearson’s correlation, COR; and c) normalized root mean square error, 
NRMSE. RE > 1 means that the AB method outperformed the GBLUP method, RE < 1 means that the GBLUP method outperformed the AB method and RE =  
1 means that both methods performed equally.
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family and metrics method AB outperforms method GBLUP in 
this Data 1.

Data 2 (Maize_1 data set)
In this section, we conducted a comparative analysis of the GBLUP 
and AB methods across traits for Data 2. The same three metrics 
(MSE, COR, and NRMSE) were used to measure the performance 
of both methods. The results are presented in Fig. 2 and Table 2.

Regarding MSE, we observed that the AB method outperformed 
the GBLUP method in all six families, with RE values >1. This indi
cates that the AB method displayed superior predictive capability 
in all instances. Across all traits and families, the overall RE of the 
AB method was found to be 1.315, representing an average im
provement of 31.5% over the GBLUP method in terms of MSE 
(Table 2 and Fig. 2).

Similarly, in terms of COR, the AB method displayed a better per
formance than the GBLUP method in all six families, as evidenced 

Fig. 3. Data 3 (Maize_2). Relative efficiency (RE) between the proposed method (AB with Boruta for variable selection) and the GBLUP method for each 
family and across family (AF) in terms of a) mean square error, MSE; b) average Pearson’s correlation, COR; and c) normalized root mean square error, 
NRMSE. RE > 1 means that the AB method outperformed the GBLUP method, RE < 1 means that the GBLUP method outperformed the AB method and RE =  
1 means that both methods performed equally.

Fig. 4. Data 9 (Soybean_4). Relative efficiency (RE) between the proposed method (AB with Boruta for variable selection) and the GBLUP method for each 
family and across family (AF) in terms of a) mean square error, MSE; b) average Pearson’s correlation, COR; and c) normalized root mean square error, 
NRMSE. RE > 1 means that the AB method outperformed the GBLUP method, RE < 1 means that the GBLUP method outperformed the AB method and RE =  
1 means that both methods performed equally.
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Fig. 5. Across datasets. Relative efficiency (RE) between the proposed method (AB with Boruta for variable selection) and the GBLUP method for each 
family and across family (AF) in terms of a) mean square error, MSE; b) average Pearson’s correlation, COR; and c) normalized root mean square error, 
NRMSE. RE > 1 means that the AB method outperformed the GBLUP method, RE < 1 means that the GBLUP method outperformed the AB method and RE =  
1 means that both methods performed equally.

Table 1. Data 1 (GDM).

Data_set Family MSE_GBLUP COR_GBLUP NRMSE_GBLUP MSE_AB COR_AB NRMSE_AB RE_MSE RE_COR RE_NRMSE

GDM F1 119,918.048 0.812 0.511 114,336.072 0.824 0.488 1.049 1.014 1.046
GDM F2 132,406.015 0.840 0.515 126,595.797 0.851 0.496 1.046 1.014 1.039
GDM F3 128,531.101 0.751 0.524 124,833.302 0.768 0.501 1.030 1.022 1.045
GDM F4 124,508.028 0.837 0.473 118,403.764 0.846 0.463 1.052 1.011 1.021
GDM F5 110,073.458 0.859 0.444 99,472.574 0.877 0.432 1.107 1.021 1.028
GDM F6 206,341.443 0.801 0.543 175,968.963 0.831 0.513 1.173 1.037 1.059
GDM F7 124,698.294 0.747 0.601 129,174.949 0.737 0.600 0.965 0.986 1.002
GDM F8 152,335.628 0.760 0.600 141,327.354 0.780 0.584 1.078 1.026 1.028
GDM F9 137,713.335 0.870 0.437 138,444.200 0.872 0.434 0.995 1.002 1.007
GDM F10 121,695.210 0.822 0.483 112,492.040 0.839 0.462 1.082 1.020 1.045
GDM F11 119,274.742 0.833 0.558 117,417.465 0.834 0.560 1.016 1.001 0.996
GDM F12 132,365.930 0.863 0.470 132,251.696 0.867 0.459 1.001 1.006 1.025
GDM F13 108,448.837 0.789 0.509 90,377.859 0.826 0.470 1.200 1.048 1.082
GDM AF 132,177.698 0.814 0.513 124,699.695 0.827 0.497 1.061 1.016 1.033

Prediction accuracy in terms of mean square error (MSE), average Pearson’s correlation (COR) and Normalized mean square error (NRMSE). The metrics that end 
with_GBLUP denote the results under the GBLUP, while those that end with _AB denote the AB method with variable selection using the Boruta algorithm. Relative 
efficiency (RE) denotes the RE for each metrics, RE_MSE and RE_NRMSE were computed dividing the MSE_GBLUP by the MSE_AB, and the NRMSE_GBLUP by the 
NRMSE_AB, while the RE_COR was computed dividing the COR_AB by the COR_GBLUP. RE values larger than one indicate that the AB method outperformed the 
GBLUP method.

Table 2. Data 2 (Maize_1).

Data_set Family MSE_GBLUP COR_GBLUP NRMSE_GBLUP MSE_AB COR_AB NRMSE_AB RE_MSE RE_COR RE_NRMSE

Maize_1 Z001 6551.470 0.529 1.255 4220.248 0.593 1.051 1.552 1.121 1.194
Maize_1 Z002 1748.914 0.547 0.890 1715.049 0.627 0.857 1.020 1.147 1.038
Maize_1 Z003 2294.720 0.480 0.919 1834.473 0.622 0.817 1.251 1.296 1.124
Maize_1 Z004 2078.756 0.547 0.908 1865.140 0.636 0.889 1.115 1.162 1.021
Maize_1 Z005 2689.596 0.495 0.931 1978.842 0.637 0.801 1.359 1.287 1.162
Maize_1 Z006 2608.669 0.533 1.066 1638.615 0.659 0.876 1.592 1.237 1.217
Maize_1 AF 2995.354 0.522 0.995 2208.728 0.629 0.882 1.315 1.208 1.126

Prediction accuracy in terms of mean square error (MSE), average Pearson’s correlation (COR) and Normalized mean square error (NRMSE). The metrics that end 
with_GBLUP denote the results under the GBLUP, while those that end with _AB denote the AB method with variable selection using the Boruta algorithm.Relative 
efficiency (RE) denotes the relative efficiency for each metric, RE_MSE and RE_NRMSE were computed dividing the MSE_GBLUP by the MSE_AB, and the 
NRMSE_GBLUP by the NRMSE_AB, while the RE_COR was computed dividing the COR_AB by the COR_GBLUP. RE values larger than one indicate that the AB method 
outperformed the GBLUP method.
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by RE values >1 for each family. The overall gain of the AB method 
relative to the GBLUP method, considering all traits and families, 
was 20.8%, with an RE value of 1.208 (Fig. 2 and Table 2).

Additionally, when considering NRMSE values, we again ob
served that the AB method outperformed the GBLUP method in 
all 6 families, with RE values consistently above 1. The overall 
RE across traits and families was 1.126, indicating a 12.6% im
provement in prediction performance for the AB method com
pared to the GBLUP method.

Data 3 (Maize_2 data set)
In this section, we conducted a comprehensive comparison be
tween the GBLUP and AB methods across traits for the Maize_2 da
taset with the same metrics. Regarding MSE, our analysis revealed 
that the AB method outperformed the GBLUP method in all six 
families, as evidenced by RE values >1. This indicates a consistent 
superiority of the AB method over the GBLUP method within each 
family. When considering all traits and families together, the 

overall RE value was 1.553, indicating an average improvement of 
55.3% in favor of the AB method in terms of MSE (Table 3 and Fig. 3).

Furthermore, in terms of COR, the AB method displayed a high
er performance compared to the GBLUP method in all 6 families, 
as indicated by RE values larger than 1 for each family. Across 
all traits and families, the AB method achieved an RE value of 
1.339, representing a 33.9% gain over the GBLUP method (Fig. 3
and Table 3).

Similarly, the NRMSE values exhibited a consistent pattern of 
improvement for the AB method. In all six families, the AB method 
outperformed the GBLUP method, with RE values surpassing 
1. When considering all traits and families collectively, the overall 
RE value was 1.203, indicating a 20.3% performance gain of the AB 
method over the GBLUP method.

Data 4 (Soybean_4 dataset)
Regarding the MSE metric, our findings indicate that the AB meth
od outperformed the GBLUP method in 8 out of the 10 families, 

Table 3. Data 3 (Maize_2).

Data_set Family MSE_GBLUP COR_GBLUP NRMSE_GBLUP MSE_AB COR_AB NRMSE_AB RE_MSE RE_COR RE_NRMSE

Maize_2 Z006 2311.286 0.471 1.071 1338.993 0.661 0.937 1.726 1.404 1.143
Maize_2 Z007 2523.508 0.501 1.032 1421.342 0.667 0.804 1.775 1.331 1.284
Maize_2 Z008 4866.393 0.479 1.205 4367.755 0.636 1.110 1.114 1.329 1.086
Maize_2 Z009 3301.102 0.480 1.159 1578.735 0.631 0.825 2.091 1.314 1.404
Maize_2 Z010 3216.048 0.479 1.071 2572.810 0.622 0.971 1.250 1.298 1.103
Maize_2 Z011 7317.351 0.408 1.511 5371.310 0.554 1.263 1.362 1.359 1.196
Maize_2 AF 3922.615 0.470 1.175 2775.157 0.629 0.985 1.553 1.339 1.203

Prediction accuracy in terms of mean square error (MSE), average Pearson’s correlation (COR), and normalized mean square error (NRMSE). The metrics that end 
with_GBLUP denote the results under the GBLUP, while those that end with _AB denote the AB method with variable selection using the Boruta algorithm. Relative 
efficiency (RE) denotes the RE for each metric, RE_MSE and RE_NRMSE were computed dividing the MSE_GBLUP by the MSE_AB, and the NRMSE_GBLUP by the 
NRMSE_AB, while the RE_COR was computed dividing the COR_AB by the COR_GBLUP. RE values larger than one indicate that the AB method outperformed the 
GBLUP method.

Table 4. Data 9 (Soybean_4).

Data_set Family MSE_GBLUP COR_GBLUP NRMSE_GBLUP MSE_AB COR_AB NRMSE_AB RE_MSE RE_COR RE_NRMSE

Soybean_4 18 68,070.522 0.815 0.704 68,317.303 0.823 0.607 0.996 1.009 1.160
Soybean_4 39 143,007.765 0.831 0.556 148,089.245 0.831 0.636 0.966 1.000 0.875
Soybean_4 40 74,413.189 0.856 0.622 46,240.386 0.865 0.606 1.609 1.011 1.026
Soybean_4 41 111,374.677 0.809 0.544 94,994.783 0.824 0.527 1.172 1.018 1.031
Soybean_4 42 182,961.181 0.754 0.747 122,794.534 0.800 0.566 1.490 1.060 1.321
Soybean_4 46 96,267.088 0.789 0.598 73,260.793 0.800 0.590 1.314 1.014 1.015
Soybean_4 48 82,289.105 0.723 0.681 52,981.294 0.780 0.600 1.553 1.079 1.136
Soybean_4 50 162,327.393 0.779 0.601 82,244.828 0.804 0.618 1.974 1.033 0.972
Soybean_4 54 150,133.279 0.782 0.680 99,797.457 0.818 0.563 1.504 1.047 1.207
Soybean_4 64 315,164.344 0.869 0.882 235,267.795 0.867 0.765 1.340 0.997 1.152
Soybean_4 AF 138,600.854 0.801 0.662 102,398.842 0.821 0.608 1.392 1.027 1.090

Prediction accuracy in terms of mean square error (MSE), average Pearson’s correlation (COR), and normalized mean square error (NRMSE). The metrics that end 
with_GBLUP denotes the results under the GBLUP, while those that end with _AB denotes the AV method with variable selection using the Boruta algorithm. Relative 
efficiency (RE) denotes the RE for each metric, RE_MSE and RE_NRMSE were computed dividing the MSE_GBLUP by the MSE_AB, and the NRMSE_GBLUP by the 
NRMSE_AB, while the RE_COR was computed dividing the COR_AB by the COR_GBLUP. RE values larger than one indicate that the AB method outperformed the 
GBLUP method.

Table 5. Across datasets.

Data_set Family MSE_GBLUP COR_GBLUP NRMSE_GBLUP MSE_AB COR_AB NRMSE_AB RE_MSE RE_COR RE_NRMSE

Across data 
sets

Across 
data

42,695.770 0.535 4.864 37,885.753 0.585 4.415 1.197 1.086 1.098

Prediction accuracy in terms of mean square error (MSE), average Pearson’s correlation (COR), and normalized mean square error (NRMSE). The metrics that end 
with_GBLUP denote the results under the GBLUP, while those that end with _AB denote the AV method with variable selection using the Boruta algorithm. Relative 
efficiency (RE) denotes the RE for each metric, RE_MSE and RE_NRMSE were computed dividing the MSE_GBLUP by the MSE_AB, and the NRMSE_GBLUP by the 
NRMSE_AB, while the RE_COR was computed dividing the COR_AB by the COR_GBLUP. RE values larger than one indicate that the AB method outperformed the 
GBLUP method.
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with an RE value >1. Across all traits and families, the average im
provement achieved by the AB method vs the GBLUP method was 
39.2% (RE = 1.392, Table 4 and Fig. 4).

Similarly, regarding the COR metric, the AB method displayed a 
higher performance in 9 out of 10 families, as indicated by RE >1. 
Across all traits and families, the AB method showed a modest 
gain of 2.7% compared to the GBLUP method (RE = 1.027, Fig. 4, 
Table 4).

Additionally, the NRMSE metric analysis revealed that in 8 out 
of 10 cases, the RE values exceeded 1, highlighting the advantage 
of the AB method over the GBLUP method. Overall, across all traits 
and families, the AB method displayed a 9.0% improvement in 
prediction performance, as evidenced by an RE value of 1.090.

Across data sets
Regarding the MSE metric, our findings across data sets and fam
ilies indicate that the AB method outperformed the GBLUP meth
od by 19.7% (RE = 1.19.7, Table 5 and Fig. 5). Turning our attention 
to the COR metric, the AB method displayed a higher performance 
with a gain of 8.6% compared to the GBLUP method (RE = 1.086, 
Fig. 5, Table 5). Additionally, in terms of NRMSE, the AB method 
exhibited an improvement of 9.8% over the GBLUP method, as in
dicated by a RE value of 1.098 (as depicted in Fig. 5 and Table 5).

In sum, our findings consistently found AB method superior to 
the GBLUP method across diverse datasets, traits and family cat
egories. These results indicate that the AB method is indeed ef
fective in predicting untested families when trained on tested 
ones.

Discussion
Family prediction in breeding programs is of paramount import
ance, since it is essential to optimize the use of resources, acceler
ate the breeding cycle, reduce environmental impact, and 
produce new plant varieties with improved traits. Family predic
tion allows breeders to identify and select superior genotypes 
based on their genetic potential. By predicting the performance 
of entire families rather than individual plants, breeders can 
make informed decisions about which families are likely to exhibit 
desirable traits such as higher yield, resistance to diseases, and 
improved quality.

Family prediction is very important since enables breeders to 
allocate their resources more efficiently by focusing on families 
with the highest predicted performance. This targeted approach 
accelerates the breeding process, allowing for the identification 
of promising plant varieties more quickly. As a result, resources 
such as time, manpower, and field space are utilized more effect
ively, leading to the development of improved crop varieties in a 
timelier manner. This efficiency is crucial in addressing global 
challenges such as food security, climate change, and evolving 
pest and disease pressures.

Challenging family predictions in plant breeding can arise due 
to several factors, which can complicate the process and impact 
the accuracy of predictions. Some of these challenges include (1) 
genetic variation within families, (2) quantitative traits and poly
genicity, (3) epistasis and gene interactions, (4) recombination and 
linkage disequilibrium, (5) limited sample size, etc. Addressing 
these challenges requires a combination of advanced statistical 
methods, cutting-edge genomic technologies, robust experimen
tal designs, careful consideration of environmental factors, and it
erative model refinement. Although genomics and statistical 
modeling continue to improve the accuracy of family predictions 

in plant breeding, it is likely that these challenges will continue to 
be important.

For this reason, in this research, a novel method was proposed 
that integrates the strengths of the AV method and Boruta method 
and it is called the AB method. This method trains binary classifiers 
for each family with a fictitious response variable. The fictitious re
sponse variable is labeled as 1 (testing set) when the input belongs 
to the family of interest, while the inputs of the remaining families 
are labeled as 0 (training set). During the training process with the 
Boruta method, each original marker and its permuted (shuffled) 
version is used as input. This process helps determine marker im
portance. Original markers are then weighted using the inverse of 
their computed scores, and with these weighted markers, the 
weighted GRM is computed. The GBLUP model is then implemented 
using this weighted GRM. From our results we speculate that the AB 
method is simply picking up the SNPs segregating on the test set. In 
which case, a quality control process on the SNP set could be used to 
tailor the model to specific families. The proposed AB method was 
compared to the GBLUP model that uses a GRM without weights on 
12 real datasets.

We found the AB method outperformed the GBLUP method be
tween 0% (Data 12, Maize_Bi_2019_O) and 55.3% (Data 3, Maize_2) 
in terms of MSE, between 0% (Data 12, Maize_Bi_2019_O) and 
33.9% (Data 3, set Maize_2) in terms of COR and between 1.1% in 
Data 12, Maize_Bi_2019_O) and 33.9% (Data 3, Maize_2) in terms 
of NRMSE. On average across data sets, traits and families, we ob
served that the AB method outperformed the GBLUP method by 
8.6, 19.7, and 9.8% in terms of COR, MSE and normalized root 
MSE. These results are very promising, since they provide empir
ical evidence that the proposed AB method can help to significant
ly increase the prediction performance of complete families.

The power of the AB method mostly is attributed to the fact 
that it reduces the mismatch between the training and testing dis
tribution by reducing the weight of those markers that most dif
ferentiate the training from the testing set. This adjustment is 
possible to be carried out due to the hybrid nature of the AB meth
od that uses the AV approach proposed by Montesinos-López, 
Kismiantini et al. (2023) for the context of plant breeding to quan
tify the magnitude of the mismatch between the training and test
ing sets, followed by the Boruta method to identify those markers 
that are more important in the differentiation between the train
ing and testing set. Then with the inverse of the importance scores 
a weighted GRM is built that is used coupled with the GBLUP mod
el with the goal of improving the prediction performance. Our re
sults are encouraging since we not only reduced prediction error 
(with MSE and NRMSE) but also increases predictive ability (as 
Pearson’s correlation between predicted and observed values) 
which is one of the most popular metrics used in GS, and that 
guarantees a better selection process of the best (top or bottom) 
candidate genotypes. Also, it is important to point out that the 
proposed AB method is not restricted to only hybrid predictions 
since this method can be applied to any prediction problem in 
which exist a significant mismatch between the training and test
ing set, also the size of the training and testing set have not restric
tions, that is, the percentages of observations in the training and 
testing can be quite different.

However, even though the results are very promising, in some 
data sets we did not find a significant improvement in the predic
tion accuracy of some families, which in part can be attributed to 
a not significant mismatch between the training and testing sets 
and in other to difficulties of building robust statistical machine 
learning methods for complete family predictions since, as men
tioned above, many factors that interact in complex ways affect 
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the family performance. Also, it is hard to predict some families 
because the heritability for a single family within a single environ
ment is very low, unless this family happens to be segregating to a 
major QTL and in these cases, the test is too noisy to validate the 
methodology.

For example, the number of individuals per family (family size) 
is key to improving the prediction accuracy of a complete family, 
since the larger the family size, we will have more information to 
train the genomic prediction model efficiently. In addition, it is key 
to have many families in the training set since, in this way, the 
probability that the family to be predicted has more similar fam
ilies in the training set increases.

Also, the size and structure of the training population affect the 
accuracy of genomic prediction models (VanRaden et al. 2009; 
Daetwyler et al. 2010; Habier et al. 2010; de Bem Oliveira et al. 
2020). Furthermore, incorporating more than 10 individuals with
in each family will diminish the sampling variability of both allele 
frequency and phenotypic mean, ultimately leading to enhanced 
genomic accuracies (de Bem Oliveira et al. 2020). However, we are 
aware that not even the family can predict itself well because of 
factors such as G × E (Alencar 2021).

For the situation mentioned above, it is crucial to highlight the 
significance of genome-wide family prediction in breeding prac
tices, particularly considering that numerous species are culti
vated within large full or half-sibling family populations, often 
serving as commercially viable populations with varying degrees 
of relatedness, as seen in certain forage species such as alfalfa 
(Medicago sativa L.) (Annicchiarico et al. 2015; Biazzi et al. 2017) 
and ryegrass (Lolium perenne L.) (Fè et al. 2016). Within these spe
cies, the family unit, whether composed of full or half-siblings, 
constitutes the fundamental entity for phenotyping, typically per
formed at the plot level to measure attributes like yield, as op
posed to the individual plant level. This approach is required by 
the allogamous nature of their mating systems (Poehlman 1987). 
Notably, individual plants hold limited significance, given that 
commercial varieties are essentially homogeneous populations 
comprising heterozygous individuals (Poehlman 1987).

Significantly, the application of genome-wide family prediction 
has already been reported in crops that are intentionally bred and 
cultivated as family pools, particularly in cross-pollinated forage 
species (Fè et al. 2016; Annicchiarico et al. 2015; Biazzi et al. 2017). 
For this reason, the proposed AB method is a promising tool that 
helps to improve the prediction performance of complete fam
ilies, but still further research is required to be able to improve 
the modeling process in family predictions in such a way that, it 
is highly probable that we can guarantee a high prediction accur
acy of each family, in any trait and in any data set. The application 
of the AB method generally improves the prediction accuracy or, 
in case this does not occur, the genomic prediction accuracy will 
not be negatively affected by the application of the AB method.

Conclusions
Due to the need to improve family prediction accuracy in plant 
breeding programs, we proposed the AB method that integrates 
the AV method with the Boruta method. The former detects the 
presence and magnitude of the mismatch between the training 
and testing set using a binary classifier using the original features 
(inputs) and a fictitious response variable, while the Boruta com
putes feature importance, also using the same fictitious response 
variable, then with the inverse of the feature importance scores 
the original features (markers) are weighted, and using them, a 
weighed GRM is computed. Finally, the GBLUP model is used 

with the weighted GRM. We found that the proposed AB method 
outperforms the GBLUP by 8.6, 19.7, and 9.8% in terms of 
Pearson’s correlation, MSE, and normalized root MSE across 
data sets, traits, and families. The proposed AB method was 
shown to be efficient in most data sets under study, but for cases 
in the AB method did not produce any increase in genomic predic
tion accuracy, the AB method did not produce any decrease in the 
accuracy of the prediction. Certainly, more empirical evaluations 
are welcome to support our findings.

Data availability
The data sets used in this study can be downloaded from the fol
lowing link https://hdl.handle.net/11529/10548950. While the R 
code is available at https://github.com/osval78/Adversarial_ 
Boruta_-AB-_Method.

Supplemental material available at G3 online.
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Appendix

Table A1. Detailed description of the data sets used to implement the proposed AB method for parental selection.

Data number Data set Genotypes Markers Environments Traits Families Trait name

Data 1 GDM Seed 
Soybean

532 626 12 2 13 Grain yield and moisture

Data 2 Maize_1 1000 4085 11 4 6 Days to tassel, anthesis silking interval, plant height, 
and ear height

Data 3 Maize_2 1000 4085 11 4 6 Days to tassel, anthesis silking interval, plant height, 
and ear height

Data 4 Maize_3 1000 4085 11 4 6 Days to tassel, anthesis silking interval, plant height, 
and ear height

Data 5 Maize_4 999 4085 11 4 6 Days to tassel, anthesis silking interval, plant height, 
and ear height

Data 6 Soybean_1 1044 1810 8 6 8 Plant height, R8, planting, maturity, lodging, and 
grain yield

Data 7 Soybean_2 691 1808 8 6 8 Plant height, R8, planting, maturity, lodging, and 
grain yield

Data 8 Soybean_3 70 1809 8 6 10 Plant height, R8, planting, maturity, lodging, and 
grain yield

Data 9 Soybean_4 59 1803 8 6 10 Plant height, R8, planting, maturity, lodging, and 
grain yield

Data 10 Maize_Bi_2018 1284 5465 1 21 29 Grain yield, GYgrn, AD, SD, ASI, EH, PH, rEPH, rEPP, 
EarAsp, MOI, PltAsp, SAT, nP, pER, pRL, pSL, Eturc1, 
GLS, MSV, and pBHC

Data 11 Maize_Bi_2019_D 722 8754 1 16 19 Grain yield, GYgrn, AD, ASI, EH, EarAsp, MOI, PH, SAT, 
SD, nP, pER, pRL, pSL, rEPH, and rEPP

Data 12 Maize_Bi_2019_O 722 8754 1 20 19 Grain yield, GYgrn, AD, ASI, EH, EarAsp, MOI, PH, SAT, 
SD, nP, pER, pRL, pSL, rEPH, rEPP, Eturc1, GLS, 
PltAsp, and pBHC
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