Principles of Field Experimentation

Berhanu Tadesse

Maize Breeder, CIMMYT-Kenya

Technicians Training from August 7-10, 2023 The Concord Hotel, Nairobi, Kenay

Outline

• Introduction

Summary

- Steps in experimentation
- The aim of the experiment choice of treatments
- Choice of experimental material
- Experimental vs observational unit
- Principles of experimentation
- The experimental design process
- Common Experimental Designs for maize breeding trials

- General Breeding Scheme in CIMMYT maize
- Check Strategy at CIMMYT

Introduction

- An experimental study is one in which the researcher deliberately manipulates certain study conditions in order to induce and measure a response in experimental material.
 - The manipulated conditions are often referred to as **treatments** and
 - the materials to which the conditions are applied are defined as the experimental units.
- **Design of an experiment** is planning of an experiment to obtain an appropriate measurement (data) and drawing inference out of the measurement (data) with respect to any problem under investigation.

Steps in experimentation (Little and Hills 1978)

- **Define the problem**: Biotic and abiotic stresses reducing productivity of maize
- Determine the objectives (Purposes): High yielding genotypes under multiple stress environments
- Select the **treatments**: Newly developed maize hybrids
- Select the **experimental material**: Experimental fields across multiple locations
- Select the **experimental design**: RCBD, alpha lattice, p-rep, etc
- Select the **experimental unit** and number of replications: 1 row plot, 2 row plot
- Ensure proper **randomization** and layout:
- Ensure proper means of **data collection**: Manual data collection, electronic data capture, precision phenotyping, etc

- Outline the **statistical analysis** before doing the experiment
- Conduct the experiment
- Analyze the data and interpret the results
 - Prepare complete reports

The aim of the experiment - choice of treatments

- The aim of experiment refers to the experimental purpose or objective such as selecting high yielding and widely adapted hybrids for variety release
- The research question clearly defines the conditions that will be manipulated in the experiment, and these manipulations are commonly called treatments.

Research aim (hypothesis)	Treatments
Which genotype is the highest yielding in a given environment?	Treatments will be different varieties grown in a field trial, and the response will be measured as the yield of plants.
Is there any reduction in disease infection achieved with a new more resistant variety compared to a control variety?	Treatments will be the two varieties; a new variety compared to a control or standard variety, and the response will be level of disease infection.
Which chemicals are effective in controlling insect damage on plants?	Treatments will be levels of different insecticide applied to insects feeding on the plant species of interest, and the response will be measured as plant damage.

Choice of experimental material

- Experimental material defines the sample space for the experiment
- In agricultural experiments this can be:
 - An area of land on a farm, which is typically divided into smaller units, or plots of land.
 - A set of pots to be grown in glasshouse conditions, comprising the characteristics of pot size, growing medium and pot placement on benches in the glasshouse.
 - A collection of insects that can be housed in cages or petri dishes.
- An informed choice of experimental material must be made to ensure that conclusions from the study are valid for the wider population.

CIMMYT

Experimental unit

- The experimental unit is the smallest unit to which a treatment can be applied, such that any two units receive different treatments.
 - A number of varieties will be exposed to a range of plant spacing treatments, and the resulting yield of plants will be measured. The study will be undertaken on an area of land on a farm, which is divided into smaller units, or plots of land.
 - Treatment: variety by plant spacing;
 - experimental unit: plot
 - A <u>new variety</u> will be compared to a <u>standard check</u> <u>variety</u>, and the response will be level of disease infection. The varieties will be grown in pots on benches in the glasshouse.

Treatment: <u>variety</u>;

• experimental unit: pot

Experimental Unit here is the plot

Experimental Unit here is a tray containing 9 plants

Observational unit

- The observational unit is the smallest unit on which a measurement is taken.
- It may be the same as the experimental unit, or on a finer scale than the experimental unit.
- Let's again consider the examples given above.
 - Variety by plant spacing is the treatment and plot is the experimental unit. If yield is measured for the whole plot, then plot is both the experimental and the observational unit.
 - Variety is the treatment and pot is the experimental unit. If measurements are taken on each plant, then plant is the observational

on each plant, then plant is the observation unit, but pot is the experimental unit.

Observation unit is plot for GY

Observation Unit is pot if measurement is taken from each pot

The experimental design process

- Experimental design is simply the **process of** allocating treatments to experimental units.
- The very nature of non-uniform experimental material and experimental methods dictates the need for established design principles.
- Sound and robust experimental design is based on a knowledge of the <u>aims of the experiment</u>, the treatments under study, and an understanding of the nature of the experimental material to which the treatments will be applied.
- The experimental units may exhibit **variability due** to several sources
 - inherent variability in the material,
 - variation induced in the units through experimental processes and
 - measurement errors.

CGIA

Grain yield of one variety grown in the whole field

Source: Alison Kelly Valeria Paccapelo, 2017

Principles of experimentation – 3R

- Almost all experiments involve <u>three</u> <u>basic principles</u>, viz., randomization, replication and restriction of randomization/local control/blocking.
- These three principles are complementary to each other in trying to increase the accuracy of the experiment and to provide a valid test of significance, retaining at the same time the distinctive features of their roles in any experiment.

Replication

- A *replicate* is a **copy of a treatment**, such that the number of replicates of a treatment is the number of experimental units to which a treatment is applied.
- Replication of the experimental units ensures two important outcomes surrounding the experimental results.
 - Firstly, it increases the accuracy of the estimate of treatment effects, as each treatment effect is averaged across more than one experimental unit.
 - <u>Secondly</u>, the variation between experimental units containing the same treatment provides a measure of background variability of the experimental units

Randomization

- Randomization is the process of allocating treatments to experimental units.
- Randomization ensures that we avoid biased or unrepresentative results from the experiment.
- It is the insurance policy against the underlying variation in the experimental units.
- Bailey [2008] describes four types of bias, each illustrated here with a plant improvement example:
 - Systematic: allocating the varieties 1, 2, ..., 20 to plots 1, 2, ..., 20, i.e., variety 1 to plot 1, variety 2 to plot 2 etc. in the first replicate for all trials in a multi-environment trial series.
 - Selection: compositing the grain samples from the varieties with lower plot yields but not those with higher plot yields.
 - Accidental: measuring a grain quality trait on varieties which reach maturity before others.
 - Cheating: allocating an irrigation treatment to a lower lying part of the field than a nonirrigation treatment.

Restriction of randomization/local control

- Experimental units (e.g., field plots) vary from one another prior to the application of treatments e.g., <u>fertility and moisture</u> gradients in the field; lighting and air conditioning in glasshouse etc.
- If this variability is ignored in the design (or analysis) then the measurement error (residual variation) can be inflated
- Blocking the experimental units into groups that are considered to be homogeneous attempts to control known (or anticipated) local variation
- Complete blocks contain an experimental unit for each treatment, but incomplete blocks do not.

Moisture gradient in field experiment, Western Kenya, 2023

Principles of experimentation in practice

- Imagine that we have a field with a nitrogen gradient
- A breeder wants to evaluate 12 maize varieties

What is the problem with this experimental design?

- Varieties A, B and C will experience worse growing conditions than J, K and L
- We won't know if their yield is lower because A, B and C are worse varieties, or simply because they had less nitrogen

Principles of experimentation in practice

• Randomly re-allocated varieties to experimental units:

Principles of experimentation in practice

Solution:

Group experimental units into homogeneous **=Blocks** groups

Randomize varieties within groups

Blocking reduces the experimental error (σ^2)

«Blocking can be thought as an insurance policy against disturbances that may or may not arise during the course of the experiment»

(Casley et al. 2015)

Block 1 Block 2 Block 3 Block 4

Common Experimental Designs for maize breeding trials

- The Completely Randomized Design (CRD)
- Randomized Complete Block Design (RCBD)
- Alpha-Lattice Designs
- Augmented Designs
- Partially Replicated Designs

The Completely Randomized Design (CRD)

- The simplest design, suitable for a set of homogeneous experimental units
- Treatments randomly assigned to the units (*completely* at random)
- Problem: in biological experiments, experimental units are almost never
 - homogeneous

1	2	3	4	5
D	A	B	C	D
6	7	8	9	10
A	D	A	C	B
11	12	13	14	15
A	C	A	D	C
16	17	18	19	20
B	D	C	B	B

Welham et al 2014 (4.1A, p.72)

Randomized Complete Block Design (RCBD)

- All experimental units (e.g., field plots) within a block are considered homogeneous, i.e., similar in all respects that affect plant growth;
- Each block contains a *complete* set of treatments;
- Within a block the treatments are randomly allocated to the experimental units.

- Kg
CGIAR

Less nitrogen			Less nitrogen				
Block 1	Block 2	Block 3	Block 4				
Α	С	E	Н				
F	K	В	С				
С	Α	F	D				
- I	F	С	В				
В	D	J	E				
E	J	Α	1 I.				
J	E	Н	L				
G	G	K	A				
K	L	G	K				
D	Н	D	J				
L	В	I	F				
Н	I.	L	G				

Treatments: 12 (A to L); 4 replication

Alpha-Lattice Designs

- This is one of the most flexible experimental designs in Plant Breeding (Patterson & Williams 1976, Patterson et al. 1978).
- It is applicable when the number of treatments (cultivars/genotypes) is large.
- The following are the characteristics of alpha lattice design:
 - Not all the treatments appear in one incomplete block
 - Randomly allocate treatments to plots within each incomplete block

Alpha Lattice Design Field Layout 6X10

An alpha-lattice design for v = 30 varieties and r = 2 replicates, s = 6 blocks within each replicate and k = 5 plots within a block arranged as 6 rows by 10 columns,. Replicates are delineated by the vertical bold line and blocks by the yellow line lines

CIMMYT

Alpha lattice design – example

Alpha Lattice Design Field Layout 6X10

ID	REP	IBLOCK	UNIT	ENTRY		
1	1	1	1	1		
2	1	1	2	7		
3	1	1	3	19		
4	1	1	4	25		
5	1	1	5	13		
6	1	2	1	23		
7	1	2	2	11		
8	1	2	3	17		
9	1	2	4	5		
10	1	2	5	29		
11	1	3	1	14		
12	1	3	2	2		
13	1	3	3	26		
14	1	3	4	20		
15 IS	1	3	5	8		

CGIAR

COLUMNS

Alpha Lattice Design Field Layout 3X20

	26	4	23		28	9	30	20	14	17	22	10	18	4	2	20	21	30	1	27
ROWS	29	27	12	24	21	10	25	15	11	З	25	6	16	23	8	26	11	12	9	5
	1	6	18	13	7	16	22	5	2	19	З	13	17	7	24	14	19	29	15	28

Augmented Designs

- Augmented designs are widely used in the design of early-stage variety trials which have large treatment numbers
- Augmented designs contain a combination of replicated and unreplicated treatments
- The **replicated treatments accounts** for spatial
- The systematic repetition of the replicated treatments enables estimation of the block effects and residual (error) variance resulting in more precise estimates of the treatment comparisons of interest.

1																
8	5	112	49	119	109	6	26	28	48	59	3	70	47	4	23	25
7	17	82	20	95	58	22	16	C1	92	88	117	12	107	105	15	100
6	38	C2	108	93	56	39	114	62	106	64	2	52	89	C1	110	31
UN CI	103	19	72	86	18	33	101	75	87	32	120	60	71	40	C2	11
98 4	98	7	54	66	65	34	51	104	35	81	C2	96	14	37	63	50
3	113	53	43	68	42	1	29	C1	116	C1	85	46	73	30	36	84
2	77	74	57	C2	90	97	115	118	76	80	83	24	13	78	91	99
1	45	94	9	102	10	111	79	69	8	27	61	67	55	44	41	21
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	5	r					The second	Col	umn	V M	\mathbf{C}			л 🔪	/ -	T I

Partially Replicated Designs

- Partially replicated (*p*-rep) designs are introduced as an **alternative to augmented** designs for **early-stage variety trials**.
- **Key principle** is to replace the replicated checks in an augmented grid design with test lines. This increases the response to selection due to an increased replication of the lines under selection.
- See the example for partially replicated design for v = 504 varieties in 624 plots, arranged in 26 rows by 24 columns. The bold horizontal line delineates the Blocks. Colors represent different check lines.
- The gray shaded plots are those allocated with 2 replicate varieties

CGIAR

		_	1.000	1. A TYTTOO		1.000.00		1			0000000	8. · · · · ·	- Second Pro-		and second		1.7.000		1.0.0.2.4	10000		neronal order	10000		- and the	1
	26	173	9	419	356	352	384	125	354	411	342	382	240	В	481	111	348	485	359	137	267	481	96	215	254	
	25	148	405	265	6	465	178	409	144	177	418	83	323	126	494	306	25	387	229	163	273	н	32	152	330	
	24	96	338	304	367	300	263	479	38	262	394	184	275	368	182	416	240	12	181	D	154	176	С	100	245	
	23	450	72	70	248	388	273	440	49	194	28	321	306	243	106	236	81	206	495	233	365	489	205	102	324	
	22	421	83	276	356	11	451	367	400	374	478	287	8	199	309	196	488	241	109	422	446	N	249	149	183	
	21	455	277	447	294	460	68	451	345	138	295	449	142	338	E	153	5	492	281	t e	127	255	314	85	337	DIO
	20	218	75	104	33	360	142	490	G	107	305	17	201	448	242	363	437	254	249	250	433	234	228	425	71	SK II
	19	36	332	339	400	493	189	364	180	256	470	438	218	453	230	274	472	187	74	103	375	312	438	495	344	
	18	176	65	122	35	407	204	480	324	99	340	482	322	352	M	347	171	430	13	420	158	213	393	91	380	
	17	40	128	462	167	257	134	192	195	7	139	389	222	175	151	302	55	277	3	350	27	78	335	455	355	
	16	257	450	501	258	224	258	372	51	440	147	303	326	151	76	498	321	342	317	к	251	289	381	282	209	
	15	251	333	A	236	437	278	168	329	21	F	295	477	285	456	212	101	221	430	319	320	232	399	200	308	
3	14	357	120	46	397	391	332	54	265	361	476	293	417	340	59	373	345	362	159	491	164	413	î	376	423	
Ro	13	483	131	N	92	219	350	141	454	90	253	325	133	143	66	165	377	486	97	53	288	270	166	24	82	
	12	87	14	432	328	415	238	246	271	406	61	474	259	18	211	358	436	169	86	117	269	290	108	427	170	
	11	432	57	22	327	с	98	392	264	402	474	233	310	193	439	156	390	426	476	144	112	469	379	15	140	
	10	80	385	398	52	269	341	497	182	296	351		D	419	487	341	217	124	329	436	116	386	A	41	346	
	9	161	431	291	315		459	403	172	457	413	241	161	299	323	211	471	30	263	64	370	444	191	132	84	
	8	146	318	181	56	307	443	299	363	396	26	113	123	408	136	280	208	366	210	298	29	58	334	4	202	
	7	260	366	130	358	E	B	160	503	1	412	216	266	404	114	349	73	219	283	498	110	214	E	252	418	OCA
	6	247	207	100	157	100	442	190	42	974	410	210	224	216	225	155	162	200	467	466	242	447	227	205	211	
	5	252	2201	428	294	220	207	16	145	05	70	255	472	310	459	224	20	500	202	400	24	495	209	400	307	
	3	475	400	420	204	520	207	10	094	90	10	450	4/2		400	331	39	000	223	403	105	425	290	433	321	
	4	4/5	130	435	220	02	290	107	234	69	403	453	103	141	31	10	429	220	44	401	105	401	100	00	45	
	3	203	229	344	452	6/	100	330	286	50	383	219	292	198	19	99	202	212	217	390	247	1/4	445	464	119	
	2	3/8	48	414	1/9	312	63	186	225	395	424	4/3	M	244	195	460	129	115	434	2	165	221	94	11	11/	
	1	431	415	K	200	174	185	499	164	121	484	93	5	170	313	441	42	261	402	47	237	328	23	428	20	
		1	2	3	4	5	6	1	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	

Column

Source: K. L. Mathews and J. Crossa, 2022

Sparse phenotyping

- Sparse phenotyping refers to early-stage multi-environment breeding trials in which not all genotypes of interest are grown in each environment
- Using genomic-enabled prediction, the non-observed genotype-in-environment combinations can be predicted.
- In sparse test crossing, the genomic relationship matrix (GRM) is used to for prediction

- Total number of Stage 1 entries = 928
- # Checks = 4
- # entries evaluated in all sites = 52
- # Entries to be evaluated in sparse design (928-52 = 876)
- # entries evaluated at one of the three site (876/3 = 292)

Env1	Env2	Env3	Total
52	52	52	
292			
	292		
		292	
4	4	4	
348	348	348	
348	348	348	932
2	2	2	2
1	1	1	3
696	696	696	2,088
3480	3480	3480	10,440
	Env1 52 292 4 348 348 2 2 1 696 3480	Env1 Env2 52 52 292 292 4 4 348 348 348 348 2 2 1 1 696 696 3480 3480	Env1Env2Env3525252292292292444348348348348348348222111696696696348034803480

General Breeding Scheme in CIMMYT maize

Check Strategy at CIMMYT

- Rolling checks (current) are recently announced hybrids after Stage 5 testing.
- Abotic stress tolerant checks: used only under managed stress environments (drought, low N).
- Disease trait checks
- Cross-cutting check: Maturity checks
- Check connectivity across years ensured to facilitate analysis of genetic trends in CIMMYT maize breeding pipelines.

Summary

- Experimental units are the physical entity which can be assigned, at random, to a treatment.
- We need replication to quantify the natural variation between experimental units (higher replication leads to increased precision of estimated effects).
- If experimental units are fully homogeneous (almost never the case), treatments can be randomly assigned to experimental units.
- We use blocks to restrict the randomization, forming more homogeneous groups of experimental units.

Thank you for your interest!