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Dataset The datasets were sourced from Southern Africa countries namely Malawi, Mozambique, South Africa, and Zimbabwe where recorded 
historical rainfall data was available. In each country different meteorological stations were selected and were then categorized into coastal, 
sub-humid and semi-arid zones based on agro-ecological regions. The following information was collected for each meteorological service station; 
country, meteorological service station name, agro-ecological region, year, recorded rainfall, and stations geographical coordinates (Data S1).  
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Abstract
Analysis of hydro-climatological time series and spatiotemporal dynamics of me-
teorological variables has become critical in the context of climate change, espe-
cially in Southern African countries where rain-fed agriculture is predominant. 
In this work, we compared modern unsupervised time series and segmentation 
approaches and commonly used time series models to analyse rainfall regime 
changes in the coastal, sub-humid and semi-arid regions of Southern Africa. 
Rainfall regimes change modelling and prediction inform farming strategies es-
pecially when choosing measures for mixed crop–livestock farming systems, as 
farmers can decide to do rainwater harvesting and moisture conservation or sup-
plementary irrigation if water resources are available. The main goal of this study 
was to predict/identify rainfall cluster trends over time using regression with hid-
den logistic process (RHLP) or hidden Markov model regression (HMMR) sup-
plemented by autoregressive integrated moving average (ARIMA) and Facebook 
Prophet models. Historical time series rainfall data was sourced from meteoro-
logical services departments for selected site over an average period of 55 years. 
Commonly used approaches forecasted an upward rainfall trend in the coastal 
and sub-humid regions and a declining trend in semi-arid areas with high vari-
ability between and within seasons. For all sites, Ljung-Box Test Statistics sug-
gested the existence of autocorrelation in rainfall time series data. Prediction 
capabilities were investigated using the root mean square error (RMSE), mean 
absolute error (MAE) and mean absolute percentage error (MAPE) which indi-
cated not much difference between ARIMA and Facebook Prophet models. RHLP 
and HMMR offered a unique clustering and segmentation approach examining 
between and within-season rainfall variability. A maximum of 20 unique rainfall 
clusters with similar trend characteristics were determined as going beyond this 
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1   |   INTRODUCTION

Rainfall is one of the most limiting factors in rain-fed 
farming systems of Africa, since it determines availability 
of soil moisture required for crop productivity (Mkuhlani 
et al., 2018; Mlenga, 2016; Nyagumbo et al., 2020). High 
rainfall variability has severe implications for food pro-
duction and livelihoods (Muktar et al., 2020). The amount 
and distribution of rainfall determines suitability of crop 
types and varieties and related agronomic management 
at different locations (Babaousmail et al.,  2021). Low or 
sub-optimal rainfall cause agricultural drought that re-
tard plant growth and reduce yields (Su et al., 2021), while 
extremely high rainfall events cause floods that damage 
crops (Guhathakurta & Rajeevan, 2008). The distribution 
of the global rainfall is shifting as our climate changes 
resulting in wet areas becoming wetter, dry areas be-
coming drier, storms becoming more intense and all this 
leading to more unpredictable weather around the world 
(Precipitation Measurement Missions, 2020). Much of the 
Southern Africa's population is exposed to climate change 
impacts, including changes in the frequency and severity 
of droughts, heat waves and cyclones (Shah et al., 2021; 
Su et al.,  2021). Climatic extremes with adverse effects 
on crops and ecosystems include droughts, flooding, 
hailstorms, heat waves and frost or their combinations 
and these have significant effect on structure, functions, 
land use patterns and livelihoods in agroecosystems 
(Adhikari et al., 2015). Accurate prediction of rainfall pat-
tern changes is particularly important in regions such as 
Southern Africa where people are highly exposed and sen-
sitive to environmental changes (Twenefour et al., 2018). 
In fact, understanding the spatial and temporal patterns 
of climate change and variability is a key step towards de-
signing and targeting appropriate adaptation strategies.

Rainfall forecasting has commonly been done using 
traditional methods that employ statistical techniques 
such as ARIMA models, Fuzzy Time Series (FTS), Prophet 

and Theil's Regression. Among those methods, ARIMA 
and Prophet were the most used because of less forecast-
ing and prediction errors based on root mean square error 
(RMSE), Mean absolute error (MAE),and mean absolute 
percentage error (MAPE). More recently, emphasis was 
put on the modelling of time series as a tool to improve 
the management and forecasting of the earth's meteo-
rological and hydrological resources, including rainfall 
patterns (Asfaw et al.,  2018). Time series represents a 
dynamic measure of a physical process over a given pe-
riod and may be discrete or continuous (Singh, 2018). It is 
becoming more difficult to predict rainfall changes using 
traditional time series models, hence the need for modern 
approaches. While all the numerous advanced tools and 
techniques are employed for data analysis such as machine 
learning (ML), Internet of Things (IoT) and others, one 
of the techniques frequently preferred for analysing such 
data is statistical time series (Babaousmail et al.,  2021). 
Time series algorithms are used extensively for analysing 
and forecasting time-based data such as rainfall (Wim-
hurst & Greene,  2021). However, given the complexity 
of other factors apart from time, ML has emerged as a 
powerful method for understanding hidden complexities 
in time series data and generating good forecasts (Zhang 
et al., 2021). Furthermore, examining the spatiotemporal 
dynamics of meteorological variables in the context of 
changing climate, particularly in Southern African coun-
tries where rain-fed agriculture is predominant, is vital to 
assess climate-induced changes and suggest feasible adap-
tation strategies (Asfaw et al., 2018). The commonly used 
time series models include the ARIMA and the Prophet 
which was developed by Facebook to manage extreme 
events and other external circumstances such as effects of 
holiday (Akdag & Bozma, 2021; Khayyat et al., 2021).

In this study, two approaches are suggested to sup-
plement the traditional models in analysing com-
plex rainfall trends that are currently being witnessed 
in Southern Africa. Regression with hidden logistic 

brought non-significant difference to regime changes. A clear trend was exhibited 
from 1980 going backwards as compared to recent years signifying how unpre-
dictable is rainfall in Southern Africa. The unsupervised approaches predicted 
a clear cluster trend in coastal than in sub-humid and semi-arid and the perfor-
mance was assessed using Akaike information criteria and log-likelihood which 
showed improvement in prediction power as the number of segmentation clus-
ters approaches 20.

K E Y W O R D S

ARIMA, coastal, Facebook Prophet, hidden Markov model regression, regression with hidden 
logistic process, semi-arid, sub-humid

 20496060, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/gdj3.228 by C
ochrane M

exico, W
iley O

nline L
ibrary on [06/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



      |  3CHIPINDU et al.

process (RHLP) and hidden Markov model regression 
(HMMR) are powerful tools in modelling time series 
and are classified as unsupervised ML approaches as 
they can analyse and cluster unlabelled time series data 
(Akdag & Bozma, 2021). Hidden Markov model (HMM) 
offers a natural tool for dealing with one of the funda-
mental problems in stochastic modelling (Chamroukhi 
et al., 2011). The source of strength of the HMM seems 
to be due to its ability to acknowledge the relationships 
between changing regimes on a short-term basis, one 
could adequately model the observed data by a homo-
geneous process (Huang et al., 2018). The second source 
of strength is their exceptional ability to incorporate 
structural feature of the phenomena under study into 
a structural feature of the model. The topology of the 
HMM (the number of states, the transition matrix struc-
ture and observed sequence distributions) is designed 
to incorporate as many features of the observed pro-
cess as the underlying science can justify (Chamroukhi 
et al.,  2009). The RHLP is a new approach for signal 
parameterization in the context of the rainfall regime 
changes (Chamroukhi et al.,  2009). This approach is 
based on a regression model incorporating a discrete 
hidden logistic process or abrupt switching between 
polynomial regressive components overtime (Fridman 
& Angeles, 2010).

In 2008, the WCRP Working Group on Coupled Mod-
elling (WGCM), endorsed the CMIP5 (CMIP Phase 5) 
protocol (Di Luca et al., 2020), which defined a set of 35 
model experiments designed to be useful in: (a) assess-
ing the mechanisms responsible for model differences in 
poorly understood feedbacks associated with carbon cycle 
and with clouds, (b) examining climate predictability and 
exploring the ability of the models to predict climate on 
decadal time scale and (c) determining why similarly 
forced models produce a range of responses. However, 
several studies revealed that CMIP models systematically 
exaggerate the magnitude of daily rainfall anomalies, as 
they are designed to suit decadal hindcasts and predictions 
simulations, long-term simulations, and atmosphere-only 
(prescribed SST) simulations for computationally de-
manding models (Di Luca et al., 2020; Lei et al., 2023). The 
application of unsupervised ML time series approaches 
supplement CMIP models, as they do not require labelled 
dataset. As a replacement for that, the models are in such 
a way that they themselves recognize the hidden patterns 
and insights from the given time series data (Atiqul Haq 
et al., 2021). Unlike, other commonly used time series 
models, the unsupervised ML approach clusters the time 
series according to the trend similarities which makes it 
easy to identify extreme events which largely contribute to 
biased predictions or simulations and moreover, they are 
not guided by several assumptions.

This study was designed to explore the use of modern 
unsupervised learning approaches in analysing and pre-
dicting rainfall trends in coastal, sub-humid and semi-arid 
regions of Southern Africa. Rainfall regimes change mod-
elling and prediction help in decision making especially 
when choosing adaptation measures for mixed crop–
livestock farming systems of southern Africa, as well as 
sub–Saharan Africa. The study focussed on (a) assessing 
RHLP and HMMR models prediction accuracy of rainfall 
regime/cluster changes in Southern Africa over a given 
period was assessed (b) evaluating the effectiveness of the 
proposed models in clustering historical frequency rain-
fall regime changes as compared to specific predictions 
offered by ARIMA and Prophet models and (c) testing 
the prediction and clustering power of each of the pro-
posed approach in understanding the fluctuating rainfall 
regimes in Southern Africa. The specific objectives of this 
study were (a) to define/identify a shift in rainfall trends 
overtime using the modern recommended approaches 
in comparison with the traditional model and (b) to rec-
ommend the best models that can handle the complexity 
of rainfall regime changes. The accuracy level of the ML 
models used in predicting rainfall based on historical data 
has been one of the most critical concerns in hydrolog-
ical studies. An accurate ML forecasting model can give 
early alerts of severe weather to help prevent natural di-
sasters and destruction. Hence, there is need to develop 
ML algorithms.

2   |   MATERIALS AND METHODS

2.1  |  Study sites

The analysis mainly focused on four Southern Africa 
countries namely Malawi, Mozambique, South Africa and 
Zimbabwe where historical rainfall data were available. 
In each country, different meteorological stations were se-
lected and were then categorized into coastal, sub-humid 
and semi-arid zones based on agro-ecological regions. 
This category guided the analysis of the gathered rainfall 
data as it was based on these major classifications. Table 1 
and Figure 1 below summarize the geographical informa-
tion of the selected sites and the years considered in the 
analysis. Historical rainfall data was measured by relevant 
meteorological services departments in different sites.

2.2  |  Statistical analysis

The analysis was conducted in R version 4.1.0 (2021-
05-18) using the samurais' package which is a tool-
box including many original and flexible user-friendly 
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statistical latent variable models and efficient unsu-
pervised algorithms to segment and represent time 
series data (univariate or multivariate), and more gen-
erally, longitudinal data, which include regime changes 
(Chamroukhi et al., 2013). To generalize the measured 
rainfall time series data in terms of skewness, kurtosis 
and existence of extreme events, probability distribu-
tions were plotted for each site. The following are major 
statistical approaches used to answer the raised research 
questions.

2.2.1  |  Autoregressive integrated moving 
average (ARIMA)

The autoregressive model was used as a traditional time 
series approach in modelling the rainfall historical pat-
terns in the costal, sub-humid and semi-arid regions of 
Southern Africa. A prediction period of 50 years was 
considered to be realistic. The approach was imple-
mented first before the un-supervised machine learning 
algorithms to get a general understanding to the rainfall 

T A B L E  1   Geographical information of the selected sites and the years considered in the analysis.

Country Station Years Latitude Longitude Altitude (m) Region

Zimbabwe Harare 1963–2001 −17.72 31.02 1475 Sub-humid

Marondera 1952–2000 −18.93 31.54 1658 Sub-humid

Bulawayo 1931–2001 −20.16 28.61 1356 Semi-arid

Matopos 1940–2015 −20.51 28.44 1347 Semi-arid

West Nich. 1963–2001 −21.06 29.36 864 Semi-arid

Beitbridge 1952–2001 −22.21 29.99 462 Semi-arid

Malawi Chitala 1948–1999 −13.68 34.25 606 Semi-arid

Chitedze 1981–2013 −13.98 33.64 1100 Sub-humid

Dedza 1959–1999 −14.32 34.25 1632 Sub-humid

Mozambique Chimoio 1952–2012 −19.25 33.43 693 Sub-humid

Pemba 1952–2005 −12.59 40.52 70 Coastal

Quelimane 1961–2008 −17.86 36.87 5 Coastal

Xai Xai 1952–1989 −25.09 33.53 2 Coastal

South Africa Harmony 1905–2000 −23.08 29.85 517 Sub-humid

Levubu 1966–2004 −23.08 30.28 706 Sub-humid

Mertz 1905–2000 −26.5 28.36 1521 Sub-humid

Polokwane 1961–2006 −23.73 29.59 1194 Sub-humid

F I G U R E  1   Map of part of southern 
Africa showing agro-ecological regions 
of the meteorological stations used in the 
study.
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      |  5CHIPINDU et al.

trends. An autoregressive integrated moving average 
(ARIMA) is a statistical analysis model that uses time 
series data to either better understand the dataset or to 
predict future trends (Wang et al.,  2014). A statistical 
model is autoregressive if it predicts future values based 
on past values (Shao et al., 2021). ARIMA model assume 
that past values have some residual effect on current or 
future values, and it is generally given by the following 
formula.

Yt and Yt−1 represent the rainfall values in the current 
period and 1 period ago, respectively. �t and �t−1 are the 
error terms for the same two periods. ∅1 and �1, express 
what parts of the value Yt−1 and error �t−1 last rainfall pe-
riod are relevant in estimating the current one.

Ljung-box test statistic
The Ljung-box test statistic was implemented to assess if 
a group of autocorrelations of the rainfall historical time 
series are different from zero that is if autocorrelation ex-
ists (Kim et al., 2004).

The Ljung-Box test uses the following hypotheses:

•	 H0: The residuals are independently distributed (the 
model does not exhibit lack of fit)

•	 H1: The residuals are not independently distributed; 
they exhibit serial correlation (the model exhibits lack 
of fit)

As a rule of thumb, we would like to fail to reject the 
null hypothesis that is the residuals are independently dis-
tributed (Burns, 2002). If the p-value of the test is greater 
than 0.05, it means the residuals for rainfall time series 
model are independent.

2.2.2  |  Facebook Prophet model

To further understand the general rainfall trend, the 
Prophet model developed by Facebook was used to sup-
plement the ARIMA approach. Understanding that some 
of the extreme rainfall events are because of cyclones, 
implementing this approach was an appropriate method 
to handling rare events and give a better prediction. The 
model is based on a decomposable additive model where 
nonlinear trends are fit with seasonality, and it also con-
siders the effects of rare events (Hossain et al., 2021). In 
general, it is given by the formula:

where, y(t) = future rainfall values, g(t) = rainfall trend 
changes that do not repeat, s(t) = repeated seasonal changes, 

h(t) = irregular changes like cyclones and �i = leftover unique 
errors that cannot be explained.

2.2.3  |  ARIMA and Facebook Prophet 
performance evaluation

To evaluate the performance of ARIMA and Facebook 
Prophet models, three major statistics were used namely 
root mean square error (RMSE), mean absolute error 
(MAE) and mean absolute percentage error (MAPE) 
(Luo et al., 2021). The RMSE is a quadratic scoring rule 
which measures the average magnitude of the error of 
a model in predicting quantitative data. The lower the 
RMSE, the better a given model can fit a dataset. The 
MAE measures the average magnitude of the errors in 
a set of forecasts, without considering their direction 
and it is the average over the verification sample of the 
absolute values of the differences between forecast and 
the corresponding observation. The MAE is a linear 
score which means that all the individual differences 
are weighted equally in the average. The mean absolute 
percentage error (MAPE) is a measure of how accurate 
a forecast system is. It measures this accuracy as a per-
centage and can be calculated as the average absolute 
per cent error for each time minus actual values divided 
by actual values.

2.2.4  |  Regression with hidden logistic 
process (RHLP)

Regression with hidden logistic process is a new approach 
for signal parametrization, which consists of a specific 
regression model incorporating a discrete hidden logis-
tic process. The model parameters are estimated by the 
maximum likelihood method performed by a dedicated 
expectation maximization (EM) algorithm (Landwehr 
et al., 2005). The parameters of the hidden logistic process, 
in the inner loop of the EM algorithm, are estimated using 
a multi-class Iterative Reweighted Least-Squares (IRLS) 
algorithm (Mohan & Fazel, 2010).

Global regression model
The random sequence x =

(

x1, … , xn
)

 represents the 
rainfall changes of n real observed or recorded rainfall 
observations, where xi is observed at time ti (years). The 
sample was assumed to be generated by the following re-
gression model with a discrete hidden logistic process.

z =
(

z1, … , zn
)

, where zi ∈ {1, … ,K}:

ΔYt = c + �1ΔYt−1 + �1�t−1 + �t

y(t) = g(t) + s(t) + h(t) + �i

(1)xi = �Tzi
ri + �i; i = 1, … ,n
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In this model, �zi is the (p + 1) dimensional coefficients 
vector of a p degree polynomial.

ri =
(

1, ti, … ,
(

ti
)p
)T Is the time-dependent (p + 1)-​

dimensional covariate vector associated to the parameter 
�zi

 and the�i are independent random variables distributed 
according to a Gaussian distribution with zero mean and 
variance �2zi (Chamroukhi et al., 2009).

The hidden logistic process
The probability distribution of the process z =

(

z1, … , zn
)

 
that allows the switching from one regression model to an-
other is defined. The proposed hidden logistic process sup-
poses that the variables zi, given the vector t =

(

t1, … , tn
)

 , 
are generated independently according to the multino-
mial distribution M

(

1,�i1(w), … ,�iK (w)
)

, where;

Is the logistic transformation of a linear function 
of the time-dependent covariate? vi =

(

1, ti, … ,
(

ti
)q
)T, 

wk =
(

wko, … ,wkq
)T is the (q + 1) dimensional coefficients 

vector associated to the covariate vi and w =
(

w1, … ,wk
)

 . 
Thus, given the vector t = (t1, … , tn), the distribution of z 
can be written as:

where zik = 1 if zi = k, that is when xi is generated by the kth 
regression model, and 0 otherwise.

2.2.5  |  Hidden Markov model regression 
(HMMR)

Hidden Markov model regression (HMMR) is an ex-
tension of the hidden Markov model (HMM) to regres-
sion analysis. We assume that the parameters of the 

regression model are determined by the outcome of a 
finite-state Markov chain and that the error terms are 
conditionally independent normally distributed with 
mean zero and state-dependent variance (Chamroukhi 
et al., 2009; Lal & Bhat, 1988). We consider the problem 
of maximum likelihood estimation of the HMMR pa-
rameters and develop analogues for the methods used in 
HMM's for our regression case. Hidden Markov model 
(HMM).

The Markov model was defined as 
{

Yt
}

 the observed 
sequence of an HMM process there exist a Markov chain 
{

Qt
}

 on the state space S = (S1, … , Sn) and a cumulative 
distribution function F1, … ,FN (Gupta, 2011) such that:

2.2.6  |  RHLP and HMMR model evaluation

Two major statistics were used to evaluate the models in 
determining the rainfall regime changes over time namely, 
Log-likelihood and Akaike's information criterion (AIC).

Log-likelihood
The likelihood ratio test assesses the goodness of fit of 
competing statistical models based on the ratio of their 
likelihoods, specifically one found by maximization over 
the entire parameter space and another found after impos-
ing some constraint (Shimodaira, 2000). The statistics was 
used to assess the changes in goodness of fit of the models 
at different clusters.

Akaike's information criterion
The Akaike information criterion (commonly referred to 
simply as AIC) is a criterion for selecting among nested 
statistical models. The AIC was used as an estimated 
measure of the quality of each of the available time series 
models as they relate to one another for a certain change 
in rainfall over time, making it an ideal method for model 
cluster selection (Akaike, 2011).

2.2.7  |  RHLP and HMMR implementation 
in R

The models computation was implemented in R as follows:

where, emHMMR/RHLP implements the EM (Baum-
Welch) algorithm to fit a HMMR or RHLP model, X = nu-
meric vector of length m representing the covariates/
inputs (years) (x1, …, xm), Y = numeric vector of length 
m representing the observed response/output (rainfall) 
(y1, …, ym), K = the number of regimes/segments (HMMR 
components), p = the order of the polynomial regression, 
which is optional, n_tries = number of runs of the EM algo-
rithm, max_iter = The maximum number of iterations for 

(2)�iK(w) = p
�

zi = k;w
�

=
e(w

T
k vi)

∑K
l=1 e

(wT l vi)

(3)p(z;w) =

n
�

i=1

K
�

k=1

�

e(w
T
k vi)

∑K
l=1 e

(wT l vi)

�zik

P
(

Y1 ≤ c1, … ,Yt ≤ cT �Qt = Si
)

= P
(

Y1 ≤ c1, … ,Yt−1 ≤ ct−1,Qt = Si
)

Fi
(

ct
)

.P
(

Yt+1 ≤ ct+1, … ,YT ≤ cT �Qt = Si
)

.

emHMMR∕emRHLP (X ,Y ,K , p = 3,n_tries = 1,max_iter = 1500, threshold = 1e − 06, verbose = FALSE∕TRUE)
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      |  7CHIPINDU et al.

the EM algorithm, threshold is a numeric value specifying 
the threshold for the relative difference of log-likelihood 
between two steps of the EM as stopping criteria, and ver-
bose is logical value indicating whether values of the log-
likelihood should be printed during EM iterations.

3   |   RESULTS AND DISCUSSION

3.1  |  Measured rainfall distributions

In sub-humid sites, the rainfall distributions are not per-
fectly symmetrical with the right tail more prolonged 
than the left and that is skewedness greater than zero 
or positively skewed as shown in Figure 2a below. The 

frequency of the distributions mostly lies between 450 
and 1000 mm and the mean, median and mode are de-
fined within this range. In Dedza and Chitedze the 
rainfall distributions are approximately symmetrical 
(mesokurtic), unlike in Chimoi, Levubu, Harare and 
Marondera where the rainfall is unevenly distributed 
and suggest the possibility of extreme rainfall events. In 
general, the sub-humid sites distributions are leptokur-
tic indicating a positive excess kurtosis and this suggests 
that this agro-ecological region is prone to extreme or 
excess rainfall. Excess rainfall poses challenges in crop 
production including waterlogging in cropping systems 
under conventional systems and improved practices 
such as conservation agriculture (Mkuhlani et al., 2018; 
Nyagumbo et al., 2020; Wall et al., 2013).

F I G U R E  2   Sub-humid (a), semi-arid (b) and coastal (c) recorded rainfall distribution plots (dotted lines indicate the average rainfall).
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8  |      CHIPINDU et al.

Furthermore, in semi-arid regions the average rain-
fall is below 500 mm compared to sub-humid and 
coastal areas (Figure 2b). The distributions indicate pos-
itive skewness with heavy tails on the right which sug-
gest extreme rainfall data points though the peakedness 
across all the semi-arid site in the study is similar. Ex-
treme rainfall events occur through late season cyclones 
and events such as the El Nino as observed during the 
early 2000s (WFP, 2016). Livestock and dry land cereals 
(sorghum and millet) production are the major agricul-
tural activities viable in semi-arid regions as rainfall is 
highly variable (Prasad & Staggenborg, 2011). Minimum 
tillage and mulching are other conservation agriculture 
techniques which can be practised in these areas as they 
help to conserve moisture.

In coastal areas, the rainfall distributions are unique 
and unevenly distributed with heavy tails which suggest 
several extreme rainfall events over 1500 mm in Pemba 
and Quelimane (Figure  2c). All the distributions are 
positively skewed with an average rainfall between 800 
and 1000 mm. In general, understanding the rainfall dis-
tributions gave an insight about the effectiveness of the 
suggested time series approaches in modelling the data. 
Prophet models, HMMR and RHLP offered a special way 

of handling extreme rainfall events as observed in the dis-
tribution plots. Some conservation agriculture systems 
such as intercropping with different legumes gives better 
yield when the rainfall is excessive especially in coastal re-
gions (Nyagumbo et al., 2020).

3.2  |  RIMA and Facebook Prophet

In the coastal and sub-humid regions of Southern Af-
rica rainfall regime change ranges between 600 mm and 
800 mm as suggested by the forecasted values (Figure 3). 
Rainfall shows large year-to-year variations especially 
between 1980 and 2000. Although the actual rainfall 
for both models fluctuated from below 400 mm to above 
1000 mm in some cases, the predicted values gave a 
uniform range estimated between 600 and 800 mm and 
slightly above after year 2000. The Facebook Prophet 
model forecasted an upward rainfall trend for the coastal 
regions from 2000 to 2050 but with a low probability of 
exceeding 1000 mm. A similar trend is also observed in 
the sub-humid regions where large variability is within 
and between seasons as indicated by the actual rain-
fall trend line while the forecasted trend line exhibited 

F I G U R E  3   ARIMA and Facebook Prophet models actual and predicted rainfall trend based on a 50-year predictions period.
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      |  9CHIPINDU et al.

a slight increase in rainfall across years. However, the 
trend is totally different in the semi-arid regions of 
southern Africa as both the actual and forecasted rain-
fall shows a declining trend to less than 400 mm cross 
years.

The observed trends are supported by previous stud-
ies which predicted an increase in rainfall trend in 
sub-humid and coastal regions but a declining trend 
in semi-arid regions (Strauch et al.,  2018). As rainfall 
trend is the major climate change indicator in most of 
the Southern Africa’ regions with large seasons and 
across seasons variability, agriculture activities or prac-
tices must be adjusted incorporating adaptation strate-
gies to curb the upwards and declining rainfall change 
effects on crop and livestock production (Adimassu & 
Kessler,  2016). Coastal areas are mostly threatened by 
rising sea levels and more intense cyclones, facing more 
crop-damaging heat waves, pests and flooding (Kyei-
Mensah et al.,  2019). Preserving vital ecosystems and 
species becomes mandatory as the rising seas threaten 
coastal barrier reefs, which protect communities from 
storm surges and wetlands, which filter impurities from 
water. A declining predicted rainfall trend in semi-arid 
regions suggest that conserving water resources remains 
important, as water shortages have wide-ranging conse-
quences. For example, as sources of water used for ir-
rigation dry up, the costs of producing food could rise. 

Lower water levels and higher temperatures in streams 
and rivers could diminish the capacity of hydropower 
and cause the collapse of some fisheries. Water prices 
could rise not only for farmers but also for industry and 
homeowners, especially in areas where growing pop-
ulations are already putting stress on water resources, 
such as in Southern Africa (Malhi et al., 2020). Adoption 
of conservation agricultural technologies can be one of 
the important practices to curb the effects of high rain-
fall variability between and within season (Adimassu & 
Kessler,  2016). In semi-arid regions conservation agri-
culture components such mulching can contribute pos-
itively towards crop productivity through yield increase. 
Drought-tolerant hybrid crop varieties that are resilient 
to climate shocks must be a priority to households or 
farmers in the agriculture space.

A difference in the performance of the two models was 
observed in all the study sites across the three regions of 
Southern Africa (Table 2). As a rule of thumb, the lower 
the RMSE and MAE the better the model prediction. The 
performance evaluation results suggested that the ARIMA 
and Prophet models predict the rainfall changes with a 
similar accuracy in some cases as most of the computed 
statistics are in the same range. On average, the Face-
book Prophet is better in predicting rainfall trend across 
agro-ecological regions compared with the ARIMA. This 
might be attributed to the effectiveness of the model in 

T A B L E  2   Root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) evaluating the 
prediction performance of both the ARIMA and Facebook Prophet models in different study sites within the semi-arid, sub-humid and 
coastal regions of Southern Africa.

Regions Site

ARIMA Prophet

No of yearsRMSE MAE MAPE RMSE MAE MAPE

Semi-Arid Bulawayo 193.675 152.991 0.364 178.073 144.419 0.343 71

Chitala 220.954 163.394 0.208 221.302 162.808 0.207 52

Chokwe 161.901 138.409 0.417 161.734 134.582 0.414 35

Matopos 187.382 146.560 0.367 190.665 152.613 0.379 76

W. Nicholson 204.751 166.495 0.616 163.479 135.260 0.482 39

Sub-humid Chimoio 280.859 228.756 0.311 285.272 230.936 0.312 61

Chitedze 163.814 131.919 0.168 163.814 131.913 0.168 33

Dedza 136.100 106.067 0.126 138.017 104.650 0.125 41

Harare 219.086 173.302 0.295 219.589 174.831 0.298 39

Luvebu 376.071 297.305 0.564 377.106 297.521 0.564 39

Marondera 225.447 181.633 0.377 226.398 183.036 0.385 49

Mertz 190.936 147.188 0.396 190.992 147.744 0.396 96

Polokwane 108.021 80.246 0.231 109.797 80.018 0.229 46

Coastal Pemba 158.837 116.054 0.192 144.661 107.370 0.171 54

Quelimane 349.372 284.225 0.353 352.070 284.380 0.349 48

Xai Xai 223.714 180.123 0.370 206.622 159.879 0.331 38
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10  |      CHIPINDU et al.

handling extreme events as it was specifically developed 
to manage and take into consideration of the unexpected 
events (Lounis, 2021). Similarities in forecast accuracy of 
the two models pave way for advanced approaches such as 
unsupervised machine learning to investigate the rainfall 
variability.

3.2.1  |  ARIMA model lack of fit test

The results in Figure 4 suggest that the computed Ljung-
Box Test Statistic for all sites across agro-ecologies are 
not significant as the p-values are greater than 0.05. This 
is in line with the ARIMA model assumption that is the 
residuals must be independently distributed as an indi-
cation of lack of serial autocorrelation because rainfall 
is random. The alternative hypothesis is rejected in fa-
vour of the null hypothesis and the conclusion is that the 
ARIMA does not exhibit lack of fit. The ARIMA model 
fitness in modelling historical rainfall regime changes 
was further investigated to this extent as it depends on 
several assumptions compared to Prophet model. While 
the two traditional approaches give a general predic-
tion overview of the time series, they lack the clustering 
and segmentation aspect to understand rainfall regime 
changes and characteristics over time which is offered 
by the HMMR and RHLP. In the face of climate changes, 
prediction within regimes clusters is more accurate than 
using all historical time series data. The autocorrelation 
varies between different clusters and collating differ-
ent cluster characteristics for prediction makes biased 
hence cluster-based prediction can be realistic. Cluster 
inference can make climate shock preparedness more 

accurate and realistic than individual observation pre-
diction (Huang et al., 2018; Table A1).

3.3  |  HMMR and RHLP results

The Hidden Markov model Regression provided a natural 
technique for dealing with one of the fundamental prob-
lems of using stochastic modelling, as many naturally 
generated stochastic processes exhibited temporal heter-
ogeneity that is driven by underlying (but unobservable) 
change in rainfall pattern. Figure  5 shows the original 
against predicted time series, prediction and filtering prob-
abilities across the three agro-ecological regions of South-
ern Africa. The original rainfall patterns are shown in 
black whereas the predicted are represented by the red 
line. In the coastal region where the rainfall in some years 
reached over 1400 mm, the predicted rainfall over time was 
very close to the actual recorded rainfall which was above 
600 mm and between 800 and 1400 mm in most years. 
Changes in rainfall pattern especially in the coastal region 
are quite clear but with a more fluctuating trend which 
makes it difficult to describe with less than 20 clusters. 
In sub-humid region, the rainfall pattern was clear from 
1920 to 1950; however, more changes in pattern transpired 
between 1960 and 2000 with an unpredictable trend. The 
maximum rainfall received in the sub-humid areas does 
not exceed 1200 mm and reaching a minimum of 200 mm 
in some years. In semi-arid region there is no evidence of 
clear and predictable rainfall trend from 1940 to 2000 and 
the received rainfall in most years did not exceed 1000 mm 
with the minimum going down to 200 mm. Predicted 
probabilities indicated that in coastal region the chances 

F I G U R E  4   Ljung-Box Test 
Statistic investigating if residuals for 
Autoregressive Integrated Moving 
Average (ARIMA) model are 
independent. (n.s., not significant) (the 
statistic value is indicated in larger font 
and the corresponding p-values in smaller 
font).
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      |  11CHIPINDU et al.

of receiving the same amount of rainfall are decreasing 
from 0.8 approaching zero over time across different clus-
ters, while there is evidence of constant rainfall patterns in 
sub-humid region with an approximately constant prob-
ability close to 0.8. However, there is a significant decrease 
in the chances of receiving predictable rainfall patterns in 
semi-arid region as the probability decreased from 0.8 to 
approximately zero. Filtering probabilities smoothen the 
trend and indicate better predictability under the sub-
humid compared to coastal and semi-arid conditions. The 
approach offered a better way of understanding the rainfall 
regime changes over time by segmenting the changes in 
different clusters. This helps to understand variability be-
tween and with years compared to the ability of commonly 
used approaches. As rainfall is highly variable especially 
in semi-arid regions as suggested by the results, robust ap-
proaches such HMMR are needed to predict and under-
stand the rainfall changes (Fridman & Angeles, 2010). A 
clear understanding of these rainfall trends can help to 
reduce the effects of excessive precipitation which can de-
grade water quality, harming human health and ecosys-
tems especially in coastal and sub-humid regions were the 
probability of receiving excessive rainfall is high (Malhi 
et al., 2020). Furthermore, in coastal and sub-humid areas 
storm water runoff is always experienced which often in-
cludes pollutants like heavy metals, pesticides, nitrogen 
and phosphorus, can end up in lakes, streams and bays, 

damaging aquatic ecosystems and lowering quality for 
human uses (Arnbjerg-Nielsen et al., 2013).

The regression with hidden logistic process estimated 
process probabilities across different rainfall regimes as 
well as the estimated model and segmentation (Figure 6, 
Table A1). Results of the model indicated the same ex-
hibited trend by the HMMR model with the coastal re-
gion having clear pattern compared to sub-humid and 
semi-arid. Process probabilities suggested a decrease in 
maintaining the same rainfall pattern per cluster over 
time, as the probabilities continue to decrease from 0.8 
to 0. The highest probabilities were observed in 1950–
1970 compared to new and recent years (1990–2000) and 
this suggested that as the years continue to increase, a 
decrease in the rainfall predictability will continue to be 
witnessed in Southern Africa. The yearly rainfall seg-
mentation process continues to be more complicated 
as years increase, especially in sub-humid regions after 
year 2000 more fluctuations were predicted because of 
changes in rainfall patterns. The rainfall pattern direc-
tion in semi-arid region promised to continue being 
less than 100 mm in most years but with unpredictable 
pattern within the maximum and minimum range. The 
results suggested a drastic change in rainfall patterns 
in Southern Africa making it more complicated for or-
dinary time series approach to extract the trend and 
predict the direction. This implies that adoption of new 

F I G U R E  5   Original, predicted time series, prediction probabilities, filtered time series and filtering probabilities of the hidden Markov 
model regression (HMMR) under coastal, sub-humid and semi-arid regions of Southern Africa.
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12  |      CHIPINDU et al.

agriculture practices is a necessity for the Southern Af-
rican countries to remain food secure in the midst of the 
climate change as witnessed by rainfall changes (Adi-
massu & Kessler, 2016).

3.3.1  |  HMMR and RHLP cluster 
observations and estimated rainfall variability

The higher the standard deviation the more variable or 
spread in measured rainfall data. In southern Africa, 
rainfall is highly variable which makes prediction a 
challenge. The maximum number of estimated cluster 
observations in sub-humid is 34 which is the highest 
compared to coastal and semi-arid regions with 8 and 
32, respectively, for HMMR model (Figure  7). RHLP 
model estimated a maximum of 105 cluster observa-
tions in sub-humid, 74 in semi-arid and 39 in coastal. 
Comparing the two models the RHLP model estimated 
the highest number of cluster observations in all agro-
ecologies compared with HMMR. The results also sug-
gest that cluster variability is lower in RHLP model, 
which is less than 20,000 in all agro-ecologies, while 
HMMR estimated cluster variability surpasses 50,000 in 
some the clusters. In general, RHLP proved to be the 
best model to cluster rainfall variability accordingly 
and make some inferences in Southern Africa agro-
ecologies for better informed climate change decisions. 
As reported by Ogallo (1979), rainfall trend analysis in 
Southern Africa showed that most of the annual series 
indicate some forms of oscillations rather than any par-
ticular trend. It is challenging to predict rainfall with a 
high degree of accuracy on long range or seasonal time 

scales over many global regions including Southern Af-
rica (Landman & Beraki, 2010; Lyon & Mason, 2009). 
Southern Africa is subject to high inter-annual rainfall 
variability and the factors influencing this are generally 
understood but vary from location to location. They in-
clude the influence of oceans, both Indian and Atlantic, 
atmospheric air circulations, sea surface temperature 
variations, temperature differences between land and 
oceans, as well as local topographic features and their 
(Muktar et al., 2020). Rainfall variability has been linked 
with various sea surface temperature anomalies (SSTAs) 
in Southern Africa. On the other hand, increased pres-
sure on natural water systems and artificial water stor-
age systems because of a growing population make 
Southern Africa vulnerable to potential changes in the 
hydrological cycle because of global warming, which 
could lead to extremely negative impacts on societies 
within agro-ecologies. Studies on long-term changes 
and variability in rainfall and streamflow are therefore 
of immense interest in South Africa.

3.3.2  |  HMMR and RHLP 
performance evaluation

The changes in log-likelihood as the number of clus-
ters increase are shown in Figure  8. The statistic was 
used to evaluate the goodness of fit of the two suggested 
models HMMR and RHLP per each cluster across the 
three agro-ecological regions. In the coastal region the 
log-likelihood of both models slightly increased as the 
number of suggested clusters increases. As the clusters 
approached 20, the log-likelihood continued to indicate 

F I G U R E  6   Rainfall regimes and process probabilities, estimated model and segmentation of the regression with hidden logistic process 
(RHLP) in coastal, sub-humid and semi-arid regions of Southern Africa.
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      |  13CHIPINDU et al.

a trend of increment, and this suggested that the rainfall 
patterns or regime changes in coastal regions cannot be 
fully explained by less than 20 clusters. In the semi-arid 
region, the change in log-likelihood was between −2000 
and −1500 with a very slight increase in both models. 
Sub-humid region exhibited a slight increase trend 

below −2500 log-likelihood which was less than that 
of the coastal and semi-arid regions. The results sug-
gested that the two suggested models best fit in coastal 
region rainfall changes, while in semi-arid region there 
was a decrease in goodness of fit and even worse under 
the sub-humid regions. In all the three main regions of 

F I G U R E  7   Number of observations and estimated variance in each cluster for both HMMR and RHLP models in coastal, semi-arid and 
sub-humid regions of Southern Africa.

F I G U R E  8   HMMR and RHLP Log-Likelihood and Akaike information criteria (AIC) statistics behaviour as the number of regimes 
(clusters) increases. HMMR, hidden Markov model regression; RHLP, regression with hidden logistic process.
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14  |      CHIPINDU et al.

Southern Africa a lot is happening to rainfall patterns 
which makes it unpredictable, as only 20 clusters failed 
to fully explain the changes.

The AIC exhibited a different trend to that of the log-
likelihood with an exponential decrease under the HMMR 
and a constant trend under the RHLP across all the three 
regions of Southern Africa as shown in Figure 8. The sta-
tistic evaluated the significant differences between the 
rainfall regimes over time. The HMMR model suggested 
that in the coastal region the AIC dropped in the negative 
direction (from −1000 to −1500), in semi-arid region it 
decreased from −2000 to −2500 and from −3000 to −3500 
in the sub-humid region. The RHLP model indicated the 
unresponsiveness of the AIC as the number of clusters 
approached 20, with a slight increment in semi-arid and 
sub-humid regions. As a rule of thumb, the lower the AIC 
the better the model in explaining rainfall pattern at a 
given cluster or regime change. The AIC trend under the 
HMMR indicated that the goodness of the model deterio-
rates as the clusters continued to increase while the RHLP 
trend suggested a slight improvement as the number of 
clusters approached 20 and this indicated that the RHLP 
model has the potential to accurately trace the rainfall 
patterns especially in the sub-humid and semi-arid re-
gions of Southern Africa. There is a significant difference 
in rainfall pattern in the three regions of Southern Africa. 
The models extracted patterns without being supervised, 
that is tracing the natural changes in climate leading to 
unpredictability of rainfall changes.

4   |   CONCLUSION

In this study, we presented a combination of commonly 
used time series approaches (ARIMA and Prophet models) 
and modern unsupervised statistical approaches (HMMR 
and RHLP) for the joint segmentation of rainfall trends vari-
ability in Southern Africa. The application of the suggested 
approaches was based on the historical rainfall data meas-
ured in various locations of Southern Africa. The ARIMA 
and Facebook Prophet models indicated a significant in-
crease of forecasted rainfall in sub-humid and coastal areas 
defined between 800 and 1000 mm. A declining rainfall 
trend was predicted in semi-arid region with variability be-
tween and within years. Similarities in forecast accuracy of 
the ARIMA and Facebook Prophet pave way for advanced 
approaches to investigate the rainfall variability between 
and within seasons. The suggested unsupervised models' 
regression with hidden logistic process (RHLP) and hid-
den markov model regression (HMMR) offered a unique 
clustering approach investigating the rainfall variability 
within seasons. Historical rainfall trends were segmented 
into a maximum of 20 clusters as going beyond this gives 

no further benefit implying cluster predictability especially 
in coastal areas. In semi-arid region the trend continues to 
drastically decline. Rainfall as the major indicator of cli-
mate change continue to be more complicated to predict 
because of high variability hence the need for more robust 
approaches such as unsupervised time series models which 
can categorize it into different clusters and prediction can 
be done at cluster level. Much impact of rainfall variability 
is mainly witnessed in agricultural activities and therefore 
adaptation to new agricultural practices is critical in South-
ern Africa and similar environments. It is very critical for 
meteorological service departments to give farmers ac-
curate forecasted rainfall for seasonal planning purposes. 
Adoption of new practices such as climate smart agricul-
ture technologies, and new hybrid crop varieties remains 
an important option for farmers to remain food secure in 
Southern Africa.

ACKNO​WLE​DGE​MENTS
This study has been embedded into the CGIAR Research 
Programme MAIZE, Flagship Sustainable intensifica-
tion of smallholder farming systems. We acknowledge 
the CGIAR Fund Council and other donors for funding 
to the CGIAR Research Programme MAIZE. We thank 
the meteorological stations from the four countries for 
their contribution in generating rainfall data used in the 
study.

OPEN RESEARCH BADGES

This article has earned Open Data and Preregistered Re-
search Designs badges. Data and the preregistered design 
and analysis plan are available at https://zenodo.org/recor​
d/8412628 or on request from the corresponding author at 
lovemore.datascience@gmail.com

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are avail-
able on request from the corresponding author, lovemore.
datascience@gmail.com. The data are not publicly availa-
ble due to meteorological service departments restrictions 
and policies.

ORCID
Lovemore Chipindu   https://orcid.
org/0000-0001-8023-1105 

REFERENCES
Adhikari, U., Nejadhashemi, A.P. & Woznicki, S.A. (2015) Climate 

change and eastern Africa: A review of impact on major crops. 
Food and Energy Security, 4(2), 110–132. Available from: 
https://doi.org/10.1002/fes3.61

 20496060, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/gdj3.228 by C
ochrane M

exico, W
iley O

nline L
ibrary on [06/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://zenodo.org/record/8412628
https://zenodo.org/record/8412628
mailto:lovemore.datascience@gmail.com
mailto:lovemore.datascience@gmail.com
mailto:lovemore.datascience@gmail.com
https://orcid.org/0000-0001-8023-1105
https://orcid.org/0000-0001-8023-1105
https://orcid.org/0000-0001-8023-1105
https://doi.org/10.1002/fes3.61


      |  15CHIPINDU et al.

Adimassu, Z. & Kessler, A. (2016) ‘Factors affecting farmers’ coping 
and adaptation strategies to perceived trends of declining rain-
fall and crop productivity in the central rift valley of Ethiopia. 
Environmental Systems Research, 5(1), 1–16. Available from: 
https://doi.org/10.1186/s4006​8-016-0065-2

Akaike, H. (2011) Akaike's information criterion. In International 
Encyclopedia of Statistical Science. Available from: https://doi.
org/10.1007/978-3-642-04898​-2_110

Akdag, M. & Bozma, G. (2021) STOK AKI Ş MODEL İ VE 
FACEBOOK PROPHET ALGOR İ TMASI İ LE B İ TCO İ N F 
İ YATI TAHM İ N İ PREDICTION OF BITCOIN PRICE WITH 
STOCK TO FLOW. (March).

Arnbjerg-Nielsen, K., Willems, P., Olsson, J., Beecham, S., Pathirana, 
A., Bülow Gregersen, I. et al. (2013) Impacts of climate change 
on rainfall extremes and urban drainage systems: a review. 
Water Science and Technology, 68(1), 16–28. Available from: 
https://doi.org/10.2166/wst.2013.251

Asfaw, A., Simane, B., Hassen, A. & Bantider, A. (2018) Variability 
and time series trend analysis of rainfall and temperature 
in northcentral Ethiopia: a case study in Woleka sub-basin. 
Weather and Climate Extremes, 19, 29–41. Available from: 
https://doi.org/10.1016/j.wace.2017.12.002

Atiqul Haq, S.M., Islam, M.N., Siddhanta, A., Ahmed, K.J. & 
Chowdhury, M.T.A. (2021) Public perceptions of urban green 
spaces: Convergences and divergences. Frontiers in Sustainable 
Cities, 3, 755313. Available from: https://doi.org/10.3389/
frsc.2021.755313

Babaousmail, H., Hou, R., Ayugi, B., Ojara, M., Ngoma, H., Karim, R. 
et al. (2021) Evaluation of the performance of cmip6 models in re-
producing rainfall patterns over North Africa. Atmosphere, 12(4), 
1–25. Available from: https://doi.org/10.3390/atmos​12040475

Burns, P.J. (2002) Robustness of the Ljung-Box Test and its 
Rank Equivalent. Available from: https://doi.org/10.2139/
ssrn.443560

Chamroukhi, F., Allou Samé, Patrice, Aknin, Gérard Govaert 
(2011) Model-based clustering with hidden Markov model 
regression for time series with regime changes. Proceedings 
of the International Joint Conference on Neural Networks. 
pp. 2814–2821. Available from: https://doi.org/10.1109/
IJCNN.2011.6033590.

Chamroukhi, F., Samé, A., Govaert, G. & Aknin, P. (2009) A re-
gression model with a hidden logistic process for feature ex-
traction from time series. Proceedings of the International Joint 
Conference on Neural Networks, June. pp. 489–496. https://
doi.org/10.1109/IJCNN.2009.5178921.

Chamroukhi, F., Trabelsi, D., Mohammed, S., Oukhellou, L. & 
Amirat, Y. (2013) Joint segmentation of multivariate time series 
with hidden process regression for human activity recognition. 
Neurocomputing, 120, 633–644.

Di Luca, A., Pitman, A.J. & de Elía, R. (2020) Decomposing tempera-
ture extremes errors in CMIP5 and CMIP6 models. Geophysical 
Research Letters, 47(14), 1–10. Available from: https://doi.
org/10.1029/2020G​L088031

Fridman, M. and Angeles, L. (2010) Hidden Markov Model. pp. 
177–194. Available from: https://doi.org/10.1142/97898​14287​
319_0012.

Guhathakurta, P. & Rajeevan, M. (2008) Trends in the rainfall pat-
tern over India. International Journal of Climatology, 28(11), 
1453–1469. Available from: https://doi.org/10.1002/joc.1640

Gupta, K. (2011) Hidden Markov Model. p. 1357. Available from: 
https://doi.org/10.1145/19800​22.1980326.

Hossain, M.M., Anwar, A.H.M.F., Garg, N., Prakash, M. & Bari, 
M. (2021) Monthly Rainfall Prediction for Decadal Timescale 
using Facebook Prophet at a Catchment Level. (September).

Huang, M., Ji, Q. & Yao, W. (2018) Semiparametric hidden Markov 
model with non-parametric regression. Communications in 
Statistics – Theory and Methods, 47(21), 5196–5204. Available 
from: https://doi.org/10.1080/03610​926.2017.1388398

Khayyat, M., Laabidi, K., Almalki, N. & al-zahrani, M. (2021) Time se-
ries Facebook Prophet model and python for COVID-19 outbreak 
prediction. Computers, Materials and Continua, 67(3), 3781–
3793. Available from: https://doi.org/10.32604/​cmc.2021.014918

Kim, E., Ha, J., Jeon, Y. & Lee, S. (2004) Ljung-box test in unit root 
AR-ARCH model. Communications for Statistical Applications 
and Methods, 11(2), 323–327. Available from: https://doi.
org/10.5351/ckss.2004.11.2.323

Kyei-Mensah, C., Kyerematen, R. & Adu-Acheampong, S. (2019) 
Impact of rainfall variability on crop production within the 
Worobong ecological area of Fanteakwa District, Ghana. 
Advances in Agriculture, 2019, 1–7. Available from: https://doi.
org/10.1155/2019/7930127

Lal, R. & Bhat, U.N. (1988) Reduced system algorithms for Markov 
chains. Management Science, 34, 1202–1220. Available from: 
https://doi.org/10.1287/mnsc.34.10.1202

Landman, W.A. & Beraki, A. (2010) Multi-model forecast skill for 
mid-summer rainfall over Southern Africa. International 
Journal of Climatology, 32, 303–314. Available from: https://
doi.org/10.1002/joc.2273

Landwehr, N., Hall, M. & Frank, E. (2005) Logistic model trees. 
Machine Learning, 59, 161–205. Available from: https://doi.
org/10.1007/s1099​4-005-0466-3

Lei, Q. & Sornette, D. (2023) A stochastic dynamical model of slope 
creep and failure. Geophysical Research Letters, 50(11), 1–11. 
Available from: https://doi.org/10.1029/2022G​L102587

Lounis, M. (2021) Predicting active, death and recovery rates of 
COVID-19 in Al- geria using Facebook ’ Prophet model. 
Predicting active, death and recovery rates of COVID-19 in Al- 
geria using Facebook’ Prophet model, (March). Available from: 
https://doi.org/10.20944/​prepr​ints2​02103.0019.v1

Luo, J., Zhang, Z., Fu, Y. & Rao, F. (2021) Time series prediction of 
COVID-19 transmission in America using LSTM and XGBoost 
algorithms. Results in Physics, 27, 104462. Available from: 
https://doi.org/10.1016/j.rinp.2021.104462

Lyon, B. & Mason, S.J. (2009) The 1997/98 summer rainfall season in 
southern Africa. Part II: Model simulations and coupled model 
forecasts. Journal of Climate, 22(13), 3802–3818. Available 
from: https://doi.org/10.1175/2009J​CLI2600

Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M.G., Field, 
C.B. et al. (2020) Climate change and ecosystems: threats, 
opportunities and solutions. Philosophical Transactions of 
the Royal Society, B: Biological Sciences, 375(1794), 20190104. 
Available from: https://doi.org/10.1098/rstb.2019.0104

Mkuhlani, S., Mupangwa, W. & Nyagumbo, I. (2018) Maize yields in 
varying rainfall regimes and cropping systems across Southern 
Africa: A modelling assessment. In: University initiatives in 
climate change mitigation and adaptation. Berlin: Springer 
International Publishing, pp. 203–228. Available from: https://
doi.org/10.1007/978-3-319-89590-1_12

 20496060, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/gdj3.228 by C
ochrane M

exico, W
iley O

nline L
ibrary on [06/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1186/s40068-016-0065-2
https://doi.org/10.1007/978-3-642-04898-2_110
https://doi.org/10.1007/978-3-642-04898-2_110
https://doi.org/10.2166/wst.2013.251
https://doi.org/10.1016/j.wace.2017.12.002
https://doi.org/10.3389/frsc.2021.755313
https://doi.org/10.3389/frsc.2021.755313
https://doi.org/10.3390/atmos12040475
https://doi.org/10.2139/ssrn.443560
https://doi.org/10.2139/ssrn.443560
https://doi.org/10.1109/IJCNN.2011.6033590
https://doi.org/10.1109/IJCNN.2011.6033590
https://doi.org/10.1109/IJCNN.2009.5178921
https://doi.org/10.1109/IJCNN.2009.5178921
https://doi.org/10.1029/2020GL088031
https://doi.org/10.1029/2020GL088031
https://doi.org/10.1142/9789814287319_0012
https://doi.org/10.1142/9789814287319_0012
https://doi.org/10.1002/joc.1640
https://doi.org/10.1145/1980022.1980326
https://doi.org/10.1080/03610926.2017.1388398
https://doi.org/10.32604/cmc.2021.014918
https://doi.org/10.5351/ckss.2004.11.2.323
https://doi.org/10.5351/ckss.2004.11.2.323
https://doi.org/10.1155/2019/7930127
https://doi.org/10.1155/2019/7930127
https://doi.org/10.1287/mnsc.34.10.1202
https://doi.org/10.1002/joc.2273
https://doi.org/10.1002/joc.2273
https://doi.org/10.1007/s10994-005-0466-3
https://doi.org/10.1007/s10994-005-0466-3
https://doi.org/10.1029/2022GL102587
https://doi.org/10.20944/preprints202103.0019.v1
https://doi.org/10.1016/j.rinp.2021.104462
https://doi.org/10.1175/2009JCLI2600
https://doi.org/10.1098/rstb.2019.0104
https://doi.org/10.1007/978-3-319-89590-1_12
https://doi.org/10.1007/978-3-319-89590-1_12


16  |      CHIPINDU et al.

Mlenga, D.H. (2016) Factors Influencing Adoption of Conservation 
Agriculture: A Case for Increasing Resilience to Climate Change 
and Variability in Swaziland Factors Influencing Adoption of 
Conservation Agriculture: A Case for Increasing Resilience to 
Climate Change and Va. (January).

Mohan, K. & Fazel, M. (2010) Iterative reweighted least squares for ma-
trix rank minimization. In 2010 48th annual Allerton conference on 
communication, control, and computing, Allerton 2010. Available 
from: https://doi.org/10.1109/ALLER​TON.2010.5706969

Muktar, A., Elekwachi, W. & Hycienth, N. (2020) Rainfall change detec-
tion in Africa using remote sensing and Gis between 1999–2018. 
Big Data In Water Resources Engineering (BDWRE), 1(2), 52–54. 
Available from: https://doi.org/10.26480/​bdwre.02.2020.52.54

Nyagumbo, I., Mupangwa, W., Chipindu, L., Rusinamhodzi, L. 
& Craufurd, P. (2020) A regional synthesis of seven-year 
maize yield responses to conservation agriculture technolo-
gies in eastern and southern Africa. Agriculture, Ecosystems 
and Environment, 295, 106898. Available from: https://doi.
org/10.1016/j.agee.2020.106898

Ogallo, L. (1979) Rainfall variability in Africa. Monthly Weather 
Review, 107(9), 1128–1132. Available from: https://doi.
org/10.1175/1520-0493(1979)107<1133:rvia>2.0.co;2

Prasad, P.V.V. & Staggenborg, S.A. (2011) Growth and production of 
sorghum and millets. Soils, Plant Growth and Crop Production, 
2, 1–27.

Precipitation Measurement Missions. (2020) Climate change: trends 
and patterns. Washington, DC: National Aeronautics and Space 
Administration (NASA). Available from: https://pmm.nasa.
gov/scien​ce/clima​te-change

Shah, N.V., Patel, Y.S. & Bhangaonkar, P.D. (2021) Assessing im-
pact of climate change on rainfall patterns of Vadodara 
District, Gujarat, India. Journal of Physics: Conference Series, 
1714(1), 12046. Available from: https://doi.org/10.1088/174
2-6596/1714/1/012046

Shao, W., Radke, L. F. and Sivrikaya, F. (2021) Adaptive Online 
Learning for the Autoregressive Integrated Moving Average 
Models. pp. 1–30.

Shimodaira, H. (2000) Improving predictive inference under covari-
ate shift by weighting the log-likelihood function. Journal of 
Statistical Planning and Inference, 90, 227–244. Available from: 
https://doi.org/10.1016/s0378​-3758(00)00115​-4

Singh, P. (2018) Indian summer monsoon rainfall (ISMR) forecast-
ing using time series data: a fuzzy-entropy-neuro based expert 
system. Geoscience Frontiers, 9(4), 1243–1257. Available from: 
https://doi.org/10.1016/j.gsf.2017.07.011

Strauch, A.M., MacKenzie, R.A., Giardina, C.P. & Bruland, G.L. 
(2018) Influence of declining mean annual rainfall on the be-
havior and yield of sediment and particulate organic carbon 
from tropical watersheds. Geomorphology, 306, 28–39. Available 
from: https://doi.org/10.1016/j.geomo​rph.2017.12.030

Su, Y., Gabrielle, B., Beillouin, D. & Makowski, D. (2021) High prob-
ability of yield gain through conservation agriculture in dry 
regions for major staple crops. Scientific Reports, 11(1), 1–9. 
Available from: https://doi.org/10.1038/s4159​8-021-82375​-1

Twenefour, B.K.F., Techie Quaicoe, M. & Baah, E. (2018) Analysis of 
rainfall pattern in the Western Region of Ghana. Asian Journal 
of Probability and Statistics, 1, 1–12. Available from: https://doi.
org/10.9734/ajpas/​2018/v1i32​4538

Wall, P.C., Thierfelder, C., Ngwira, A., Govaerts, B., Nyagumbo, I. 
& Baudron, F. (2013) Conservation agriculture in eastern and 
southern africa. In: Jat, R.A., Sahrawat, K.L. & Kassam, A.H. 
(Eds.) Conservation agriculture: Global prospects and challenges. 
Wallingford, Oxfordshire: CABI, pp. 263–292. Available from: 
https://doi.org/10.1079/97817​80642​598.0263

Wang, H., Liu, L., Qian, Z.(.S.)., Wei, H. & Dong, S. (2014) Empirical 
mode decomposition-autoregressive integrated moving av-
erage: hybrid short-term traffic speed prediction model. 
Transportation Research Record, 2460(1), 66–76. Available 
from: https://doi.org/10.3141/2460-08

WFP (2016) WFPEl Niño situation report1. pp. 1–4. Available from: 
http://docum​ents.wfp.org/stell​ent/group​s/publi​c/docum​ents/
ep/wfp28​1523.pdf

Wimhurst, J.J. & Greene, J.S. (2021) Updated analysis of gauge-
based rainfall patterns over the western tropical Pacific Ocean. 
Weather and Climate Extremes, 32, 100319. Available from: 
https://doi.org/10.1016/j.wace.2021.100319

Zhang, J., Shang, R., Rittenhouse, C., Witharana, C. & Zhu, Z. (2021) 
Evaluating the impacts of models, data density and irregularity 
on reconstructing and forecasting dense Landsat time series. 
Science of Remote Sensing, 4, 100023. Available from: https://
doi.org/10.1016/j.srs.2021.100023

SUPPORTING INFORMATION
Additional supporting information can be found online 
in the Supporting Information section at the end of this 
article.

How to cite this article: Chipindu, L., 
Mupangwa, W., Nyagumbo, I. & Zaman-Allah, M. 
(2023) Unsupervised segmentation and clustering 
time series approach to Southern Africa rainfall 
regime changes. Geoscience Data Journal, 00, 1–17. 
Available from: https://doi.org/10.1002/gdj3.228

 20496060, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/gdj3.228 by C
ochrane M

exico, W
iley O

nline L
ibrary on [06/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1109/ALLERTON.2010.5706969
https://doi.org/10.26480/bdwre.02.2020.52.54
https://doi.org/10.1016/j.agee.2020.106898
https://doi.org/10.1016/j.agee.2020.106898
https://doi.org/10.1175/1520-0493(1979)107%3C1133:rvia%3E2.0.co;2
https://doi.org/10.1175/1520-0493(1979)107%3C1133:rvia%3E2.0.co;2
https://pmm.nasa.gov/science/climate-change
https://pmm.nasa.gov/science/climate-change
https://doi.org/10.1088/1742-6596/1714/1/012046
https://doi.org/10.1088/1742-6596/1714/1/012046
https://doi.org/10.1016/s0378-3758(00)00115-4
https://doi.org/10.1016/j.gsf.2017.07.011
https://doi.org/10.1016/j.geomorph.2017.12.030
https://doi.org/10.1038/s41598-021-82375-1
https://doi.org/10.9734/ajpas/2018/v1i324538
https://doi.org/10.9734/ajpas/2018/v1i324538
https://doi.org/10.1079/9781780642598.0263
https://doi.org/10.3141/2460-08
http://documents.wfp.org/stellent/groups/public/documents/ep/wfp281523.pdf
http://documents.wfp.org/stellent/groups/public/documents/ep/wfp281523.pdf
https://doi.org/10.1016/j.wace.2021.100319
https://doi.org/10.1016/j.srs.2021.100023
https://doi.org/10.1016/j.srs.2021.100023
https://doi.org/10.1002/gdj3.228


      |  17CHIPINDU et al.

A
P

P
E

N
D

IX
 A

T
A

B
L

E
 A

1 
R

eg
re

ss
io

n 
w

ith
 h

id
de

n 
lo

gi
st

ic
 p

ro
ce

ss
 (R

H
LP

) m
od

el
 c

oe
ffi

ci
en

ts
 in

 C
oa

st
al

, s
ub

-h
um

id
 a

nd
 se

m
i-a

ri
d 

re
gi

on
s.

C
lu

st
er

s

C
oa

st
al

Su
b-

hu
m

id
Se

m
i-a

ri
d

C
on

st
an

t
X

1
X

2
X

3
C

on
st

an
t

X
1

X
2

X
3

C
on

st
an

t
X

1
X

2
X

3

Be
ta

 (K
 =

 1)
−

8.
43

E+
04

8.
81

E+
00

1.
44

E−
02

1.
88

E−
06

−
2.

37
E+

05
24

.9
48

9
0.

04
04

13
5.

31
E−

06
2.

30
E+

04
4.

06
E+

01
−

2.
15

E−
02

−
2.

95
E−

06

Be
ta

 (K
 =

 2)
−

2.
25

E+
05

−
1.

08
E+

02
−

2.
04

E−
03

5.
96

E−
05

3.
54

E+
07

−
53

,5
52

.8
27

.0
15

69
−

0.
00

45
4

−
1.

47
E+

07
2.

25
E+

04
−

1.
14

E+
01

1.
94

E−
03

Be
ta

 (K
 =

 3)
−

1.
04

E+
05

4.
01

E+
02

−
3.

25
E−

01
7.

55
E−

05
3.

69
E+

03
−

5.
31

96
3

0.
00

12
07

2.
86

E−
07

−
5.

30
E+

03
4.

55
E+

00
−

6.
35

E−
04

−
1.

72
E−

07

Be
ta

 (K
 =

 4)
2.

00
E+

04
−

1.
06

E+
01

−
5.

46
E−

04
−

2.
04

E−
10

1.
24

E+
07

−
19

,0
25

.8
9.

76
28

69
−

0.
00

16
7

3.
26

E+
07

−
1.

57
E+

05
1.

35
E+

02
−

3.
23

E−
02

Be
ta

 (K
 =

 5)
−

5.
16

E+
05

7.
28

E+
01

1.
17

E−
01

−
9.

37
E−

06
17

37
.6

−
1.

07
84

2
−

1.
6E

−
05

4.
37

E−
07

6.
32

E+
08

−
9.

68
E+

05
4.

94
E+

02
−

8.
40

E−
02

Be
ta

 (K
 =

 6)
−

8.
39

E+
05

−
9.

44
E+

01
1.

47
E−

01
6.

05
E−

05
19

8,
58

0.
8

−
17

.5
69

2
0.

10
77

4
−

7.
6E

−
05

−
5.

56
E+

05
1.

81
E+

02
−

8.
01

E−
03

3.
03

E−
05

Be
ta

 (K
 =

 7)
−

2.
31

E+
04

2.
34

E+
02

−
8.

02
E−

02
−

1.
66

E−
05

−
2.

93
E+

09
4,

43
0,

51
5

−
22

34
.6

0.
37

56
8

−
3.

10
E+

05
−

6.
02

E+
01

3.
87

E−
03

5.
24

E−
05

Be
ta

 (K
 =

 8)
2.

56
E+

06
−

2.
35

E+
03

4.
49

E−
02

2.
50

E−
04

−
1.

08
E+

04
39

5.
65

92
−

0.
06

32
9

−
6.

6E
−

05
8.

50
E+

05
−

7.
57

E+
02

1.
55

E−
01

5.
58

E−
06

Be
ta

 (K
 =

 9)
−

3.
41

E+
04

−
1.

65
E+

02
7.

16
E−

02
1.

02
E−

05
−

1.
90

E+
05

−
11

1.
26

3
0.

03
81

78
3.

28
E−

05
6.

72
E+

05
1.

80
E+

03
−

2.
11

E+
00

5.
19

E−
04

Be
ta

 (K
 =

 10
)

−
7.

24
E+

04
−

2.
87

E−
02

−
1.

09
E−

02
1.

57
E−

05
6.

86
E+

05
17

8.
82

55
−

0.
07

79
1

−
9.

1E
−

05
3.

86
E+

05
−

2.
39

E+
02

7.
15

E−
02

−
2.

43
E−

05

Be
ta

 (K
 =

 11
)

4.
90

E+
05

−
1.

18
E+

02
−

9.
89

E−
02

1.
74

E−
05

3.
94

E+
04

−
1.

74
83

4
0.

01
07

99
−

1E
−

05
−

5.
23

E+
05

2.
62

E+
02

1.
74

E−
01

−
9.

01
E−

05

Be
ta

 (K
 =

 12
)

3.
56

E+
05

−
4.

65
E+

02
8.

29
E−

02
3.

08
E−

05
−

30
,2

32
.8

26
.2

18
95

−
0.

01
28

8
3.

3E
−

06
−

5.
38

E+
05

4.
91

E+
02

−
1.

64
E−

01
3.

07
E−

05

Be
ta

 (K
 =

 13
)

−
6.

74
E+

04
−

4.
37

E+
02

2.
15

E−
01

1.
11

E−
05

42
,1

29
,7

60
−

64
,0

35
.1

32
.4

41
27

−
0.

00
54

8
2.

88
E+

06
−

2.
69

E+
03

4.
90

E−
01

6.
74

E−
05

Be
ta

 (K
 =

 14
)

6.
02

E+
03

3.
84

E+
00

−
5.

37
E−

04
−

1.
31

E−
06

−
23

,3
77

.4
24

.2
05

27
−

0.
00

48
9

−
9.

8E
−

07
1.

12
E+

05
2.

42
E+

02
−

1.
91

E−
01

2.
02

E−
05

Be
ta

 (K
 =

 15
)

2.
58

E+
06

−
8.

44
E+

02
−

5.
46

E−
01

1.
59

E−
04

7.
36

E+
07

−
11

1,
62

2
56

.4
38

83
−

0.
00

95
1

−
8.

10
E+

04
2.

43
E+

02
3.

62
E−

02
−

6.
89

E−
05

Be
ta

 (K
 =

 16
)

−
4.

79
E+

09
7.

22
E+

06
−

3.
63

E+
03

6.
08

E−
01

2.
36

E+
05

49
5.

13
2

−
0.

39
01

7
4.

11
E−

05
−

3.
92

E+
05

8.
15

E+
01

2.
96

E−
02

1.
40

E−
05

Be
ta

 (K
 =

 17
)

1.
57

E+
06

−
4.

08
E+

02
−

3.
50

E−
01

8.
00

E−
05

−
6.

56
E+

04
19

4.
70

08
0.

02
88

44
−

5.
5E

−
05

9.
35

E+
05

−
1.

03
E+

03
2.

20
E−

01
3.

64
E−

05

Be
ta

 (K
 =

 18
)

6.
91

E+
04

1.
84

E+
02

−
5.

32
E−

02
−

2.
80

E−
05

−
7.

68
E+

04
15

.7
55

76
0.

00
58

38
2.

8E
−

06
−

3.
23

E+
03

7.
93

E−
02

2.
03

E−
04

5.
23

E−
07

Be
ta

 (K
 =

 19
)

1.
21

E+
05

1.
30

E+
01

−
3.

68
E−

02
1.

68
E−

07
1,

36
7,

53
9

−
15

42
.9

2
0.

33
16

47
5.

51
E−

05
1.

33
E+

05
1.

03
E+

01
−

2.
02

E−
02

−
1.

06
E−

05

Be
ta

 (K
 =

 20
)

−
3.

51
E+

05
−

6.
87

E+
02

1.
05

E+
00

−
3.

15
E−

04
−

38
5,

97
5.

8
61

9.
82

69
−

0.
10

79
6

−
5.

3E
−

05
−

2.
44

E+
07

3.
72

E+
04

−
1.

89
E+

01
3.

21
E−

03

 20496060, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/gdj3.228 by C
ochrane M

exico, W
iley O

nline L
ibrary on [06/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Unsupervised segmentation and clustering time series approach to Southern Africa rainfall regime changes
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Study sites
	2.2|Statistical analysis
	2.2.1|Autoregressive integrated moving average (ARIMA)
	Ljung-­box test statistic

	2.2.2|Facebook Prophet model
	2.2.3|ARIMA and Facebook Prophet performance evaluation
	2.2.4|Regression with hidden logistic process (RHLP)
	Global regression model
	The hidden logistic process

	2.2.5|Hidden Markov model regression (HMMR)
	2.2.6|RHLP and HMMR model evaluation
	Log-­likelihood
	Akaike's information criterion

	2.2.7|RHLP and HMMR implementation in R


	3|RESULTS AND DISCUSSION
	3.1|Measured rainfall distributions
	3.2|RIMA and Facebook Prophet
	3.2.1|ARIMA model lack of fit test

	3.3|HMMR and RHLP results
	3.3.1|HMMR and RHLP cluster observations and estimated rainfall variability
	3.3.2|HMMR and RHLP performance evaluation


	4|CONCLUSION
	ACKNO​WLE​DGE​MENTS
	OPEN RESEARCH BADGES
	DATA AVAILABILITY STATEMENT

	REFERENCES


