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A B S T R A C T   

Context: Collection and analysis of large volumes of on-farm production data are widely seen as key to under
standing yield variability among farmers and improving resource-use efficiency. 
Objective: The aim of this study was to assess the performance of statistical and machine learning methods to 
explain and predict crop yield across thousands of farmers’ fields in contrasting farming systems worldwide. 
Methods: A large database of 10,940 field-year combinations from three countries in different stages of agri
cultural intensification was analyzed. Random effects models were used to partition crop yield variability and 
random forest models were used to explain and predict crop yield within a cross-validation scheme with data re- 
sampling over space and time. 
Results: Yield variability in relative terms was smallest for wheat and barley in the Netherlands and for wheat in 
Ethiopia, intermediate for rice in the Philippines, and greatest for maize in Ethiopia. Random forest models 
comprising a total of 87 variables explained a maximum of 65 % of cereal yield variability in the Netherlands and 
less than 45 % of cereal yield variability in Ethiopia and in the Philippines. Crop management related variables 
were important to explain and predict cereal yields in Ethiopia, while predictive (i.e., known before the growing 
season) climatic variables and explanatory (i.e., known during or after the growing season) climatic variables 
were most important to explain and predict cereal yield variability in the Philippines and in the Netherlands, 
respectively. Finally, model cross-validation for regions or years not seen during model training reduced the R2 

considerably for most crop x country combinations, while for wheat in the Netherlands this was model 
dependent. 
Conclusion: Big data from farmers’ fields is useful to explain on-farm yield variability to some extent, but not to 
predict it across time and space. 
Significance: The results call for moderate expectations towards big data and machine learning in agronomic 
studies, particularly for smallholder farms in the tropics where model performance was poorest independently of 
the variables considered and the cross-validation scheme used.   

1. Introduction 

Since the advent of precision farming, it has become clear that data 
are an important asset for agronomic research and decision making 
(Wolfert et al., 2017). The increasing availability of large volumes of 
high-resolution biophysical data (Hengl et al., 2017; Funk et al., 2015), 

combined with geo-referenced farmer’s field data, has created oppor
tunities for a data-driven agronomy across wide geographic scales and at 
relatively little cost (Nayak et al., 2022a; Silva et al., 2020; Cui et al., 
2018; Rattalino Edreira et al., 2017; Frelat et al., 2016). Such wealth of 
information is expected to foster an agronomic revolution (Vanlauwe & 
Dobermann, 2020) and to accelerate the sustainable intensification of 
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crop production (Cassman and Grassini, 2020). This could not be more 
timely given the grand challenges crop production will be facing in the 
coming decades: ensuring food and nutrition security in light of climate 
change while avoiding conversion of natural habitats and biodiversity 
loss (Silva and Giller, 2020). 

’Big data’ in the context of this paper refers to observational datasets 
typically considered for data-driven approaches in agricultural research, 
regardless of the actual volumes of data involved (see de Mauro et al., 
2016 for a formal definition). The most direct application of big data in 
agriculture is in explaining and/or predicting crop yield variability in 
farmers’ fields across time and space. This is a daunting challenge given 
the large number of interacting factors contributing to crop yield vari
ability (van Klompenburg et al., 2020; Beza et al., 2017; Ronner et al., 
2016). Successful prediction of yield variability may help agronomists’ 
and farmers’ understanding and decision making. Moreover, systematic 
patterns in yield variability can be further translated into 
decision-support tools for different stakeholders, thus contributing to 
evidence-based investments in research and development programs. 
Such applications require quantitative approaches capable of dealing 
with a large number of interacting variables. Machine learning methods 
operate at the intersection between computer science and statistics (Hey 
et al., 2009) and have been shown successful in finding predictive re
lationships in complex data sets over a wide range of applications, also 
in the agricultural sector (e.g., Paudel et al., 2021; Tseng et al., 2021; 
van Klompenburg et al., 2020). 

The usefulness of big data analytics may differ for different farming 
systems worldwide, depending on their level of intensification and on 
the biophysical and socio-economic context in which they operate (Silva 
et al., 2021b). Different farming systems most likely also differ in 
environmental conditions and yield variability as well as in the avail
ability of biophysical and agronomic data. Poor data quality and avail
ability, for instance, is a recurrent issue for smallholder farming systems 
in sub-Saharan Africa (e.g., Carletto et al., 2013) and leads to unsatis
factory predictions of crop yield and response to nutrients (Heerwaar
den, 2022; Ronner et al., 2016). Conversely, data availability is 
generally better in high-yielding farming systems, but even there yield 
prediction is far from perfect (Mulders et al., 2021; Silva et al., 2020). 
However, there has not been to date any systematic comparison of the 
ability to explain and predict crop yield variability on-farm data from 
farming systems covering different biophysical conditions and stages of 
intensification. 

The objective of this study was to assess the potential for typical on- 
farm production data from cereal crops in different geographic regions 
to uncover systematic and predictable patterns in yield variation. We 
evaluated the partitioning of yield variation in space and time and 
quantified the amount of farm-level variability that could be accounted 
for by external agronomic and biophysical variables. An explicit 
distinction was made between predictive variables, which are known 
prior (a priori) to a given growing season, and explanatory variables 
which are only known during or after (ex-post) the growing season (van 
Heerwaarden et al., 2023). We hypothesize that explanatory variables 
account for more variation in crop yield than predictive variables and 
that model explanatory and predictive power decrease when extrapo
lating in space and time. A large database of farmer field data was 
compiled for maize and wheat in Ethiopia, rice in the Philippines, and 
winter wheat and spring barley in the Netherlands, comprising primary, 
farmer reported, crop management and production data and secondary 
spatially explicit weather, climate and soil data. The analysis contributes 
to a growing body of literature on machine learning applications in 
agronomy and to the analysis of prospects offered by big data to achieve 
sustainable intensification of crop production in the future. 

2. Analytical framework 

Our framework for explaining and predicting yield variability in 
space and time comprised four steps (Fig. 1). First, variability of farmer 

reported yields was described through an exploratory analysis using 
boxplots and scatterplots of mean crop yield and the respective standard 
deviation across unique year × district combinations. Second, a random 
effects model was used to partition yield variability among different 
sources of spatial and temporal variation, separating within-farm re
sidual variation from systematic sources of variation as represented by 
different temporal (year) and spatial scales (province, district, farm). 
Third, random forest models, incorporating a large set of covariates, 
obtained through household surveys and high-resolution spatial data
bases were fitted to the data to account for as much yield variability as 
possible. Variable importance was computed to identify the key bio
physical and crop management drivers of yield variability and statistical 
metrics were used to evaluate the accuracy and precision of the fitted 
models. A distinction was made between predictive and explanatory 
variables, noting the difference in ability to explain yield variability 
after the growing season as compared to predicting yield at the start or 
during the growing season. All time-invariant variables were identified 
as predictive variables, as they can be known ahead of any growing sea
son. Conversely, explanatory variables were identified as those which are 
specific to a given growing season, which may explain yield variability 
in that specific season but do not contribute to predicting future out
comes. Finally, a cross-validation scheme with data re-sampling over 
space and time was employed to evaluate the goodness-of fit of random 
forest models when extrapolated to newly sampled locations or seasons. 

3. Materials and methods 

3.1. Database of farm field data 

3.1.1. Description of data sets 
The database analysed here comprised a total of 10,940 geo- 

referenced field × year observations: 7220 observations from 
Ethiopia, 1960 observations from the Philippines, and 1760 observa
tions from the Netherlands (Table 1). These data were obtained through 
household surveys in Ethiopia and the Philippines and through com
mercial software systems in the Netherlands and were previously used 
for yield gap decomposition (Silva et al., 2021a; Assefa et al., 2020) or 
resource-use efficiency assessments (Silva et al., 2020, 2018). Historical 
weather data for different sites in each country are provided in Sup
plementary Figure 1. 

Data for wheat and maize crops in Ethiopia were collected by the 
Ethiopian Institute of Agricultural Research (EIAR) in collaboration with 
the International Maize and Wheat Improvement Center (CIMMYT). The 
“Wheat Adoption and Impact Survey” covered the growing seasons of 
2009 and 2013 and was conducted to assess the impact of genetic 
improvement of wheat in Ethiopia (Jaleta et al., 2019; Fig. 2A). For 
maize, data were compiled for the growing seasons of 2010 and 2013 
from the “Sustainable intensification of Maize-Legume Cropping 

Fig. 1. Analytical framework adopted to explain and predict crop yield vari
ability over space and time. Data analyses build upon linear mixed models with 
random effects to partition residual variance in crop yield and upon random 
forest to explain and predict crop yield based on a large set of covariates. 
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Systems for food security in Eastern and Southern Africa” (SIMLESA) 
and “Diffusion and Impact of Improved Varieties in Africa” (DIVA) 
projects (Jaleta et al., 2018; Fig. 2B). The sampling frame comprised the 
selection of the main growing districts, followed by a random selection 
of communities within each district, and by a random selection of 
households within each community to ensure national 
representativeness. 

Data for rice crops in Central Luzon, Philippines, were collected by 
the International Rice Research Institute (IRRI) under a project aiming 
to provide ’Metrics and Indicators for Tracking in GRiSP’ (MISTIG, 
where GRiSP stands for Global Rice Science Partnership). A three-stage 
sampling procedure was used to identify the households to be surveyed 
in the top four rice producing provinces of Central Luzon (Fig. 2C), as 
explained elsewhere (Silva et al., 2018). The household survey covered 

Fig. 2. Location of the farms and fields sur
veyed and analysed in this study: (A) wheat in 
Ethiopia during the Meher seasons of 2009 and 
2013, (B) maize in Ethiopia during the Meher 
seasons of 2010 and 2013, (C) lowland irrigated 
rice during the 2013 dry season (DS) and 2014 
wet season (WS) in Central Luzon, Philippines, 
and (D) winter wheat (light blue) and spring 
barley (dark blue) in the Netherlands during the 
period 2015–2017. See text for further infor
mation about the SIMLESA, DIVA, and MISTIG 
projects, which the data were collected.   

Table 1 
Descriptive statistics of selected variables for wheat and maize crops in Ethiopia (ETH), wet season (WS) and dry season (DS) rice crops in the Philippines (PHL), and 
wheat and barley crops in the Netherlands (NLD). Aridity index, growing degree days, and temperature seasonality refer to the input layers used for the climate zone 
classification proposed by van Wart et al. (2013); see text for further details. Variability in selected variables across crop × country combinations is provided in 
Supplementary Figure S5.  

Variables Wheat 
ETH 

Wheat 
ETH 

Maize 
ETH 

Maize 
ETH 

Rice WS 
PHL 

Rice DS 
PHL 

Wheat 
NLD 

Wheat 
NLD 

Wheat 
NLD 

Barley 
NLD 

Barley 
NLD 

Barley 
NLD 

Year 2009 2013 2010 2013 2014 2014 2015 2016 2017 2015 2016 2017 
Reported crop yield (t 

ha− 1) 
1.8 1.8 2.5 2.8 4.1 5.1 8.7 7.2 8.3 6.0 5.6 5.5 

Aridity index (×1000, 
mm mm− 1) 

7.2 7.2 6.9 7.3 12.5 12.5 11.9 12.0 12.0 11.6 11.7 11.8 

Growing degree days 
(×100,◦C) 

57.6 57.7 68.9 68.8 98.9 99.2 35.0 35.0 34.9 33.6 33.5 33.2 

Temperature 
seasonality (×100,◦

C) 

10.2 10.1 9.4 9.6 10.8 10.7 53.5 53.4 53.6 54.6 54.4 54.3 

Seed rate (kg ha− 1) 190.2 195.9 31.0 31.1 96.5 88.5 198.1 206.1 201.1 152.6 148.1 147.9 
N applied (kg N ha− 1) 47.7 48.9 33.3 41.8 108.7 132.6 201.6 209.1 197.1 96.1 93.7 89.1 
P applied (kg P ha− 1) 19.5 20.4 5.2 4.9 28.7 34.1 33.4 37.7 34.7 12.0 13.1 9.9 
Field size (ha) 0.45 0.40 1.46 1.38 1.15 1.22 7.83 7.80 7.72 4.39 4.89 5.12 
Number of farms (n) 1024 1215 1006 1206 1103 854 131 142 187 71 93 91 
Number of fields (n) 1201 1440 1613 2095 1103 854 352 399 439 152 199 226  
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the 2013 dry season (DS) and the 2014 wet season (WS) for rice in the 
region and requested information for the largest rice parcel in each farm. 
WS rice is the traditional crop in the region, with DS rice made possible 
through past investments in irrigation. 

Data for winter wheat and spring barley crops in the Netherlands 
were obtained from commercial farm management softwares for crop 
registration and decision support. No specific sampling frame was used 
for farmer selection and the spatial distribution of the data thus 
depended on the geographical distribution of farmers using such soft
wares. The database covers the main crops and agricultural regions of 
the Netherlands, but for this study only data for winter wheat and spring 
barley over the growing seasons of 2015, 2016, and 2017 were used 
(Fig. 2D). Winter wheat is a main crop cultivated across the Netherlands 
mostly for animal feed. In contrast, spring barley is a minor crop in the 
Netherlands, largely cultivated in the Northeast of the country (Fig. 2), 
and sold for malt to the beer industry. 

3.1.2. Predictive and explanatory variables 
The final database contained a total of 87 variables. Twenty-two 

variables were obtained directly from the farm field data: geographic 
coordinates and 20 other soil and crop management variables were self- 
reported by farmers. Fifty-four climatic variables and nine soil variables 
were retrieved from secondary data sources, as described below. The full 
list and description of the variables are provided in Supplementary Table 
1. 

Secondary data from open access spatial products were added to the 
database of farm field data based on the GPS coordinates of the surveyed 
households. Soil variables were obtained from Hengl et al. (2017) with 
the purpose to describe soil physical and chemical properties for each 
farm. Climatic data were obtained from three sources: (1) 19 bioclimatic 
variables were obtained from Fick and Hijmans (2017), (2) three climate 
zone variables were obtained from the Global Yield Gap Atlas (GYGA; 
van Wart et al., 2013), and (3) 54 variables were constructed from daily 
weather records provided by AgERA5 (Boogaard et al., 2020), consid
ering rainfall data from Funk et al. (2015) for Ethiopia and the 
Philippines. Bioclimatic variables are biologically meaningful as they 
represent annual trends, seasonality, and extreme or limiting environ
mental factors for plant growth. GYGA variables are agronomically 
meaningful and often used to delineate environments for yield gap 
analysis. Climatic variables from AgERA5 were computed for the 
growing season and captured average and extreme weather conditions 
during the growing seasons surveyed. The length of the growing season 
was defined based on reported sowing and harvest dates for fields in the 
Philippines and the Netherlands. Farm-specific sowing and harvest dates 
were not available for data in Ethiopia so average values per district 
were obtained through expert knowledge and used to retrieve secondary 
data. 

3.2. Partitioning variation in yield 

Observed yield variability may reflect different sources of random 
variation, from non-systematic field-level deviations due to localized 
heterogeneity in growing conditions or observational error due to sys
tematic differences in locations or seasons. Random effects models, i.e., 
linear mixed effect models with the intercept as the only fixed term, 
provide a way to estimate the relative contribution of different spatio- 
temporal factors to total yield variation. A random effects model was 
fitted for each crop × country combination considering crop yield as 
dependent variable. Three nested random spatial effects were included 
to assess how the spatial structure of the data affected residual variance 
namely: province, district, and farm for cereal crops in Ethiopia and the 
Netherlands (districts in the Netherlands were defined based on the 
postal code of each farm), and province, district, and barangay (as only 
one field per farm was surveyed) for rice in the Philippines. Where 
possible, the effect of time was accounted for by including an interaction 
between year and each spatial random effect (i.e., province, district, and 

farm). This was the case for the models fitted to the data from Ethiopia 
and from the Netherlands, for which repeated farm observations over 
time were available. The inclusion of location specific year effects allows 
the random effects due to location to be separated from the effects of 
season specific conditions at each location. A large variance component 
for province, district, or farm/barangay indicates there are consistent 
yield differences within the respective spatial unit. Conversely, a large 
variance component for province:year, district:year, or farm:year in
dicates yield differences over time for the respective spatial unit (e.g., 
the same districts can be high- or low-yielding across different years). 

The random effects models were fitted with the lmer() function of the 
lme4 R package (Bates et al., 2015). For each model, the proportion of 
variance accounted for by the random effects was defined as the ratio 
between the sum of the variance of the random variables and the total 
residual variance, i.e., the sum of residual variance accounted for by the 
random effects and the residual variance not accounted for by these 
random variables. The proportion of residual variance explained by each 
random variable was further assessed relative to the residual variance 
accounted for by the random effects. A spatial analysis of yield vari
ability was done using variograms fitted with the variog() function and 
using conventional kriging implemented with the krig.conv() function of 
the geoR R package (Ribeiro et al., 2020). The spatial analysis yielded no 
conclusive results, hence data are not shown. 

3.3. Explaining and predicting yield variability 

3.3.1. Random forest models 
Random forest is a non-parametric machine learning method known 

to outperform other algorithms in explanatory and predictive analyses 
(Nayak et al., 2022a; Breiman, 2001a). Ten random forest models with 
different types of variables were constructed to explain and predict crop 
yield (Table 2; see also Supplementary Table 1 for a description of all 
variables considered in each category). Each model contained either 
predictive (p), explanatory (e), or both predictive and explanatory 
variables (pe) from one (climatic, c), two (climatic and soil, cs), or three 
(climatic, soil, and farm survey, csf) categories. Model 1 (M1gps) 
considered the GPS coordinates of the farms in Ethiopia and in the 
Philippines or fields in the Netherlands. Models 2, 3, and 4 (M2pc, 
M3pcs, and M4pcsf) included predictive climatic variables, predictive 
soil variables, and predictive survey variables added cumulatively to 
each other, and the GPS coordinates considered in model M1gps. Models 
5, 6, and 7 (M5ec, M6ecs, and M7ecsf) included, respectively, and added 
cumulatively to each other, explanatory climatic variables, explanatory 
soil variables, and explanatory survey variables, plus the GPS co
ordinates considered in model M1gps. Model 8 (M8pec) included the GPS 
coordinates as model M1gps plus predictive and explanatory climatic 

Table 2 
Description of the random forest models fitted to explain and predict on-farm 
yield variability. The full list of variables per category is provided in Supple
mentary Table 1. Subscript codes: p = predictive, e = explanatory, c = climatic, 
s = soil, f = farm survey.  

Abbreviation Model description Explain Predict 

M1gps GPS coordinates only 
M2pc M1 + predictive climatic variables 
M3pcs M2 + predictive soil variables 
M4pcsf M3 + predictive survey variables 
M5ec M1 + explanatory climatic variables 
M6ecs M5 + explanatory soil variables 
M7ecsf M6 + explanatory survey variables 
M8pec M1 + predictive and explanatory climatic 

variables 
M9pecs M8 + predictive and explanatory soil 

variables 
M10pecsf M9 + predictive and explanatory survey 

variables 
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variables. Model 9 (M9pecs) builds upon model M8pec by adding pre
dictive and explanatory soil variables and, finally, model 10 (M10pecsf) 
builds upon model M9pecs by adding predictive and explanatory survey 
variables, hence comprising all 87 variables. 

Random forest models were fitted using the rfsrc() function of the 
randomForestSRC R package (Ishwaran and Kogalur, 2007) considering 
ntree equal to 1000, and default values for nodesize (equal to 5) and mtry 
(equal to one third of the number of variables used for model fitting). 
Variable importance and goodness-of-fit (using 1:1 scatter plots between 
observed and predicted crop yield for each farm × year combination) 
were assessed for model M10pecsf fitted to the pooled data. Variable 
importance refers to the mean decrease in accuracy due to permutation 
of variables when fitting the model. Statistical metrics were estimated 
for all ten models as explained in Section 3.3.3. 

3.3.2. Cross-validation scheme 
Data for each crop × country were partitioned into a training and test 

data set considering a 70:30 ratio, respectively. Data resampling 
following this ratio was done for different farms, provinces, or years 
meaning that, for each crop × country, the training data set comprised 
70% of unique field-year combinations or provinces and the test data set 
comprised the remaining 30% of the field-year combinations or 

provinces, respectively. Cross-validation over time focused on yield 
prediction across years not considered during model training rather than 
on within year explanation or prediction. For cross-validation over time 
in Ethiopia, data were available for two years only and in that case data 
for one year were used for model training and data for the other year for 
model testing and vice-versa. Cross-validation over time in the 
Netherlands considered all combinations of two years for model training 
and the remaining year for model testing. The test data set was thus 
always independent from the training data set in evaluations of model 
performance. Such data re-sampling scheme allows for testing model 
performance in predicting crop yield of unknown farms while consid
ering the spatial and temporal structure of the data explicitly. Random 
forest models were fitted on the training data sets, and these models 
were then used to predict crop yield in the respective test data sets. 

3.3.3. Evaluation of model performance 
The coefficient of determination (R2) and the Root Mean Square 

Error (RMSE) were used to evaluate the performance of the fitted 
models. The R2 indicates the proportion of variation in the dependent 
variable explained by the independent variables. The RMSE measures 
the difference between the values predicted by the model and the 
observed values, hence providing a measure of the spread of model 

Fig. 3. Actual yield variability for each crop × country (A), average and standard deviation of crop yield for a given crop × district × year/season (B), proportion of 
residual variance accounted for with linear mixed models (C), and variance components for each crop × country (D). In (D), for the Philippines all components are 
per year, as only one year was available in the data and ‘farm’ effects refer to barangay as data were recorded for one field per farm. See text for further explanation. 
Country codes: ‘ETH’ = Ethiopia, PHL = ‘Philippines’, ‘NLD’ = ‘Netherlands’. 
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residuals. The two metrics were computed for all models fitted to the 
pooled data and for the train and test data sets in the cross-validation 
scheme. The R2 ranges between 0 and 1, with the latter indicating the 
model explains all the variation observed in the dependent variable. The 
model fit was considered excellent if the RMSE was lower than 10%, 
good if greater than 10% and lower or equal to 20%, fair if greater than 
20% and lower or equal to 30%, and poor if greater than 30%. 

4. Results 

4.1. Describing on-farm yield variability 

Cereal yields were smallest in Ethiopia, intermediate in the 
Philippines, and largest in the Netherlands (Fig. 3A). Across the country, 
wheat and maize yield in Ethiopia were on average 1.8 and 2.7 t ha− 1 

(inter-quartile range equal to 1.4 and 2.1 t ha− 1), respectively, whereas 
rice yield in the Philippines was on average 4.1 and 5.1 t ha− 1 in the WS 
and DS (inter-quartile range equal to 1.6 and 2.2 t ha− 1), respectively. 
Wheat yield in the Netherlands was on average 8.1 t ha− 1 and that of 
spring barley 5.7 t ha− 1, and the inter-quartile range was equal to 1.4 
and 1.2 t ha− 1, respectively. The standard deviation of cereal yield was 
estimated per administrative unit (the lowest level) in each country ×
year combination, and ranged between 0.1 and 2.8 t ha− 1 for cereal 
crops in Ethiopia, between 0.9 and 1.8 t ha− 1 for rice crops in the 
Philippines, and between nil and 1.7 t ha− 1 for cereal crops in the 
Netherlands (Fig. 3B). Reported yield was thus least variable, i.e., had a 
lower standard deviation, for cereals in the Netherlands and for wheat in 
Ethiopia than for rice in the Philippines, and most variable for maize in 
certain districts of Ethiopia for which high standard deviations were 
observed (Fig. 3B). 

4.2. Partitioning yield variation 

The proportion of yield variation accounted for by systematic 
random effects was 58% and 51% for wheat and maize in Ethiopia, 
respectively, 27% and 38% for rice yield during the WS and DS in the 
Philippines, respectively, and more than 70% for cereals in the 
Netherlands (Fig. 3C). This result indicates that, compared to cereals in 
the Netherlands, the amount of unexplainable within-farm variation in 
the lower input systems was substantial, particularly for rice in the 
Philippines (note this was captured through a random effect of barangay 
for the Philippines as data were available for one field per farm in the 
respective data set). With respect to the latter, it must be noted that 
relatively few replicate observations per farm (or barangay) were 
available, which may affect the quality of the estimate for the residual 
variance. 

Farm and farm × year together represented the largest variance 
components for all crop × country combinations, except for DS rice in 
the Philippines and wheat in the Netherlands (Fig. 3D), indicating that 
yield differences at the smallest spatial scale explained most of the 
systematic variation in crop yield. Conversely, for DS rice in the 
Philippines and wheat in the Netherlands, the largest variance compo
nents were represented by region and/or region × year, indicating 
greater yield differences at regional level than at the farm level. More
over, year-specific variance components tended to be larger than time- 
invariant variance components for the crop × country combinations 
for which location and year variance components could be separated 
(Fig. 3D). The only exceptions to this were the large, time-invariant, 
regional variance components for maize in Ethiopia and the large 
farm and region variance components for barley in the Netherlands. 
Indeed stable, not year-specific, region and farm variance components 
accounted for more than half of the yield variation explained for barley 
in the Netherlands, which was not observed for any other crop × country 
combination. 

4.3. Explaining yield variability 

4.3.1. Variable importance 
In the random forest analysis, management factors were identified as 

particularly important in explaining yield variability in Ethiopia, 
whereas yield variability in the Philippines and in the Netherlands was 
mostly explained by environmental factors (Fig. 4). Predictive climatic 
variables were important to explain rice yield variability in the 
Philippines, whereas explanatory climatic variables were most impor
tant to explain cereal yield variability in the Netherlands (Fig. 4). The 
two most important variables explaining maize yield variability in 
Ethiopia were the amount of N and P applied, followed by the farm size 
(Fig. 4A). P and N applied were also the most important variables 
explaining wheat yield variability in Ethiopia, followed by seed rate 
(Fig. 4A). Aridity index and the bioclimatic variable #3 (isothermality, i. 
e., the ratio between annual mean temperature and mean diurnal range) 
were the first and second most important variables explaining WS rice 
yield variability, whereas the reversed order was true for DS rice 
(Fig. 4B). The bioclimatic variable #12 (annual precipitation) and seed 
rate were the third most important variables explaining rice yield vari
ability in the WS and DS, respectively. For winter wheat in the 
Netherlands, the most important variables explaining yield variability 
were rainfall variability, the maximum of the minimum temperature 
registered during the growing season, and the number of tropical nights 
(number of days with minimum temperature above 20 ◦C) during the 
growing season (Fig. 4C). For spring barley, the mean maximum tem
perature and the cumulative solar radiation during the growing season, 
and the sand content of the soil were the three most important variables 
explaining yield variability (Fig. 4C). 

The second, third, and fourth most important variables explaining 
yield variability in Ethiopia and the Philippines became the first, second, 
and third most important variables when the most important variable 
shown in Fig. 4 was removed prior to model fitting (Supplementary 
Figure 2). For winter wheat in the Netherlands, the second and third 
most important variables became the first and second most important 
when rainfall variability was removed prior to model fitting, whereas for 
spring barley the order of the most important variables changed when 
the mean maximum temperature was removed prior to model fitting 
(Supplementary Figure 2). These results indicate that the drivers of yield 
variability are robust and consistent for all crop × country combina
tions, except for barley in the Netherlands. 

4.3.2. Explanatory power 
As expected, the random forest model containing all predictive and 

explanatory variables (model M10pecsf), explained the largest propor
tion of variance and had the lowest RMSE in all cases (Fig. 5). Yet, 
explanatory power varied quite widely between farming systems. The 
largest proportion of yield variability was explained for wheat and 
barley in the Netherlands (64% of variance explained), followed by 
wheat and maize in Ethiopia (42% and 43%, respectively), and the least 
for rice in the Philippines (26% and 39% in the WS and DS, respectively; 
Fig. 5). This result is consistent with the differences in unexplained re
sidual variation observed in the variance component analysis (Fig. 3C). 
In terms of model accuracy, models of data in Ethiopia performed worse, 
with an extremely high RMSE, while models for data in the Netherlands 
showed good accuracy in addition to explaining a high proportion of 
variance. For all crop × country combinations, model M7 (with 
explanatory variables only) explained a greater proportion of variance 
than model M4 (with predictive variables only). The difference in per
formance between models M7 and M4 was less apparent for data in the 
Philippines though, where performance was poor for most models. For 
data in Ethiopia, all models without survey variables performed poorly 
and were only marginally better than a model with GPS coordinates 
only, while for data in the Philippines and the Netherlands, adding 
survey variables hardly improved model performance, with the possible 
exception for the full model (M10) for DS rice in the Philippines. Soil 
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Fig. 4. Variable importance of the random forest model M10pecsf for wheat and maize in Ethiopia (A), wet season (WS) and dry season (DS) rice in the Philippines 
(B), and winter wheat and spring barley in the Netherlands (C). Only the top ten most important variables are displayed. Hatched bars show predictive variables 
whereas non-hatched bars show explanatory variables. See Supplementary Table 1 for an overview of all variables included in the analysis. 
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variables did not improve model performance for any of the farming 
systems, but for data in the Philippines and the Netherlands adding 
climatic variables proved essential for explaining additional variation 
compared to a model with only GPS coordinates. Predictive variables 
were effective to improve model performance for rice data in the 
Philippines, in contrast to data for cereals in the Netherlands, for which 
only adding explanatory (weather) variables improved model perfor
mance (Fig. 5). 

4.4. Predicting yield variability 

Model performance, as evaluated above, may provide an overly 
optimistic idea of the ability of random forest models to explain or 

predict results at different locations or seasons, which is why cross- 
validation in space and time is needed. The results of cross-validation 
in space (Fig. 6) revealed that extrapolation of existing models to 
newly sampled locations may indeed be problematic, since the propor
tion of explained variance declined severely when random forest models 
were cross-validated at a larger spatial scale. This effect was particularly 
evident for data in the Netherlands where the cross-validation R2 

diminished steadily from farm to province (zone) to 47% (wheat) and 
42% (barley) compared to 64% for the pooled data (Fig. 6, model M10). 
In relative terms, the reductions in cross-validation R2 were even greater 
for data in Ethiopia and the Philippines, where model performance was 
poorer to begin with. It should be noted that for data in Ethiopia, fields 
on the same farm shared the same spatial coordinates and climatic data, 

Fig. 5. Performance of the fitted random forest models in explaining crop yield variability. The coefficient of determination (R2) is displayed in the top heatmap and 
the RMSE is displayed in the bottom heatmap. See Table 2 for further information about the model codes. 

Fig. 6. Coefficient of determination (R2) of the 
pooled model (i.e., out-of-bag predictions) and 
of the models fitted to the test data set in cross- 
validation runs over farms, provinces, and 
years. Bars show the mean and error bars the 
standard deviation across different iterations of 
the cross-validation scheme with data re- 
sampling. The full description of the models 
fitted is provided in Table 2. R2 and RMSE 
values for other models are provided in Sup
plementary Figures S3 and S4. Country codes: 
‘ETH’ = Ethiopia, PHL = ‘Philippines’, ‘NLD’ 
= ‘Netherlands’.   
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which might explain the negligible reduction in model performance 
when cross-validating the random forest models across different farms. 

The results for cross-validation in time were somewhat less clear-cut 
(Fig. 6). For data in the Netherlands, there was a clear reduction in the 
cross-validation R2 for the models with all variables included (M10), 
with the reduction in performance being similar to that caused by 
extrapolating across provinces. For predictive models (M4), the reduc
tion in performance compared to that of the model fitted to the pooled 
data was relatively minor for barley data in the Netherlands, comparable 
to the reduction observed in the farm-level cross validation, and non- 
existent for wheat data also in the Netherlands, although there was 
considerable uncertainty around the mean values (see error bars in 
Fig. 6). For data in Ethiopia, model performance was reduced, but 
remained better than when extrapolating across provinces. 

5. Discussion 

5.1. Agronomic interpretation of the results 

There were marked differences between the crop × country combi
nations in terms of average yield and yield variability (Fig. 3A). Both 
absolute yield variation across all observations as well as variation 
relative to the mean yield within district × year were notably higher for 
maize in Ethiopia and rice in the Philippines, particularly when 
compared to wheat and barley in the Netherlands (Fig. 3B). While part of 
this may reflect differences in methods of data collection, the greater 
yield variability of maize than wheat in Ethiopia is consistent with the 
fact that maize is cultivated across a wide range of agro-ecologies in the 
country, including lowland areas prone to water stress during the 
growing season (Abate et al., 2015). In contrast, wheat is mostly culti
vated in areas with adequate water supply across the Ethiopian high
lands, providing a stable environment for crop production (Schneider 
and Anderson, 2010). The same is true in the Netherlands, given its 
humid climate and presence of capillary rise on clay soils (Kroes et al., 
2018). An intermediate situation was observed in Central Luzon, 
Philippines, where lodging of rice panicles is common in the WS 
(Lampayan et al., 2010) due to heavy rainfall and strong winds from 
tropical cyclones, whereas the DS provides a more stable environment 
for rice production provided that irrigation is available (Barker and 
Levine, 2012). 

Partitioning of yield variation showed that spatio-temporal random 
effects could account for more than 70% of the variance in cereal yield in 
the Netherlands, ca. 50% of the variance in cereal yield in Ethiopia, and 
less than 30% of the variance in rice yield in the Philippines (Fig. 3D). 
This indicates that the contribution of residual, within-farm (i.e., bar
angay for rice data in the Philippines), variation in Ethiopia and the 
Philippines was substantially larger compared to the Netherlands, 
perhaps again due to differences in data collection or because of less 
agronomic homogeneity among fields. Yet, the lowest variance 
accounted for by random effects for rice in the Philippines might also be 
explained by the lack of repeated observations over time, which does not 
allow to assess the contribution of time-varying variance components 
with the data set used. Spatial-temporal variation was distributed 
differently among the different data sets. In four out of six cases, most 
variation was contained at the farm level, as also observed by van Loon 
et al. (2019) and by van Heerwaarden et al. (2023). Yet, only for the case 
of barley in the Netherlands, variance in yield was primarily associated 
with consistent differences among farms across years instead of 
year-specific differences. The same pattern was observed at higher 
spatial scales (Fig. 3D). Results for barley might be attributed to the 
small spatial distribution of the data (Fig. 2D), in other words most farms 
were located in the same district and region across the different years. 

Different groups of variables were identified as important in different 
farming systems. Firstly, predictive and explanatory farm survey vari
ables improved model performance in Ethiopia (Figure 5), where 
nutrient application rates were identified as the most important 

variables explaining wheat and maize yield variability (Fig. 4A). These 
results corroborate the findings of Silva et al. (2021a) and Assefa et al. 
(2020) using the same data sets. Secondly, predictive climatic variables 
alone explained nearly as much yield variability as all the 87 variables 
taken together for rice crops in the Philippines (Figure 5), with the 
aridity index and isothermality standing out as important variables 
(Fig. 4B). Lastly, explanatory climatic variables alone explained nearly 
as much of the yield variability of wheat and, to a lesser extent, barley in 
the Netherlands as the full set of 87 variables (Fig. 5). Rainfall variability 
and minimum temperature during the growing season were important 
for wheat, whereas mean maximum temperature and cumulative radi
ation were important for barley (Fig. 4C). These results support earlier 
studies (e.g., Silva et al., 2020; Reidsma et al., 2009) pointing to the 
importance of weather conditions during the growing season in farming 
systems operating close to yield potential. 

Our results are likely affected by the spatial extent of the data set 
used for each crop × country combination. Clearly, data from Ethiopia 
covers a much larger geographical area than data from the Philippines 
and the Netherlands (Fig. 2). Moreover, the smaller spatio-temporal 
extent of the data set used for rice in the Philippines resulted in 
slightly smaller variability in some of the spatial covariates used in the 
analysis, certainly when compared with data for similar variables in the 
Ethiopia data sets (Supplementary Figure S5). We would expect the 
spatial extent to matter most for data sets covering large geographical 
regions with marked differences in environmental conditions. We also 
expected the latter to be partly captured by GPS coordinates only, as 
indeed observed for the Ethiopia data (Fig. 5). Yet, for rice crops in the 
Philippines, predictive climatic variables explain significantly more 
yield variability than GPS coordinates only (Fig. 5), a result not observed 
in the other data sets. The latter indicates the importance of fixed cli
matic conditions (such as aridity index, Fig. 4B), which are not well 
captured by the GPS coordinates alone. Finally, the relatively high 
prediction accuracy in the Netherlands is noteworthy, pointing perhaps 
to better data quality and greater influence of weather conditions than 
observed in the other data sets. 

5.2. Explanatory and predictive power 

Random forest was proven in earlier studies to be the most suitable 
method for data-driven agronomy (e.g., Nayak et al., 2022b), which can 
be attributed to the randomness generated when training the algorithm 
(Breiman, 2001a). This tree-based algorithm was thus used to test the 
hypotheses that explanatory variables account for more variation in 
crop yield compared to predictive variables and that explanatory and 
predictive power decreases when extrapolating in space and time. Our 
results indicate that a total of 87 variables dealing with genotype ×
environment × management interactions (Supplementary Table 1) 
explained nearly 65% of cereal yield variability in the Netherlands and 
less than 45% of cereal yield variability in Ethiopia and in the 
Philippines (Fig. 5), findings which align with the share of residual 
variance in crop yield explained by random effects models (Fig. 3C). 
High R2 values such as those found for the Netherlands have been re
ported in other high-yielding cropping systems (Nayak et al., 2022a, b; 
Lischeid et al., 2022), but considerably smaller R2 have also often been 
reported in the literature (Tseng et al., 2021; Devkota et al., 2021). 

The data sets used (see Section 3.1) differed markedly in the type of 
variables that contributed most to model performance (Fig. 5). For ce
reals in Ethiopia, none of the predictive or explanatory climatic and soil 
variables improved model fit above what was achieved by GPS co
ordinates alone. Only the addition of survey variables, either predictive 
or explanatory, increased model performance. Quite the contrary was 
observed for rice in the Philippines, where GPS coordinates had very 
little explanatory power, but addition of predictive climatic variables 
raised R2 to above 0.2. The importance of predictive variables for rice in 
the Philippines did not result in better predictions over space though 
(Figure 6), probably because the data set covered one single crop year 
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(2013 DS and 2014 WS) and its spatial extent was small (selected areas 
in Central Luzon only). In the Netherlands, the type of variables included 
had little impact on model performance, but models containing 
explanatory climatic variables performed markedly better than those 
containing only predictive variables. The difference between predictive 
and explanatory variables was smaller in Ethiopia and the Philippines 
than in the Netherlands, but in all cases the model containing all pre
dictive and explanatory variables performed best. Improving model 
performance with additional predictors is thus not straightforward, 
since observed improvements from additional variables were generally 
modest (Fig. 5). 

Big data from farmers’ fields are useful to explain yield variability to 
some extent (Fig. 5), but not as much to predict it across space and time, 
as indicated by a decrease in the cross-validation R2 for nearly all crop ×
country combinations (Fig. 6). Cross-validation against a random subset 
of farm-year combinations mimics to some extent the bootstrap aggre
gation method (Breiman, 2001b) used to generate random subsets of 
data for model training in standard applications of random forest (Tseng 
et al., 2021; Devkota et al., 2021). Another possible explanation for the 
small difference in cross-validation R2 between these two 
cross-validation schemes for all crops except barley (Fig. 6) is that fields 
on the same farm in Ethiopia and the Philippines shared the same spatial 
coordinates and climatic data. Although random forest is powerful for 
interpolating data in space and time at regional levels (e.g., Wu et al., 
2023; Guilpart et al., 2022), it is less so for on-farm yield prediction 
across regions and growing seasons not considered for model training 
(Fig. 6). Our analysis thus demonstrates this limitation of random forest 
and calls for proper model cross-validation prior to model interpretation 
and prediction. 

Model performance nearly always declined when models were cross- 
validated in space and time (Fig. 6). Our results thus question the ability 
of data-driven methods to predict crop yield variability under on-farm 
conditions even when data sets with a large sample size and number 
of candidate predictors are available (see also Mulders et al., 2021; 
Ronner et al., 2016). Cross-validation across provinces reduced model 
performance independently of the residual variance explained by the 
random effects (Figs. 3D and 6). Poor cross-validation across provinces is 
to be expected in data sets with a strong ‘spatial structure’, as captured 
by large variance components for spatial scales. Our results confirm this 
for most crop × country combinations, as the largest relative difference 
in R2 between predictions for the pooled data and for cross-validation 
across provinces was observed for rice in the Philippines, followed by 
barley in the Netherlands and cereals in Ethiopia, and wheat in the 
Netherlands (Fig. 6), whereas the relative contribution of region, dis
trict, and farm variance components to residual variance decreased in 
the same order (Fig. 3D). 

Strong cross-validation results over time would also be expected in 
data sets capturing some degree of spatial structure. For cereals in 
Ethiopia, the R2 was fairly low for most models and no substantial de
creases in R2 were observed when models were cross-validated over time 
(Fig. 6), probably because a high residual variance was not accounted 
for by the random effects (Fig. 3C). Cross-validation results across time 
were somewhat more complex for cereals in the Netherlands. The fairly 
high R2 observed for barley in models with only predictive variables 
(Fig. 5) confirms the large share of residual variance accounted for by 
space-dependent variance components (Fig. 3D). Conversely, for wheat, 
the relatively low R2 of models with only predictive variables and 
relatively high R2 of models with both predictive and explanatory var
iables (Fig. 6) is a result of large time × space interactions in the residual 
variance (Fig. 6D). Yet, the increase in R2 in models with predictive 
variables only, when cross-validated over time, was unexpected (Fig. 6) 
and most likely explained by a large variability between random subsets 
of the data (Fig. 6) and the short time series covered in the data. 

5.3. Recommendations for data-driven agronomy 

The analytical framework adopted here was useful to unpack yield 
variability and to expose the limits of data-driven crop yield prediction 
in space and time (Fig. 1). We recommend future studies to (1) adopt 
cross-validation schemes with data re-sampling explicitly considering 
the spatio-temporal structure of the data sets at hand, (2) identify the 
type of variables most valuable to explain and predict crop yield in 
specific farming systems, and (3) combine data-driven methods with 
domain knowledge and mechanistic tools (Maestrini et al., 2022). These 
three steps are essential to better understand on-farm crop yield vari
ability across relatively large scales. They are also important to guide 
data collection activities in terms of spatial sampling of observational 
units, required sample sizes, and types of variables needed for sound 
site-specific agronomic recommendations. 

Further investments in data quality are also necessary to improve the 
performance of data-driven approaches. Errors associated with yield 
measurements (Kosmowski et al., 2021), farmer recall on field area and 
input use (Carletto et al., 2013), and inaccuracies in secondary data 
(Hengl et al., 2017) are known problems of on-farm production data, 
particularly in low-income countries. We recommend future agronomic 
diagnostic surveys to measure crop production using crop cuts in 
different parts of the field and to measure field areas precisely, as 
already done in some recent applications (e.g., Nayak et al., 2022a,b; 
Devkota et al., 2021). Production and area data must be complemented 
with a minimum set of variables including GPS coordinates, sowing and 
harvest dates, type of variety, and water management (irrigation vs. 
rainfed) as these are critical for a detailed characterisation of the bio
physical environment where production took place. Other 
season-specific explanatory variables, and survey variables on man
agement and input use, will also be beneficial to include when 
explaining yield variability is the aim. Finally, future surveys should be 
designed according to well-established sampling frames to allow for 
cross-validation in space, and investments must be made to collect time 
series data over multiple years for proper model cross-validation in time. 
This will be critical to unravel the relative contribution of spatial and 
temporal components to yield variability and hopefully improve the 
predictive power of data-driven approaches. 

6. Conclusion 

Data is an important asset for agronomic decision making and 
research in the context of sustainable intensification and digital advi
sories for farmers. Building upon nearly 11.000 geo-referenced field ×
year observations across three countries in different stages of agricul
tural intensification, our results show that cereal yields were less vari
able in the Netherlands and for wheat in Ethiopia than for rice in the 
Philippines, and most variable for maize in Ethiopia. A total of 87 var
iables explained nearly 65% of cereal yield variability in the Netherlands 
and less than 45% of cereal yield variability in Ethiopia and in the 
Philippines. Omitting specific groups of variables had a strong impact on 
model performance, i.e., explanatory crop management variables were 
most important to explain cereal yield variability in Ethiopia, while 
predictive climatic variables and explanatory climatic variables were 
most important to explain cereal yield variability in the Philippines and 
in the Netherlands, respectively. The R2 of the random forest models 
with only predictive variables declined by 4–28% when these were used 
to predict cereal yields in provinces or years not considered during 
model training. A similar decline in model performance (5–32%) was 
observed for random forest models with both predictive and explanatory 
variables. Independently of the variables considered and cross- 
validation scheme used, the explanatory and predictive power of the 
fitted models was lower for smallholder farms in Ethiopia and the 
Philippines than for commercial farms in the Netherlands. In conclusion, 
big data from farmers’ fields is useful to explain on-farm yield variability 
to some extent, but not to predict it across time and space. Further 
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research is needed to better understand the role of data quality and the 
spatial and temporal extent of the data sets used to explain and predict 
on-farm yield variability across large scales, and to critically assess the 
role big data and machine learning can play on that. 
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