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A B S T R A C T   

While many have extolled the potential impacts of digital advisory services for smallholder agriculture, the 
evidence for sustained uptake of such tools remains limited. This paper utilizes a survey of tool developers and 
researchers, as well as a systematic meta-analysis of prior studies, to assess the extent and challenges of scaling 
decision support tools for site-specific soil nutrient management (SSNM-DST) across smallholder farming sys-
tems, where “scaling” is defined as a significant increase in tool usage beyond pilot levels. Our evaluation draws 
on relevant literature, expert opinion and apps available in different repositories. Despite their acclaimed yield 
benefits, we find that SSNM-DST have struggled to reach scale over the last few decades and, with strong het-
erogeneity in adoption among intended stakeholders and tools. For example, the log odds of a SSNM-DST 
reaching 5–10 % of the target farmers compared with reaching none, decreases by ~200% when a technical 
problem is stated as a reason for the tools’ failure to be used at scale. We find a similar decrease in odds ratios 
when technical, socioeconomic, policy, and R&D constraints were identified as barriers to scaling by national 
extension and private systems. Meta-regression analysis indicates that the response ratio of using SSNM-DST over 
Farmer Fertilizer Practice (FFP) varies by non-tool related covariates, such as initial crop yield potential under 
FFP, current and past crop types, acidity class of the soil, temperature and rainfall regimes, and the amount of 
input under FFP. In general, the SSNM-DST have moved one step forward compared with the traditional ‘blanket’ 
fertilizer recommendation by accounting for in-field heterogeneities in soil and crop characteristics, while 
remaining undifferentiated in terms of demographic and socioeconomic heterogeneities among users, which 
potentially constrains adoption at scale. The SSNM-DSTs possess reasonable applicability and can be labeled 
‘ready’ from purely scientific viewpoints, although their readiness for system-level uptake at scale remains 
limited, especially where socio-technical and institutional constraints are prevalent.   

1. Introduction 

Innovations in digital technology have benefited many scientific 
disciplines and economic sectors, including agriculture. This can be 
evidenced by the boom of initiatives such as Digital Earth (Guo, 1998), 
Digital Agriculture (Tang et al., 2002), Precision Agriculture (Cassman, 
1999; Gebbers and Adamchuk, 2010; Zhang et al., 2002), Virtue Agri-
culture (Tang et al., 2002), Information Agriculture (Hornik, 1993), 
Smart Agriculture/Farming (Janc et al., 2019; Knierim et al., 2019) and 

Digital Farming (Bronson, 2019) since the 1990s. Digital agriculture, 
which is the application of digital tools and technologies in agriculture, 
offers multiple potential benefits to smallholders. First, it can assist in 
addressing the problem of location-specific yield gaps through the op-
timum allocation of mineral and organic fertilizers (Jat et al., 2013). 
Second, it can help to reduce the environmental impacts of agriculture – 
nutrient leaching and greenhouse gas emissions – by matching nutrient 
inputs to plant nutrient requirements (Deichmann et al., 2016; Liang 
et al., 2013). Third, it allows the collection of site-specific biophysical 
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and management data (Basso and Antle, 2020), with a potential to 
enhance consequent data-driven decision-making in smallholder sys-
tems (Chandra and Collis, 2021). 

Globally, digital agriculture has been applied, albeit with varying 
degrees of success, to guide fertilizer recommendations (MacCarthy 
et al., 2018), operationalize ecosystem services (MacCarthy et al., 2018), 
optimize soil nutrient management (Pooniya et al., 2015; Sapkota et al., 
2021; Singh, 2019), understand trade-offs in climate-smart agriculture 
(Capalbo et al., 2018), adjust irrigation management (Wellens et al., 
2017) and analyze the effect of climate change on inland fisheries 
(Lynch et al., 2015). We limit the current analysis to its application in 
the form of Site-Specific Nutrient Management Decision Support Tools 
(SSNM-DST). In the smallholder farming systems that are prevalent in 
developing countries, SSNM-DST have been applied predominantly in 
soil nutrient management (AfricaRice, 2014; Buresh and Witt, 2007; 
Johnston et al., 2009; Kaizzi et al., 2013; Prause et al., 2021). The 
concept of site-specific nutrient management integrates information 
from different scales to assist field-specific decisions (Chivenge et al., 
2022; Pampolino et al., 2012). The greater success of SSNM-DST over 
farmers’ fertilizer practices (FFP) is measured through improved yields 
(Bhatta et al., 2020; Chuan et al., 2013; Jansen et al., 2013; Pampolino 
et al., 2012; Rurinda et al., 2020; Saito et al., 2015; Xu et al., 2016), 
higher returns (Bhatta et al., 2020; Jansen et al., 2013; Pampolino et al., 
2012; Saito et al., 2015; Zhang et al., 2018), and better environmental 
quality (Wang et al., 2020; Zhang et al., 2018) as a result of tailored 
advice provided by the tools. In Africa alone, nearly 400 different digital 
agriculture solutions have been on the market (World Bank Group, 
2019). Nonetheless, the solutions reached only 6 % of an estimated €2.3 
billion potential advisory market in the continent (Tsan et al., 2019). 

Uptake of SSNM-DST at scale in smallholder farming systems has 
been limited (Shepherd et al., 2020) despite claims of its numerous co- 
benefits (Chivenge et al., 2021) and in contrast to the fast rate of 
expansion of digital technologies in other sectors (Bhavnani et al., 2016; 
Goggin, 2006; Kaur et al., 2021; Mallat et al., 2004; Topol, 2019). One 
explanation could be the absence of combined efforts among technology 
developers, agronomists, socio-economists, behavior experts, tool de-
signers, political economy experts, as well as the lack of involvement of 
scaling partners as has been found to be the case in other sectors 
(Woltering et al., 2019). Often times, algorithm developers in SSNM- 
DST do not have the required data and computational tools needed to 
convert intricate soil and plant geospatial information into appropriate 
crop management actions (Capalbo et al., 2018). Consequently, the 
SSNM-DST appear to suffer from incomplete understanding and misuse 
by end users, mainly agronomists and extension workers (Andersson 
et al., 2020), leading to limited chances for adoption at scale (Ayim 
et al., 2022). Furthermore, SSNM-DST are piloted in controlled project 
environments – i.e., in trials, evaluations or pilots – that do not reflect 
the realities of smallholders (Woltering et al., 2019). Another 
mentionable limitation is that SSNM-DST already on the market have 
been calibrated under data-scarce settings (Shepherd et al., 2020). There 
have been complaints about the tools being rigid and knowledge 
intensive (Andersson et al., 2020), making them difficult to be adapted 
to smallholder conditions. Most tools lack utilities that allow inclusion of 
site-specific soil and agronomic information while generating advice. 
Yet, they have been massively promoted in many countries of Sub- 
Saharan Africa (SSA), South Asia and Southeast Asia, although the 
level of adoption at scale for these tools has not been well documented. 

‘Blanket’ fertilizer advisories remain the main approach of choice in 
many places (Tefera et al., 2020), regardless of the large inter- and intra- 
plot heterogeneities inherent in smallholder fields (Sida et al., 2021), 
underscoring the importance of site-specific approaches. Such systems 
suffer from low fertilizer use efficiency, low factor productivity and 
persistent food insecurity (Aleminew and Alemayehu, 2020). Digital 
agriculture has been established rapidly in large-scale, capital intensive 
agriculture (Kelley et al., 2020; Lindblom et al., 2017; Tang et al., 2002), 
although the drivers of adoption have not been firmly established, even 

in those systems (Nowak, 2021; Tey and Brindal, 2022). Although not at 
a similar rate to developed economies (DeGusta, 2012), accessibility of 
digital technology is destined to improve in developing countries 
(DeGusta, 2012; Duncombe, 2016). The recent explosion of mobile 
phone technologies and smallholders’ relative ease of access to 
smartphone-based applications offer an opportunity to advance digital 
agronomy in smallholder systems. Nonetheless, drivers of (non)adop-
tion, especially at the regional level, have never been explored. 

The current work aims to explore the level of scaling of SSNM-DST 
within smallholder farming systems, where we define “scaling“ as a 
significant increase in tool usage beyond pilot levels. We aim to high-
light why these tools have failed to be used at scale, regardless of their 
potential benefits. We combine survey and meta-analysis hybrid 
methods and seek to answer the following questions regarding the 
application of digital site-specific nutrient management decision- 
support tools.  

(1) How prominent are digital advisory tools for site-specific nutrient 
management and what is their current level of adoption in 
smallholder farming systems?  

(2) What are the main drivers of (non)adoption of site-specific 
nutrient management decision support tools under smallholder 
contexts? 

2. Materials and methods 

2.1. Literature search and tool identification 

We made an inventory of site-specific nutrient management decision 
support tools (SSNM-DST) that are available (or under development) 
within the context of smallholder farming. We conducted two rounds of 
systematic literature search. 

In the first round, we searched major academic search engines 
Google Scholar, Scopus and ISI Web of Science for documents that re-
ported about site-specific nutrient management decision support tools, 
using the search strings [“decision support tool*” AND “site-specific 
nutrient management”]. We limited our search to the period from 2000 
to 2020. We focused on this period because the concept of site-specific 
nutrient management started to emerge in the 1990’s (Dobermann 
and White, 1999; Reetz and Fixen, 1995) and use of decision support 
tools emerged slightly later (Betteridge, 2006). The literature turnout 
corroborates our assumption, as it shows that trials exploring SSNM-DST 
started to emerge in the late 1990’s and publication of their results 
started to emerge since the early 2000’s. It is important to note that we 
focused only on peer-reviewed literature, excluding any gray literature 
on this topic. This is because we were interested in only including 
manuscripts with robust study designs and that had passed through a 
rigorous revision process. However, we acknowledge that such parsi-
monious selections may downwardly bias the number of studies 
included in our analysis and potentially upwardly bias the types of 
studies that reject the null hypothesis, which arises from selective 
publication of positive results. The latter scenario is in line with our 
objectives since we are interested in understanding the challenges of 
scaling SSNM-DST, even when they are proven to be profitable (i.e., 
resulting in positive outcomes). The search at this round returned 379 
papers in total, reporting on the results of seven SSNM-DST (Table 1). 

In round two, we read the abstracts and scanned through each paper 
to identify the exact name of the SSNM-DST as compiled in Table 1. We 
then used these names as search terms to undertake more rounds of 
literature revision. We followed this stage to avoid any potential bias 
that may have occurred if we only selected studies that included the 
SSNM-DST by its name (e.g., Nutrient Expert) without explicitly 
mentioning the search terms ‘site-specific nutrient management’ or 
‘decision support tool’ used in the earlier round. The tool-based searches 
identified 1257 documents. It is apparent that some SSNM-DST may not 
have been fully captured using the initial search. We merged this with 
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Table 1 
List of site-specific nutrient management decision support tools (SSNM-DST) selected from the literature.  

SSNM-DST Full 
Name  

SSNM-DST 
Abbreviation  

Descriptions  Countries* of 
implementation  

Back- 
end 
Model  

Primary users  Media  

Fertilizer 
optimization 
tool  

FOT  FOT takes input 
information on crops, 
acreage, projected price of 
crop at the time of harvest, 
cost of fertilizer and the 
amount of money to be 
invested by the farmer are 
required. Fertilizers to be 
applied to each crop, its 
expected mean effect on 
yield, net returns for each 
crop, and the expected total 
net returns are the 
outcomes. The tool 
recommends fertilizer rates 
that optimizes return on 
investment based on 
predetermined nutrient 
response curves.  

Burkina Faso, Ethiopia, 
Ghana, Kenya, Mali, 
Mozambique, Niger, 
Nigeria, Rwanda, 
Tanzania, Uganda, 
Zambia  

Excel 
Solver ®  

Extension 
agents & Farmers  

PC, 
Paper, 
App  

Generic  Generic  These include tools that 
explicitly mention site- 
specific decision and follow 
the principles of Site- 
Specific Nutrient 
management decision- 
support tools but cannot 
fully fall under a specific 
tool. For example, tools that 
use target yields and 
simulation modelling in 
combination with site 
specific soil test results were 
included under this 
category.  

Bangladesh, Burkina 
Faso, China, Ethiopia, 
India, Indonesia, 
Nepal, Philippines, 
Senegal, Thailand, 
Vietnam  

NA  Farmers, extension, 
private sectors, 
development and, 
research institutes  

Multiple  

Leaf Colour 
Chart  

LCC  LCC had been jointly 
developed by International 
Rice Research Institute 
(IRRI) and Philippines Rice 
Research Institute 
(PhilRice) from a Japanese 
prototype, for the purpose 
of measuring the required 
quantity of nitrogen to be 
applied in crop fields, 
leading to maximum 
productivity. The LCC has 
4–6 green strips, with 
colour ranging from yellow 
green to dark green. It 
determines the greenness of 
the rice leaf, which 
indicates its N content.  

Bangladesh, China, 
India, Indonesia, 
Nepal, Philippines, 
Thailand, Vietnam  

NA  Extension, farmers  Digital/ 
Physical 
Gadget  

Nutrient 
Expert®  

NE  NE estimates the attainable 
yield and yield response to 
fertilizer from site 
information using decision 
rules developed from on- 
farm omission trials. It uses 
characteristics of the 
growing environment: 
water availability, soil 
health and fertility 
indicators, historical use of 
organic materials, crop 
sequence, crop residue 
management, fertilizer 
input and crop yields for the 
previous season.  

Bangladesh, China, 
Ethiopia, India, 
Indonesia, Nepal, 
Nigeria, Philippines, 
Vietnam,  

QUEFTS  Extension agents  PC, Web, 
App  

Rice Crop 
Manager  

RCM  RCM is designed for use by 
extension workers, crop 
advisors, agricultural 
service providers, and  

Bangladesh, India, 
Indonesia, Myanmar, 
Philippines, Vietnam  

Oryza  Extension workers, 
crop advisors, input 
providers, service 
providers  

Web  

(continued on next page) 
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results from the previous search, retaining a total of 1556 documents for 
further screening (Fig. 1). We removed duplicates and documented the 
papers for further screening using pre-set exclusion criteria. 

Following the screening workflow summarized in Fig. 1, we first 
screened the titles and the abstracts of the documents and excluded: (1) 
documents that were not dealing with any form of decision support 
system in soil nutrient management and (2) documents that discussed 
decision support tools, but that were not applied to smallholder systems. 
We retained 445 documents based on these criteria. Second, we explored 
the full texts of the retained documents and excluded irrelevant litera-
ture. The criteria for eligibility were: (1) the tool served farmers or 
service providers to assist in soil fertility management; (2) The devel-
oper clearly stated that the tool was for site-specific nutrient advisory 
purposes; (3) the tool serves to either optimize nutrient use efficiency or 
economic benefits from mineral and organic fertilizers; (4) The tool has 
been applied at least at performance trial levels; and (5) The study 
clearly compared the benefit of using SSNM-DST with Farmer Fertilizer 
Practices that are commonly recommended for the region of interest 
(FFP). Under conditions where both FFP and local recommendations 
were included in the studies, we selected the FFP for our analysis. We 
excluded studies where agronomic management or factors other than 
nutrient management differed between FFP and SSNM-DST plots. A total 

of 70 documents with 442 entries were included in our study. We 
summarize the details of the literature included for analysis in Table S1 
(https://doi.org/10.7910/DVN/GRYA0U) and the stages in Table S2 
(https://doi.org/10.7910/DVN/I7U8YY). 

2.2. Data compilation 

We collected a variety of variables from the studies listed in Table S1, 
including details about the study location, measurement parameters, 
and study design. Additionally, we included information about the 
specific crops grown and the SSNM-DST utilized for soil nutrient man-
agement. Measured outcomes such as yield, nutrient use efficiency, and 
environmental impacts resulting from the tool application were quan-
tified, along with corresponding values reported for FFP. When studies 
involved multiple treatment levels, locations, and SSNM-DST variations 
for a particular trial, we recorded data separately for all tools, crops, and 
sites. In cases where results were not presented in tabular form and were 
challenging to extract directly, we utilized the metaDigitise package in R 
to extract values from graph-based summary reports (Pick et al., 2019). 

In addition to measured values, we compiled data on potential 
covariates for the experimental plots, encompassing environmental 
factors (e.g., region, rainfall, temperature regime, soil properties), 

Table 1 (continued ) 

SSNM-DST Full 
Name  

SSNM-DST 
Abbreviation  

Descriptions  Countries* of 
implementation  

Back- 
end 
Model  

Primary users  Media  

farmer leaders. It uses 
farmer’s answers to 
questions on rice farming 
practices to automatically 
generate crop management 
guidelines aimed at 
increasing the net income. 

RiceAdvice  RiceAdvice  RiceAdvice is a decision 
support tool developed by 
the International Rice 
Research Institute (IRRI) 
and Africa Rice Center 
(AfricaRice) for rice crop 
management. It aims at 
providing smallholder rice- 
farmers with timely field 
specific guidelines for crop 
and nutrient management 
practices. The guidelines 
are generated each new 
season.  

Burkina Faso, 
Cameroon, Chad, Côte 
d’Ivoire, Ethiopia, 
Ghana, Madagascar, 
Nigeria, Senegal, Sierra 
Leone, Togo  

Oryza  Farmers, extension 
agents, private 
sectors, development 
agencies  

App  

The Soil Plant 
Analysis 
Development 
(SPAD)  

SPAD  Chlorophyll meter is used to 
generate relative values of 
leaf chlorophyll content, 
which is used as an 
indicator of the health 
status of crops and guide for 
crop fertilization and field 
management in different 
crop growth periods. The 
SPAD values are the ratio of 
the amount of incident 
infrared to the emitted 
infrared radiation (IR) to 
the ratio of incident red to 
emitted red wavelengths 
(R) of the visible spectrum. 
The value indicates the 
greenness level of leaves, 
which in turn shows the 
level of leaf N content, 
guiding application of N- 
containing fertilizer at 
different crop growth 
stages.  

Bangladesh, China, 
India, Indonesia, 
Mozambique, Nepal, 
Philippines, Vietnam  

NA  Extension agents, 
Farmers  

Digital 
Gadget  

*The table lists only countries where the tools in the current analysis have applied in. 
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management practices (e.g., current and past crops, tillage methods), 
and input variables (such as the type and application rate of fertilizer, 
fertilizer cost). 

2.3. Survey of current level of tool adoption 

We acknowledge that identifying the exact stage and level of adop-
tion for a technology is challenging. Consequently, we emphasize that 
our survey results reflect the views of tool developers, which may not 
always align with perspectives expressed by tool users. To appraise the 
current stage of adoption for the tools in Table 1, we compiled the email 
addresses of corresponding authors and co-authors from the literature 
identified in Table S1. Additionally, we created mailing lists of in-
stitutions, national systems, consortiums, and individuals working with 
the identified SSNM-DST. 

We then sent a questionnaire with customized messages to each 
stakeholder, addressing various aspects of the SSNM-DST, such as its 
type, application location, proportion of target farmers currently using 
the tool, uptake by the national extension system and/or the private 
sector, stage of adoption within the target region, and potential drivers 
for adoption trends. Approximately 414 customized emails were circu-
lated (exact receiver count unknown due to inclusion of specialist group 
mailing lists with unidentified list sizes). Following three months of 
open survey with monthly reminders, we received 81 responses, which 
were used for analysis. While the response rate was approximately 20%, 

the survey results remain informative since the respondents were spe-
cialists on SSNM-DST. The number of experts per tool ranged from six 
(RiceAdvice) to 21 (NE), with an average response rate of 16 per tool. 

2.4. Data analysis 

2.4.1. Analysis of survey data 
To analyze the adoption levels of SSNM-DST among various stake-

holders, we employed multinomial logistic regression. We derived the 
dependent and independent variables for tool adoption from survey 
responses. The dependent variable in this study represents three adop-
tion categories for farmers: <5% coverage (considered as no adoption, 
also used as the baseline), 5–10% adoption, and more than 10% adop-
tion. Similarly, three adoption categories were defined for both national 
extension and private business systems: no adoption, partial adoption, 
and full adoption. Since all variables are categorical, we applied 
multinomial logistic regression (MNL) to model them. The variables 
identified as drivers of adoption level for all stakeholder groups 
(farmers, extension, and business) were classified into four categories: 
technical, socioeconomic, policy, and R&D. Technical variables 
encompassed aspects such as tool complexity, time requirement, 
required education level, and data needs. Socioeconomic variables 
included factors like phone access, telecom network coverage, farmer 
behavior, and extension-to-farmer ratio. Policy variables pertained to 
government strategy, extension services, advocacy level, and capacity 

Fig. 1. Workflow showing the selection procedure of SSNM-DST for evaluation for inclusion in the appraisal. Superscripts a and b, respectively, indicate the 
application of the first and second screening criteria explained in the text. Seventy published sources with a total of 442 entries were included for the seven SSNM- 
DST explored. 
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building activities. R&D variables focused on proper calibration, tool 
consistency, stability, scaling readiness testing, and scaling approach. 

To estimate the multinomial logistic regression model, we employed 
the ’multinom’ function from the ’nnet’ package in R (Ripley et al., 
2016). We fitted separate regressions for each stakeholder category 
using the logistic regression of the form presented in Eq. (1). The 
regression outcome facilitated the identification of the specific contri-
butions of technical, socioeconomic, business model, and policy aspects 
in constraining the tool’s adoption at scale. 

ln
(

P(χo)

P(χi)

)

= β0 + β1τi + β2ϕi + β3ρi + β4ψi + εi (1) 

where, P(χo)is the probability of choosing the baseline (non-adop-
tion) category, P(χi) is the ith probability of choosing an outcome cate-
gory other than the baseline category, τi, ϕi, ρi, and ψ i are the ith 

responses in the outcome categories for technical, socioeconomic, policy 
and R&D variables, respectively, β0 is the constant term of the regres-
sion, β1, β2,β3andβ4 are regression coefficients for the respective vari-
ables in the outcome category and εi is the error term of the regression. 
We used the probability level of 0.05 to assess the significance of each 
effect size in the model, unless otherwise stated. 

2.4.2. Analysis of review data 
Proportions of negative, neutral and positive yield, economic and 

environmental effects of using a SSNM-DST over the FFP were computed 
using Eq. (2). 

δYi =

(
Yi(SSNM− DST) − Yi(FFP)

Yi(FFP)

)

*100 (2) 

where δYi denotes the relative change in effect for the ith SSNM-DST, 
Yi(SSNM− DST) is the yield, economic and environmental values reported 
under the ith SSNM-DST, and Yi(FFP) is the value of these effects reported 
for a corresponding FFP. To assess the economic impact, we employed 
the marginal rate of return (MRR) on fertilizer investment. We evaluated 
the environmental impact by determining the partial factor productivity 
(PFP) of nitrogen fertilizer, which measures kilogram of grain yield 
obtained per kilogram of applied nitrogen. We considered lower values 
of grain yield per kilogram of nitrogen as a proxy for negative envi-
ronmental effects. We categorized the values of δYi as negative, neutral, 
or positive. Relative change values between − 5% and 5% from the 
corresponding FFP values were labeled as neutral. Values below − 5% 
were considered negative, and values above 5% were considered posi-
tive. For the PFP of nitrogen fertilizer, we used a reversed rating where 
values lower than − 5% were considered positive, indicating a reduction 
in negative environmental consequences. Using this approach, we 
summarized the proportions of negative, neutral, and positive relative 
changes for each analyzed SSNM-DST in this study. 

In addition to exploring the drivers of adoption (or lack thereof) 
through the survey questionnaire, we hypothesize that variables 
aggregated from the meta-analysis results can reveal some drivers of 
scaling. Therefore, we utilized a random-effect model to determine the 
impact of using the tool-assisted strategy on crop yield under SSNM-DST 
compared with FFP. We calculated the effect size as the natural log of the 
response ratio (RR) between the two yields (Hedges et al., 1999), rep-
resenting the effects of using the tools over FFP Eq. (3). 

ln(RR) = ln
(

YT

YF

)

(3)  

where RR is the response ratio, YT and YF the crop yield, using SSNM- 
DST tools and FFP, respectively. A meta-regression was conducted 
modeling the RR as the dependent variable. The effect of using SSNM- 
DST in soil nutrient management was explored by controlling for all 
the other covariates relating to the experimental environment (e.g., 

region, rainfall, temperature regime, soil properties), management (e.g., 
current crop and past crops, tillage practices) and inputs (type and rate 
of fertilizer applied, cost of fertilizer). Due to inevitable experimental 
heterogeneity, we combined data using a random-effects model applied 
to sub-grouped covariates and conducted subgroup analyses to unravel 
the confounding effects of experimental environment, management, 
input and geographic features on the effect size of the response ratio. We 
identified the most important covariates using the AIC forward elimi-
nation using the ’olsrr’ package in R (Hebbali and Hebbali, 2017) and 
performed meta-analysis using the ‘metareg’ function of the ‘meta’ 
package in R (Schwarzer, 2007) with the selected covariates. We con-
ducted meta-regression analysis following the general model outlined in 
Eq. (4). 

θ̂ i = θ+ βχi + εi + ωi (4)  

where θ̂ i is the effect size of study i, θ is the fixed term and χi is a vector 
of predictors (covariates) with β being a vector of regression coefficients. 
Unlike the conventional random-effects-model, the meta regression has 
two error terms (i.e., εi and ωi), where εi is the sampling error through 
which the effect size of a study deviates from its true effect and ωi is the 
true effect size of the study that is only sampled from an overarching 
distribution of effect sizes. 

In addition, the size of the response ratio as a function of crop yield 
under FFP was assessed and visualized using quantile regression fitted to 
the 90th percentile of the pooled data with the ‘rq’ function of the 
‘quantreg’ package in R (Koenker et al., 2018). The relationship was 
assumed to take a logistic functional form (y = a - b × x + c × 0.90x), 
where y refers to the natural log of RR, x to the yield under FFP and a, b 
and c to the instantaneous slopes (first degree derivatives) of the 
quantile regression curves. 

3. Results 

3.1. Trends in the application of SSNM-DST and their comparative 
advantages 

The popularity of SSNM-DST has been consistently increasing over 
the past 20 years, as shown by the growing number of experiments 
involving these tools (see Fig. 2). However, there has been a clear shift in 
the focus towards specific types of tools. Until the early 2010s, the 
dominant tools were Soil Plant Analysis Development (SPAD), Leaf 
Color Chart (LCC), and Generic tools. These tools were gadgets that 
helped make on-site decisions based on crop characteristics but were not 
fully developed into digital applications. Nutrient Expert (NE) appears 
to be the first tool to apply app-based advisory for site-specific nutrient 
management, and it became the most popular among SSNM-DST start-
ing from the late 2000s. Other app-based tools like Fertilizer Optimi-
zation Tool (FOT), RiceAdvice, and Rice Crop Manager (RCM) emerged 
in the early to mid 2010s. Currently, the app-based tools are gaining 
popularity, while the earlier gadget-based tools are declining. 

Although the majority of the SSNM-DST have positive to neutral 
effects, there are some negative effects when comparing their applica-
tion to traditional FFP. In terms of yield, the overall negative effect is 
only about 5%, with the biggest proportion of negative effect found in 
SPAD (15%). When considering the economic effect, measured by the 
marginal rate of return on investment, RiceAdvice shows the largest 
negative effect at around 14%. Overall, the negative effect for this in-
dicator stands at 3.2%. SSNM-DST generally have few negative effects 
on environmental outcomes, with an overall negative effect of about 
18% and overall positive environmental outcomes of over 70%. RCM 
has the largest negative environmental consequence, with 50% of the 
advisory incidences resulting in lower grain yield per kilogram of 
applied nitrogen (Table 2). 
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Fig. 2. Trends in the number of trials with digital SSNM-DST. For the explanation of the abbreviations, refer to Table 1.  

Table 2 
Proportion of negative, neutral and positive yield, economic and environmental effects for each of the SSNM-DST included in the current analysis. For every effect 
(yield, economic and environmental), values between − 5 disadvantage and 5 % advantage of using SSNM-DST over FFP were considered neutral, values that are more 
disadvantageous than − 5 % were considered negative and values with advantages of more than 5 % were considered positive. Economic effects were derived form 
marginal rate of return on investment for fertilizer, while environmental effects were derived from PFP of N fertilizer. The full description of the outcome variables is 
presented in Table S1 (https://doi.org/10.7910/DVN/GRYA0U).  

Outcomes Tools used in SSNM decision support Overall 

FOT Generic LCC NE RCM RiceAdvice SPAD 

Yield effects         
Negative — 3.4% — 5.3% — — 15.0% 4.8% 
Neutral 69.2% 20.7% 18.7% 16.5% 20.0% 14.3% 26.7% 20.6% 
Positive 30.8% 75.9% 81.3% 78.2% 80.0% 85.7% 58.3% 74.7%  

Economic effects         
Negative — 3.4% 2.2% 1.1% — 14.3% 11.7% 3.2% 
Neutral 100.0% 41.4% 30.8% 52.7% 24.0% — 25.0% 41.9% 
Positive — 55.2% 67.0% 46.3% 76.0% 85.7% 63.3% 55.0%  

Environmental effects*         
Negative — 23.4% 21.3% 7.1% 50.0% — 18.3% 17.9% 
Neutral — 10.6% 6.7% 15.2% 18.2% — 6.7% 11.0% 
Positive — 66.6% 72.0% 77.7% 31.8% 100% 75.0% 71.2%  

Number of entries (N)         
Yield 13 58 91 188 25 7 60 442 
Economic 17 58 88 188 22 7 49 429 
Environmental 9 43 36 123 23 7 42 283 

* Note: Fore the environmental effect, we used kg of Nitrogen from fertilizer per kg of grain produced under the corresponding advisory, also called PFP of Nitrogen; 
less kg of grain for more kg of N assumed to serve as a proxy for negative environmental effects. 
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Fig. 3. The reported level of adoption for each of the identified SSNM-DS tools by farmers (a), national extension system (b) and the private business (c). For the 
explanation of the abbreviations of the tools, refer to Table 1. 
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3.2. Extent of scaling for SSNM-DST in smallholder systems 

Despite growing interest and an expanding range of tools available 
(Fig. 2), the adoption of SSNM-DST has been limited (Fig. 3). There is 
variation in adoption levels among different tools and intended stake-
holders. The most commonly adopted tools among farmers, such as 
generic tools, NE, and RiceAdvice, reached a maximum of only 20–30% 
of the target farmers (Fig. 3 a). However, <20% of respondents reported 
this adoption rate. Additionally, around 25% of responses indicated 
significantly poor adoption levels, with the tools reaching barely 1% of 
the target population. FOT had the lowest adoption rate, with nearly half 
of the respondents stating that it reached <1% of the target population. 

The adoption levels of SSNM-DST by national extension systems 
(Fig. 3 b) and private businesses (Fig. 3 c) were even lower. RiceAdvice 
and generic tools were adopted or partially adopted by national exten-
sion systems approximately 65% of the time (Fig. 3 b). For the other 
tools, there was no evidence of adoption by national extension systems 
in over 75% of the cases (Fig. 3 b). NE was reported to be partially 
adopted by the extension system in about one-third of the cases. The 
uptake by private businesses was mostly non-existent for most tools 
(Fig. 3 c). Only two SSNM-DST (NE at 5% and generic at 20%) were 
reported to be taken up by the business system. Partial uptake of NE, 
FOT, and generic tools was indicated about 30% of the time, while 
partial uptake of RCM by private businesses was reported in about 10% 
of the cases. RiceAdvice, SPAD, and LCC were completely disregarded by 
the private system. 

3.3. Challenges to scaling SSNM-DST: Expert accounts 

Attempts to apply SSNM-DST at scale in smallholder systems posed 
different challenges across stakeholders (Table 3). When a technical 
problem was cited as the cause of the tools’ failure to be used at scale 
(Table 3 panel I), the likelihood of at least 5% of target farmers adopting 
SSNM-DST was significantly low. Likewise, reporting a technical prob-
lem as a reason for the tools’ failure to be used at scale resulted in a 
177% decrease in the probability of SSNM-DST reaching more than 10% 
of the target farmers, compared to reaching none. 

The chances of the national extension system partially picking up a 
SSNM-DST decrease significantly when technical, policy, and R&D 
reasons are cited as the reasons for their lack of adoption (Table 3, panel 
II). Similarly, the likelihood of the extension system fully embracing the 
SSNM-DST compared to not adopting it at all decreases significantly 
when socioeconomic issues are mentioned as a factor hindering wide-
spread tool adoption. Lastly, when technical problems are highlighted as 
the reason for poor tool adoption at scale, the likelihood of the private 
business system fully adopting the SSNM-DST compared to its failure to 
adopt it decreases significantly. 

3.4. Challenges of scaling SSNM-DST: Dissecting published sources 

Fig. 4 presents the results of quantile regression applied to the nat-
ural log of the response ratio (RR) for grain yield (Fig. 4 a) and net 
marginal returns on fertilizer (Fig. 4 b) across different crops and regions 
under FFP. The RR tends to be lower when crop yield is high under FFP 
(Fig. 4 a), indicating that SSNM-DST is more beneficial for farmers with 
lower yields under their own practices. Both regression lines, one fitted 
to the data and another to the top 10% of data points, show an expo-
nential decline in RR as the grain yield produced under farmers’ own 
practices increases. For maize, the decline in RR is gradual for low- 
yielding farmers and steep for high-yielding ones. For rice and wheat, 
the decline in RR with increasing FFP yield is very steep from the 
beginning. 

In Fig. 4 b, we observe that the impact of an increase in RR on net 
marginal returns (NMR) on fertilizer under SSNM practice varies 
depending on the crop and is mostly negative. For maize, an increase in 
RR leads to a linear decrease in NMR, which is surprising as we would Ta
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usually expect returns to increase with higher response ratios. The 
trends for rice show no effect on NMR with increasing RR, and for wheat, 
the trends differ for low, medium, and high RR. 

The results of a meta-regression analysis in Table 4 (Multiple R2 =

0.80, Adj. R2 = 0.77, F-statistic: 46.2 on 31 and 350 DF, p-value <
2.2e− 16) indicate that the response ratio of using SSNM-DST over FFP is 
influenced by various non-tool related factors. These factors include 
crop yield under FFP, current and past crop types, soil acidity class, 
temperature and rainfall regimes, and the amount of input under FFP. 
For example, fields with higher yields under FFP tend to generate 
smaller RR when managed using SSNM-DST. A 15% increase in grain 
yield under FFP results in a statistically significant decline in RR when 
using SSNM-DST. The odds of a significant increase in the response ratio 
are approximately 1.5 times higher for maize, rice, and wheat compared 
to other crops when SSNM-DST is applied. 

The response ratio is significantly more likely to be higher when 
SSNM-DST is applied on highly acidic soils, with a 30% increase in RR 
for such conditions. On the other hand, response ratios are likely to 
decrease significantly when the tools are applied on slightly alkaline 
soils. Application of SSNM-DST is also more likely to significantly in-
crease the response ratio under drier conditions (arid and semi-arid) 
compared to wetter conditions, with odds ratios of 16% and 9%, 
respectively, for arid and semi-arid conditions. However, the use of 
SSNM-DST on fields with a legume as the preceding crop significantly 
reduces the response ratio. The odds that the RR declines significantly 
under such conditions is 21 %. 

Interestingly, the application of higher rates of P fertilizer under FFP 
was found to increase the response ratio of using SSNM-DST 

significantly. Conversely, an increase of 1% in N fertilizer on FFP was 
found to reduce the response rate, which is expected as higher rates of 
fertilizer usually lead to increased yields under FFP, resulting in a 
reduced RR. 

4. Discussion 

4.1. Alternative SSNM-DST in smallholder farming systems have been 
expanding 

In the 21st century, the widespread dominance of digital decision- 
support tools has significantly shaped various sectors across regions. 
In particular, we have observed a consistent increase in the development 
and promotion of digital and semi-digital tools in smallholder farming 
systems over the past three decades (Fig. 2). Previously, attempts were 
made to address the site-specificity of nutrient advisories through on-site 
diagnostics of plant characteristics (Thind and Gupta, 2010). It is 
important to note that soil heterogeneity, resulting from physical, 
chemical, and biological soil conditions, typically occurs at coarser 
scales (Goovaerts, 1998), although the applicability of such approaches 
beyond research settings has been contested due to documented soil 
heterogeneity over small spatial scales (Schut and Giller, 2020). 

With the prevalence of mobile phones even in smallholder farming 
settings (CABI, 2019), digital tools based on PC, web, and app platforms 
began to emerge in the site-specific nutrient management advisory 
domain. This development initially took place in south Asia and 
southeast Asia (Chuan et al., 2013; Pampolino et al., 2012; Pooniya 
et al., 2015) and later expanding to SSA (Rurinda et al., 2020; Saito 

Fig. 4. The relationship between response ratio of using SSNM-DST and grain yield across regions (a) and the relationship between the net return from SSNM fields 
and the response ratio (b) for the three crops (Maize, Rice and Wheat). Each observation corresponds to one individual study in each of the four regions. The solid line 
depicts a quantile regression fitted to the 90th percentile of the data, the dashed lines represent the polynomial logistic regression fit and the shaded area indicate the 
95% confidence interval. 
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et al., 2015). These digital apps rely on observed field-specific variables, 
plot management history, and available inputs, which serve as proxies 
for soil fertility or nutrient responses. These factors play a crucial role in 
defining the application of these digital tools. Additionally, climate/ 
weather information is an essential element in determining site speci-
ficity. Notably, only NE, the most popular SSNM-DST, employs climate 
information in generalized terms, while the other tools do not utilize 
such data (Fig. 2 and Table 1). It is worth mentioning that certain apps, 
such as FOT, make site-specific fertilizer use recommendations based on 
the concept of economic optimization, focusing on better resource 
allocation, rather than nutrient optimization for improved agronomic 
use efficiency. 

4.2. Multiple factors limit application at scale of SSNM-DST in 
smallholder systems 

Regardless of the increasing prevalence of SSNM-DST both in type 
and number (Fig. 2), the dominance of positive yields (Chivenge et al., 
2021) and dominantly positive economic and environmental outcomes 
from application of the tools (Table 2), these tools have not been widely 
adopted (Fig. 3). The highest reported uptake of SSNM-DST by a target 
farmer community ranged between 20 % and 30 % (Fig. 3 a), and this 

was limited to just two advisory tools: NE and RCM. Similar findings 
were reflected in previous reports where the most adopted SSNM-DST, 
RCM, provided advise to about 30 % of the target farmers in the 
Philippines (Chivenge et al., 2021). Most of the expert respondents (65 
%) estimated that the reach of these tools was either unknown or 
reached <5% of the target farming community. Despite minor variations 
among specific SSNM-DST, the overall scale of adoption has been low, 
with 54% of respondents indicating that these tools reached <1% of the 
target population of farmers (Fig. 3). Uptake of SSNM-DST has been 
minimal both for the private sector and government extension systems, 
suggesting a lack of interest from key stakeholders involved in scaling 
these technologies. Only 5–6 % of the experts reported full adoption of 
SSNM-DST by the private sector and government extension systems, 
while a substantial majority (72 – 76 %) stated that these nutrient 
management advisory tools have not been integrated into either the 
private business or government extension systems. Some experts re-
ported partial uptake of these tools by these systems, but overall, the 
adoption rates for SSNM-DST are remarkably low compared to other 
digital technologies used by smallholders (Asravor et al., 2021) or 
similar digital decision support tools in large-scale agriculture (Kelley 
et al., 2020). 

One of the main goals of this study was to investigate the factors 

Table 4 
Results of meta regression from modelling the effect of selected covariates on the magnitude of the response ratio on a logarithmic scale. Probabilities with significant 
effects are presented in bold. εi is the sampling error through which the effect size of a study deviates from its true effect, while ωi is the true effect size of the study that 
is only sampled from an overarching distribution of effect sizes.  

Variables* Variable Category Estimates Std. Error (εi) Statistic (ωi) P values 

FFP yield Log (FFP) (kg/ha)  − 0.15  0.02  − 6.77  0.0000  

Current crop  
Maize  1.56  0.19  8.03  0.0000  
Rice  1.48  0.19  7.80  0.0000  
Wheat  1.47  0.18  8.02  0.0000  

pH class  
Slightly alkaline  − 0.05  0.02  − 2.58  0.0104  
Neutral  − 0.03  0.02  − 1.48  0.1385  
Slightly acidic  − 0.05  0.01  − 3.84  0.0001  
Acidic  − 0.06  0.02  − 3.47  0.0006  
Highly acidic  0.30  0.08  3.51  0.0005  

Precipitation regime  
Arid  0.16  0.05  2.99  0.0030  
Semi-arid  0.09  0.04  2.43  0.0154  
Sub-humid  0.03  0.03  0.88  0.3777  
Humid  0.02  0.03  0.66  0.5080  
Humid tropics  − 0.12  0.07  − 1.60  0.1108  

Temperature regime  
Sub-tropical  0.05  0.03  1.79  0.0750  
Tropical  − 0.02  0.02  − 0.63  0.5272  
Equatorial  0.05  0.03  1.52  0.1292  

Previous crop  
Maize  − 0.05  0.05  − 0.88  0.3796  
Legume  − 0.21  0.07  − 3.25  0.0013  
Rice  − 0.09  0.05  − 1.84  0.0671  
Wheat  − 0.07  0.05  − 1.27  0.2053  

Soil texture  
Clay  0.01  0.02  0.83  0.4059  
Loam  0.02  0.01  1.39  0.1669  
Sand  0.05  0.04  1.30  0.1933  

Inputs  
Average FFP P  0.01  0.00  2.68  0.0076  
Average FFP N  − 0.01  0.00  − 4.95  0.0000 

* The variables used in this regression are described in https://doi.org/10.7910/DVN/IIONAF. 
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influencing scaling in SSNM-DST. The survey of experts revealed that 
technical issues related to the tools were significant constraints for 
scaling these tools (Table 3), indicating that the tools are not technically 
ready for large-scale implementation. As shown in Table 3, technical, 
socio-economic, and policy constraints have varying effects on different 
groups within the user-chain of SSNM-DST. Technical challenges were 
found to be the most limiting factor for farmers and private businesses in 
adopting SSNM-DST at scale. The lack of involvement from private 
businesses in SSNM advisory tools suggests that these tools will struggle 
to reach scale through purely commercial means. Therefore, active 
public support is necessary as an initial prerequisite for these tools to 
establish themselves in smallholder systems. Despite the importance of 
public support for scaling SSNM-DST, our results highlight that the 
constraints to scale these tools are even more widespread for national 
extension systems (Table 3). Typically, only extension workers have 
access to the tools to generate recommendations. Given that extension 
workers need to cover numerous farmers and fields each season, this 
poses additional challenges for the widespread adoption of SSNM-DST 
(Andersson et al., 2020). 

Our findings align with previous studies that have identified various 
barriers hindering the large-scale implementation of digital decision 
support tools in the smallholder context. These barriers include tools 
being too complex to use (Coggins et al., 2022), low levels of literacy and 
lack of skills (Chandra and Collis, 2021), limited access to smartphones 
or other electronic devices (Capalbo et al., 2018), inadequate assimila-
tion of timely and relevant agronomic information (CABI, 2019) and 
poor integration with financial and input supply services (Vorotnikov 
et al., 2020). These findings suggest that SSNM-DST have been designed, 
developed, and deployed without adequately considering the needs and 
contexts of end users, primarily impoverished rural farming households, 
in terms of adoption and optimal implementation. It can be argued that 
these tools are still in their early stages of development and have the 
potential to mature in the future (Altunok and Cakmak, 2010). However, 
for such optimistic possibilities to become a reality, the demonstration, 
implementation, and promotion of these advisory tools should extend 
beyond experimental sites and selected ‘client’ farmers, as well as 
beyond project implementation periods. Complementing our results 
from the expert survey, detailed metanalysis of reported benefits of 
SSNM-DST (Table 4) reveal that non-tool-related covariates also deter-
mine the magnitude of response ratios. These differential responses 
arising from uncontrolled field, management, and environmental vari-
ations may contribute to the limited adoption of SSNM-DST. 

4.3. Should site-specificity be a sufficient criterion for the success of 
SSNM-DST? 

The results presented in Fig. 4 demonstrate that the yield advantages 
claimed for the use of SSNM-DST were not consistent across fields with 
varying initial productivity potentials. While the average yields may 
improve with the use of these tools, individual farmers experienced 
mixed results. Specifically, low-producing farmers benefited more from 
the tools compared to those who already had higher yields through their 
existing practices (Fig. 4 a). There could be several reasons for these 
findings. Firstly, low-producing farmers may have been using sub- 
optimal fertilizer and field management techniques, which the tools 
help address. In such cases, adopting the tools can lead to significant 
improvements in both yields and returns. Secondly, high-yielding 
farmers may already be employing optimal fertilizer rates and effec-
tive field management practices, reducing the potential for further gains 
through the advice provided by the tools. Thirdly, farmers may tend to 
apply excessive fertilizer rates as a precautionary measure to mitigate 
the risk of crop losses when expecting high yields. These factors high-
light that developing the tool in a site-specific manner alone may not be 
sufficient for widespread adoption among farmers with varying initial 
production potentials. Andersson et al. (2020) propose considering an 
’investment-based’ advisory approach to address such heterogeneities. 

This could create a situation where high-producing farmers, who 
gain relatively less from the advice, are less inclined to adopt SSNM- 
DST. On the other hand, low-producing farmers, who stand to benefit 
the most, may be constrained by limited resources, reducing their ca-
pacity to adopt the tool. This suggests that the farmers who would 
benefit the most from the advice are least likely to implement the tools 
due to resource constraints, while those who are more resource- 
endowed are less likely to adopt them as they stand to gain less from 
the advisories. Therefore, the context-specificity of SSNM-DST becomes 
essential in addition to their site-specificity. Advice provision should 
target farmers and fields based on their production potential, empha-
sizing the need for SSNM-DST to provide options rather than rigid, one- 
size-fits-all advice. Balancing the trade-off between resource constraints 
and the necessity of tool-assisted advice is crucial, at least, until the tools 
are scaled across the majority of the system. 

Moreover, SSNM-DST predominantly focuses on tailoring advice to 
heterogeneous biophysical conditions while neglecting heterogeneities 
among users. This can potentially leave out the poor and vulnerable 
farmers living in marginal places, and women farmers, reminiscent of 
the pitfalls in traditional extension systems (Fabregas et al., 2019). This 
can also raise the question of “advice for whom?” If the advice is pri-
marily intended for extension agents who then convey it to smallholder 
farmers, we encounter the issue of limited coverage. In many countries 
where smallholder farming is predominant, the ratio of farmers to 
extension agents is already high (Davis et al., 2010). Under such cir-
cumstances, the use of SSNM-DST becomes more challenging as it 
stretches the already overburdened extension workers with the task of 
generating and providing site-specific advisory services. Multiple site- 
specific advice is required even for a single farm, further hindering the 
possibility of scaling up these tools. In essence, the SSNM-DST have 
moved one step ahead compared with the traditional ‘blanket’ fertilizer 
recommendation by attuning to in-field heterogeneities in soil and crop 
characteristics, while remaining ‘blanket’ in terms of addressing de-
mographic and socioeconomic heterogeneities among users, which 
potentially thwart adoption of the tools at scale. 

4.4. Limitations of the study 

Although this work tries to explore the potential and challenges in 
scaling SSNM-DST, some limitations were inevitable. First, the perfor-
mance of the SSNM-DST appraised here were taken from the claims 
reported mainly from tool developers. We did not perform any inde-
pendent performance analysis. This itself was only done from the user 
perspective. Second, detailed technical appraisal requires exclusive ac-
cess to the algorithms behind the tools, which is lacking under the 
current appraisal. Third, given the heterogeneities in the principles 
behind each of the tools, specific constraints will also vary. The current 
analysis focuses on aggregate level constraints, with less emphasis on 
tool-dependent constraints of scaling. Fourth, we could not include the 
experiences and viewpoints of stakeholders (e.g., extension, policy 
makers) who have been implementing these tools because of logistics 
and practical issues. Fifth, the current appraisal could not allow for case- 
by-case and country-specific variables potentially constraining the 
scaling of the SSNM-DST, although Jacobs et al. (2018) identify the 
majority of the bottlenecks in technology scaling to be institutional by 
nature. This is important because scaling of SSNM-DST can be con-
strained by enabling environments (i.e., in addition to technical issues), 
which are highly influenced by country/regional institutional and 
governance setups. Future appraisals that include those institutional, 
socio-economic and governance aspects may improve our outlooks. 

5. Conclusions 

We have utilized a survey-meta-analysis hybrid methodology and 
systematically appraised the extent of and challenges to scaling decision 
support tools used for site-specific soil nutrient management in 
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smallholder farming systems. Numerous such tools have been under 
promotion, and their application has been consistently rising, which is 
encouraging evidence that the concept of tool-assisted site-specific 
nutrient management has moved a long way from concept to practice. 
There is indication that SSNM-DST can improve crop productivity and 
economic return in smallholder production systems, although the scal-
ability of these tools still needs extensive improvement. Application of 
these tools has been limited to ‘project life cycles’ mainly on experi-
mental stations of research institutions and on farms of select ‘client’ 
smallholder farmers. 

This appraisal has clearly revealed that practical issues, including 
tool complexity and heterogeneous benefits across users, are important 
tool- and non-tool-related variables with the potential of limiting scal-
ability. While addressing these challenges can improve the potential 
scalability of SSNM-DST, future appraisals that include institutional, 
socio-economic, and governance aspects are needed to fully understand 
and address their current low scalability. 

Capabilities that enable the tools to store data from previous advice 
and link it to subsequent advice, which are lacking in all tools appraised 
in the current work, can gradually enable the tools to serve as a source of 
data for the next advice. Although some of the tools (such as NE) can 
store data, the data are stored in formats that are not accessible by the 
tool during successive decisions. Such capabilities, where information 
flow becomes multidirectional between farmers and advice providers, 
assist easy knowledge exchange, documentation, and feedback. These 
data could be used for other purposes, especially if they could be stored 
on cloud-based servers where tool developers and other stakeholders 
can access them. Additionally, capabilities that allow access to legacy 
big data sources (such as soil maps, slope, climate, and land use maps) 
that could potentially be used to make decisions site-specific, are also 
lacking. 

While our appraisal primarily focuses on the benefits of SSNM-DST 
for higher crop yields and greater economic returns, it is important to 
note that profitability can be improved even with lower yields if the 
overall profit is higher. Producers may prioritize profitability over 
higher yields and, therefore, it is essential to consider this aspect in 
assessing the success and desirability of decision support tools. In 
addition, our study also underscores the importance of addressing 
technical challenges, securing public support, and considering the spe-
cific needs and contexts of end users in order to successfully scale SSNM- 
DST. Additionally, the impact of non-tool-related factors on the adop-
tion of these tools should be considered. This holistic approach will 
provide a comprehensive understanding of the impact and effectiveness 
of site-specific nutrient management tools in supporting sustainable 
agricultural practices and improving the livelihoods of smallholder 
farmers. 
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