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• Comparing the contribution of strong 
and weak ties for different farm types 
brings variety in resilience strategies. 

• Farm types’ particularities influence the 
differential contribution of strong versus 
weak ties in their innovation networks. 

• The major contribution of weak ties in 
innovation networks occurs in farm 
units with more access to farm 
resources. 

• Strong ties dominate innovation net-
works from farm units that cultivate 
maize as part of their persistence 
strategies.  

A R T I C L E  I N F O   

Editor: Dr. Laurens Klerkx  

Keywords: 
Social network analysis 
Farm typologies 
Social ties 
Innovation networks 
Persistence 
Strong ties 

A B S T R A C T   

CONTEXT: The relevance of social interactions (social ties) to farming systems’ resilience is widely recognized. 
However, controversies exist around the contribution that farmers interacting with external actors (weak/ 
bridging ties) versus with other farmers (strong/bonding ties) have in their resilience strategies through inno-
vation. Farmers use different strategies to respond to their farming systems and contexts’ particularities. 
Comparing the contribution of both strong and weak ties in different farming systems brings variety in resilience 
strategies. 
OBJECTIVE: To generate evidence of the complementary contribution of social ties to resilience by comparing 
indexes associated with strong and weak ties from innovation networks of different farm types. 
METHODS: This paper applies an ego-centric social network analysis to farm units characterized by a farm ty-
pology to compare their strong/bonding and weak/binding ties contribution to innovation networks. It uses data 
from 29,796 farm units of maize smallholders in different regions from Central and Southern Mexico covering the 
gradient from commercial to subsistence farming. The analysis estimates two indexes based on actors’ similarity/ 
dissimilarity, that are External and Internal and Specialization Indexes. 
RESULTS AND CONCLUSIONS: Our findings quantify differential contributions of strong versus weak ties to 
resilience strategies associated with innovation networks among different types of small-scale maize farmers. 
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They demonstrate how differences among five farm types regarding farm resources access, maize production 
systems and farmers’ social attributes influence their innovation networks. A gradient exists between farm types 
in their innovation network indexes regarding the contribution of strong versus weak ties. Commercial farmers, as 
the winners of the modernization process, have better access to resources and establish a wider variety of re-
lationships with weak ties. However, interactions with other farmers are essential for technology adoption. In 
contrast, weak ties represented by institutions have a minor participation in innovation networks of diversified 
income and subsistence farm units. Strong ties dominate these farm types producing maize for consumption as 
part of their persistence strategies. Low-mechanized and elder family farm types, affected by geographic 
remoteness and population ageing processes, represent intermediate points in the gradient of farm resources and 
network indexes. 
SIGNIFICANCE: Jointly farm typology and social network approaches open new avenues to enhance farming 
system resilience. These approaches show how farmers establish their social interactions for innovation, creating 
specific combinations of strong and weak ties that are farm type specific. Diverse resilience strategies appear 
from these combinations involving not only adaptation but also persistence strategies that require further 
exploration.   

1. Introduction 

Covid-19 has become just the latest of the challenges that farming 
systems face. It has joined a long list of agricultural challenges, including 
food availability, natural resource sustainability, climate change resil-
ience, poverty and inequality, and resilience to protracted crises for 
citing some challenges (FAO, 2017). Resilience plays a critical role in 
these challenges and is essential for agricultural systems. Nevertheless, 
how resilience takes place is an open question when considering farming 
systems’ diversity. Farming systems represent how humans interact with 
their environments, shaping global and local land management land-
scapes (Václavík et al., 2013). Diversity is at the centre of agricultural 
resilience. Farmers use various strategies to guarantee their farms’ 
flexibility and adaptability as part of their ability to cope with change 
and maintain functions, commonly understood as resilience (Bruce 
et al., 2021). Farms’ resilience strategies are resource and context- 
dependent (van der Lee et al., 2022) including buffer capabilities (the 
ability to persist or “bounce back) as well as adaptive and transformative 
capabilities (the ability to change or “bounce forward”) (Darnhofer, 
2014). Several activities contribute to farming systems’ resilience such 
as increasing productive and economic efficiency, farm diversification, 
and technological innovation (Bruce et al., 2021). 

Innovation and resilience tend to be used interchangeably, assuming 
that innovation leads to resilience and resilience leads to innovation 
(Díaz-José et al., 2018). However, in scientific literature, resilience is 
usually used to discuss processes, while innovation represents a pathway 
for achieving resilience (Zupancic, 2022). The literature on climate- 
smart agriculture exemplifies this as it typically focuses on technolog-
ical innovations to increase resilience against climate change (FAO, 
2013; Douxchamps et al., 2016). However, technology is not the only 
angle of innovation. Agricultural innovation systems approaches define 
innovation as the successful combination of technological innovation 
(hardware), social innovation (orgware) and knowledge systems (soft-
ware) (Hermans et al., 2017). In innovation studies, knowledge has 
received particular attention regarding how knowledge is exchanged 
and by/from whom. 

Social network analysis (SNA) has been applied to understand the 
role of knowledge exchange in innovation processes. Granovetter’s 
(1983) proposal of a systematic analysis of social networks has found 
fertile ground in research on the diffusion of technological innovation 
(Rogers, 2003), mainly associated with learning processes and infor-
mation exchange as strategies for resilience through adaptation and 
transformation. The tie strength between actors who participate in the 
information flows for innovation (innovation network) plays a central 
role in terms of strong/bonding ties (from local actors like relations with 
relatives, friends, and peers) versus weak/bonding ties (links with 
external actors and institutions) (Rockenbauch and Sakdapolrak, 2017). 
It is commonly accepted that resilient farms benefit from combining 
formal and informal sources of knowledge and having access to a wide 

range of information (Bruce et al., 2021). However, disagreements exist 
on what type of ties configuration (weak, strong or both) promotes 
innovation and how they contribute to resilience. Comparing the 
contribution of weak and strong ties in different farm units is key to 
understanding how various resilience strategies take place (Meuwissen 
et al., 2019). 

This paper applies an ego-centric social network analysis to farm 
units previously characterized by a farm typology to compare social 
network indexes associated with strong and weak ties. It looks to make 
the case for the importance of diversity in farming systems to define 
resilience strategies associated with innovations. The paper compares 
the innovation networks of 29,796 farm units of maize smallholders 
from Central and Southern Mexico that have been formerly character-
ized by their differential access to resources, and their distinctive pro-
ductive as well as social attributes. Findings allow the discussion of how 
strong and weak ties have a differential contribution to resilience stra-
tegies associated with innovation when comparing different types of 
maize farming systems. Furthermore, they generate quantitative evi-
dence of the joint contribution of strong and weak ties in innovation 
networks and the importance of considering farm units differences to 
enhance distinctive resilience strategies. 

2. The contribution of strong and weak ties for innovation and 
resilience 

Strong and weak ties have been incorporated into social network 
analysis. Granovetter (1983) proposed these terms to distinguish the 
strength of an interpersonal tie concerning “the amount of time, the 
emotional intensity, the intimacy and the reciprocal services which 
characterize the tie”. With time, these concepts have been associated to 
Putnam (2000) work on social capital; thus, strong ties are generally 
linked with bonding capital and weak ties with bridging capital. 
Although Granovetter’s original definition of tie strength considers 
these four attributes, these concepts are commonly used to distinguish 
between “people like you or similar” (strong/bonding ties) versus 
“people not like you or dissimilar” (weak/bridging ties) (Newman and 
Dale, 2005; Rockenbauch and Sakdapolrak, 2017). 

As strong ties are shared with similar people, they are considered 
homophilius and normally characterized by trust and solidarity (Rock-
enbauch and Sakdapolrak, 2017). These ties are recognized by their 
bonding function to create solidary and social cohesion (Newman and 
Dale, 2005). Networks with strong ties promote information sharing and 
learning and provide mutual help during a crisis (Prell et al., 2016; Fath 
et al., 2021). In contrast, weak ties involve less frequent interaction with 
dissimilar actors who creates bridges that foster connections and create 
heterogenous social networks (Rockenbauch and Sakdapolrak, 2017). 
These networks offer new ideas as actors have different pools of infor-
mation (Dapilah et al., 2020). 

There has been an evolution in the discussion about the contribution 
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of weak and strong ties to innovation and resilience in farming systems. 
A dominant narrative that started with Granovetter’s seminal work ex-
ists in innovation studies that promote weak ties from external actors 
and heterophilic communication networks to facilitate access to new 
information, opportunities, and resources conducive to innovation (Van 
Rijn et al., 2012; Hermans et al., 2017). These attributes are also iden-
tified when studying the contribution of weak ties to achieve resilience 
through the sustainable governance of natural resources, as they are 
essential to promote vertical and horizontal relationships (Marín and 
Gelcich, 2012). Furthermore, the values of trust, as well as the easiness 
of communication and learning from strong ties, are recognized by 
resilience work (Rico García-Amado et al., 2012). These attributes have 
been essential to contest the dominant innovation narrative and high-
light the value of strong ties to promote social learning (Van den Broeck 
and Dercon, 2011). This contestation in recent years has brought a joint 
narrative indicating that farmers use both weak and strong ties in their 
innovation process and resilience strategies but in context-specific 
configurations (Cofré-Bravo et al., 2019; Bruce et al., 2021). This 
paper looks to contribute to the complementary narrative by generating 
quantitative evidence comparing different strong and weak ties config-
urations based on actors’ similarity/dissimilarity in diverse farm types 
innovation networks. 

The use of social network analysis indexes to understand the role of 
social ties (both strong and weak) has been considered in resilience 
(Rockenbauch and Sakdapolrak, 2017) and innovation literature (Rost, 
2011; Fritsch and Kauffeld-Monz, 2008). Network structure indicators 
such as density, centrality and homophily, usually are applied (Borgatti 
et al., 1998). However, when exploring social ties, indicators elaborated 
from an ego-centric approach facilitate the measurement of weak/ 
bridging ties and heterogenous networks versus strong/bonding ties and 
homogenous networks. Some examples of these indicators and indexes 
are external and internal index, heterogeneity, similar/dissimilar actors 
ratio, and bridging social capital index (Krackhardt and Stern, 1988; 
Borgatti et al., 1998; Newig et al., 2010; Rost, 2011; Borck et al., 2015; 
Isaac et al., 2014; Marín and Gelcich, 2012). This paper focuses on in-
dicators quantifying differences in strong and weak ties contributions 
between the innovation network of maize smallholder farms in Mexico. 

Maize-based farming systems in Mexico are widely recognized for 
their diversity due to agroecological and socio-cultural conditions 
(Sweeney et al., 2013; Aguilar et al., 2003). Diversity is manifested in 
farm structures and production orientations (Eakin et al., 2014a), as well 
as the multiple roles of maize (Appendini, 2009; Appendini and Quijada, 
2016). A wide range of farming systems, from small-scale subsistence to 
large-scale commercial farming systems co-exist (Zepeda et al., 2020). 
Smallholder maize farm households have raised particular interest 
concerning their resilience with adaptive strategies such as the: use of 
maize genetic diversity (Bellon et al., 2011); the diversification of crop, 
land, and farm management practices (Alayon-Gamboa and Ku-Vera, 
2011); and the use of technological and social innovations (McCune 
et al., 2012; Díaz-José et al., 2018). Innovations have received particular 
attention in social network studies which tend to highlight the impor-
tance of heterogenous networks and weak ties for adopting technolog-
ical innovations (Zarazúa et al., 2012; Sánchez Gómez et al., 2016; 
Roldán-Suárez et al., 2019). This paper quantifies the differential 
contribution of strong/bonding and weak/bridging to resilience through 
innovation networks of maize small-scale farm units in Mexico charac-
terized by differential access to resources. 

3. Data collection and analysis 

3.1. Data collection 

Data were collected by researchers at the International Maize and 
Wheat Improvement Center (CIMMYT) and the Research Center for 
Economics, Social and Technological Agroindustry and World Agricul-
ture (CIESTAAM) from small-scale farmers1 who cultivated maize in 
Central and Southern Mexico during 2017–2018. It was a part of the 
more extensive subsidy programme ProAgro Productivity implemented 
by Mexican Government Secretaria de Agricultura, Ganaderia, Desarrollo 
Rural, Pesca y Alimentacion (SAGARPA, currently known as SADER) and 
CIMMYT that provided technical advisory support to farmers in 1346 
localities from 273 municipalities of 16 states from the Central and 
South part of Mexico (Campeche, Chiapas, Guanajuato, Guerrero, Hi-
dalgo, Jalisco, Mexico, Michoacan, Oaxaca, Puebla, Queretaro, Quin-
tana Roo, Tabasco, Tlaxcala, Veracruz y Yucatan) (see details of 
locations in Annex 1). As farmers were beneficiaries of ProAgro, the 
sample is not random and does not intend to represent the 1.99 million 
farm units that cultivate maize in the country (Bellon et al., 2018). 

All the data were consolidated into two databases:  

a) The farm typology database contains information on the structural, 
functional, and social dimensions of 3811 farms. A semi-structured 
questionnaire was used to gather information using 47 variables to 
classify farm types based on structural (mainly resource access), 
functional (focused on resources management) and social (family 
demographics) dimensions (Zepeda et al., 2020) (see questionnaire 
in annex 2). Although this database represents a subgroup of the 
social network database, its data generates a robust case for a farm 
typology characterization.  

b) The social network database contains information to analyze the social 
network developed around the adoption of agricultural practices by 
29,796 farm units. Information was gathered using a structured 
questionnaire that integrates a catalogue of agricultural practices 
(innovations) and the following questions “Which agricultural 
practices are you performing? If so, from whom did you learn to 
implement each of these practices?” Agricultural practices were pre- 
defined at the state level by farm technical advisors who identified 
the state’s most relevant technological innovation for maize. Re-
sponses were categorized and grouped in a list of stakeholders 

Table 1 
Stakeholders define in the social network database.  

Category Type Main function 

Farmers Farmers and relatives Agriculture in a leading or 
supportive role 

Institutions Research and education 
institutes, Governmental 
institutions, Agricultural 
advisers, financial institutions 

Support by research, 
education, policies, training, 
and funding 

Input 
suppliers 

Providers of seeds, fertilizers, 
pesticides, and equipment 

Provide production inputs 

Clients Retailers, agroindustry buyers 
and intermediary buyers 

Buy, collect, and process 
agriculture outputs 

Intermediaries Farmers’ organizations, actors 
with multiple functions and 
NGOs 

Promote collective benefits 
concerning access to projects, 
knowledge, or markets 

Source: Roldán-Suárez (2022). 

1 This group appeared as subsistence farmers, and the requirement was 
having not >5 ha per farm in rainfed conditions and 0.2 g = ha with irrigation. 
https://www.agricultura.gob.mx/sites/default/files/sagarpa/document/2018 
/07/11/1088/manual-especificaciones-marzo2017.pdf 
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described in Table 1. The questionnaire also gathered general in-
formation about farm resources, farmers’ social attributes, and the 
maize production system (see questionnaire in annex 3). 

3.2. Data analysis 

Data analyses consisted of two steps: (i) extrapolation and descrip-
tion of farm types to the social network database and (ii) network 
analysis to estimate indexes referring to the configuration of social ties. 
For this study, we used the open-source program R (V 4.0.4), embedded 
in R-Studio (V 1.4.1106). 

3.2.1. Farm typologies 
This study relies upon a previous farm typology analysis using the 

farm typology database published by Zepeda et al. (2020). The analysis 
made a classification based on a Principal Components Analysis on farm 
resources (land area, livestock, water access, machinery and equipment, 
labor, etc.), crop management and livelihood strategies (crop distribu-
tion, the proportion of on/off/non-farm activities, etc.), farm family 
social attributes (ethnicity, family age and composition, and education 
level) and maize production characteristics (yield, genetic material type 
and production purpose). Five farm types were characterized and named 
as follows: 1) Commercial and mechanized farm households (commer-
cial), 2) Low mechanized farm households (low-mechanized), 3) Semi- 
commercial farm households of Elder Families (elder families), 4) Farm 
households with diversified income, (diversified incomes), and 5) Sub-
sistence farm households with women participation (subsistence). In-
formation of this analysis can be found in annex 4. 

This group’s classification was extrapolated to the social network 
database by using a random forest prediction, through the variables 
related directly or indirectly. It consisted of the application of the 
average prediction trees in an aleatoric vector with n-regressions model 
to draw an average trend (Breiman, 2001). This kind of model has 
proved reliable for successfully classifying new events in a trained 
network (Ho, 1998; Breiman, 2001). Means, standard deviation, and the 
significance for mean comparisons were performed following the 
Kruskall-Wallis test at the 5% alpha level for information gathered in the 
social network database. This information covers farmer social charac-
teristics, farm production resources, and maize production orientation, 
which helped to identify differences between farm types. A most 
detailed description based on Zepeda et al. (2020) farm types’ charac-
terization complemented this characterization. 

3.2.2. Social network analysis 
The study used a two-mode ego-centric network approach in which a 

farm unit represents the first type of actor or mode or ego and alters are 
represented by actors in other stakeholder’s categories who contribute 
to the adoption of agricultural practices (Ovalle-Perandones et al., 2010; 
Rost, 2011). The analysis consisted of estimating two indexes to quantify 
the contribution and configuration of strong versus weak ties for 
different farm types. The first analysis (a) estimated the External and 
Internal Index (E-I index) as an index that quantifies the ego-alter simi-
larity that defines the network configuration. The second analysis (b) 
calculated the value of a Specialization Index that estimated the contri-
bution of strong and weak ties in the innovation network. 

3.2.2.1. External and Internal Index (E-I index). The EI index proposed 
by Krackhardt and Stern (1988) has been extensively used in social 
network analysis to quantify the relational structure within and between 
groups (Everett and Borgatti, 2012). 

For the analysis, all the links that ego has with an alter in the cate-
gory “farmers” were considered internal (I). The links between ego and 
alters in the remaining categories (institutions, input suppliers, clients 
and intermediaries) were labelled as external. We applied a modified 
version of the E-I index proposed by Borck et al. (2015), considering the 

differences between the number of nodes among different farm types. In 
the formula for calculating this index EL is defined as the total weighted 
of external connections (sum of the weights of all external ties) and IL is 
defined as the total weighted of all internal connections for each indi-
vidual or farmer as follows: 

E − I index =
EL − IL
EL + IL 

Where. 
EL = the normalized number of external connections for individual i. 
EL = the normalized number of internal connections for individual i. 
Since we have weighted data instead of binary data, we normalized 

the EL number dividing E by the maximum observed value for each 
farmer or individual as follows: 

EL =
Ex − Emin

Emax + Emin 

And the same procedure to normalize the internal links (IL): 

IL =
ILx − ILmin

ILmax + ILmin 

The possible scores for this index encompass from − 1.0 to +1.0. As 
the E-I index approaches to +1.0, all the links would be external to the 
subunits. A score of − 1.0 would indicate that all the links are internal. If 
the links are divided equally, the index will equal to zero. The significant 
differences between the means of E-I indexes of all farming types were 
performed following the Kruskall-Wallis test at the 5% alpha level. 

3.2.2.2. Specialization index (d’). The specialization analysis index (d’) 
was proposed by Blüthgen et al. (2006) and performed in Dormann 
(2022) in ecology studies. This index explores the diversity of relation-
ships between individual farmers and other stakeholders involved in the 
maize production network. This diversity was used to compare the 
contribution of stakeholders in different farm-type networks (Table 2). 

The analysis consisted of building a weighted two mode-network 
using a W-weighted adjacency matrix (Table 3), with given f farmers 
and s stakeholders in a matrix X of dimension f x s elements, in which aij 
= 0 when there is no edge between nodes or smallholder farmers i and 
stakeholder j, and aij = w when and edge exist (w is a real number) 
(Amano et al., 2018; Chessa et al., 2014). A contingency table can 
represent the interaction with f rows and s columns, each cell containing 
the frequency aij of interaction between a farmer i and a stakeholder j 
(see Blüthgen et al., 2006). 

Each interaction was then assigned as a proportion of the total (m) as 
follows: 

pij = aij/m, where 
∑f

i=1
∑s

j=1pij = 1.
P’ij is the proportion of the number of interactions concerning the 

row total (Aij) and q’ the proportion of all interactions by partner j 
concerning the total number of interactions (m). 

p’ij = aij/Ai, 
∑s

j=1p′ij = 1, qj = Aj/m, and 
∑s

j=1qj = 1 
The specialization of a farmer i the index d’ compared the 

Table 2 
A farmer and stakeholder interaction matrix.   

Stakeholder 1 S 2 … S s Total* 

Farmer 
1 

a11 a12 … a1s Ai = 1=
∑s

j=1a1j 

F2 a21 a22 … a2s Ai = 2=
∑s

j=1a2j 

F3 a31 a32  a3s Ai = 3=
∑s

j=1a3j 

… … … … … … 
F f af1 af2 … afs Ai = f=

∑s
j=1afj 

Total Aj =
1=
∑f

j=1ai1 

Aj =
2=
∑f

j=1ai2 

… Aj =
s=
∑f

j=1ais 

m=
∑f

i=1
∑s

j=1aij   

* Interaction frequencies (aij) between farmers (c) and stakeholders (s). Total 
rows Ai, columns Aj and total elements m. 
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distribution of the interactions with each partner (p’j) related to the 
overall partner availability (qj). 

di =
∑s

j=1

(

p′ij.ln
p′ij
qj

)

This index was normalized ranging from 0 (most generalized ties) to 
1 (most diversified ties or wider specialization). Here, values near 
0 referred highlight the dominance of strong ties and homogenous 
networks, while a near 1 value reflects more heterogenous networks, 
including both strong and weak ties. 

d′ =
di − dmin

dmax − dmin 

The Kruskall-Wallis test was performed to find statistical differences 
in the specialization index among the different groups. Finally, a 
normalized degree index (Martín González et al., 2010) was calculated 
to identify the centralization patterns by the actors with whom farmers 
are linked and how these patterns differ among the distinct networks. 

4. Results 

4.1. Farm typologies 

According to the prediction tree model (Fig. 1), the most relevant 
characteristics of farm classification (shared in both datasets) were: 
ethnicity (indigenous or not indigenous), maize genetic material 
(landrace or improved or hybrid genetic materials), production purpose 
(self-consumption versus market) and total agricultural land (total). The 
prediction evaluates one farmer at the time and defines the probability 
of being grouped in one of the original groups. 

The results from the descriptive statistics analysis confirm differ-
ences between farm types that have been widely discussed (Barkin, 
2002; Appendini, 2009; Eakin et al., 2014a, 2014b). Table 3 presents the 
values for each farmer type on variables that refer to farm resources and 
maize production characteristics. The table also presents social variables 
about the main person farming within the family farm units. There is a 
clear trend of decremental values in access to resources from commer-
cial (who represent a distinctive group) to subsistence and diversified 
farm types concerning land, irrigation and machinery, and irrigation. 
Low mechanized and elder families farm types appear as intermediate 
groups concerning these farm assets. 

Table 3 
Average values of farm resources, maize production (resources and orientation) and farmers’ social attributes from the social network database. Superscripletters 
indicate if two values are significant similar or different in a gradient value from the highest (a) to lowest value (d/e) based on the Kruskall-Wallis test at the 5% alpha 
level.  

Attributes Variables Measures Farm types 

Commercial 2% 
(692) 

Low mechanized 
19% (5650) 

Elder families 
17% (5148) 

Diversified income 
39% (11,519) 

Subsistence 23% 
(6787) 

Farm resources Total agricultural 
land 

Ha 5.77a (4.79) 2.46b (1.16) 2.25c (1.22) 1.86e (1.61) 1.98d (2.18) 

Irrigation Rainfed 0 
Both 0.5 Irrigated 
1 

0.42a (0.48) 0.09b (0.27) 0.05c (0.21) 0.04d (0.19) 0.02e (0.15) 

Machinery Percentage 67a (27) 38c (30) 44b (26) 37d (29) 25e (0.31) 
Maize production Maize genetic 

type 
Landrace 
0 Improved 0.5 
Hybrid 1 

0.86b (0.35) 1.00a (0.00) 0.01d (0.06) 0.16c (0.36) 0.10c (0.24) 

Maize yield Mg/ha 6.99a (3.95) 3.06b (1.66) 1.88c (1.73) 1.15e (1.13) 1.77d (1.64) 
Maize sale Percentage 87e (25) 81d (22) 75c (19) 2a (6) 25b (37) 
Maize sale price Mexican pesos 3393c (971) 3399b (850) 3650a (1256) 1003e (1109) 1223d (1943) 

Farmer social 
attributes 

Sex Female 0 
Male 1 

0.87a (0.34) 0.81b (0.40) 0.81b (0.39) 0.76d (0.43) 0.78c (0.41) 

Ethnicity Non- Indigenous 0 
Indigenous 1 

0.00b (0.00) 0.00b (0.00) 0.00b (0.00) 0.00b (0.00) 1.00a (0.00) 

Education years 5.3a (3.63) 4.67a (3.66) 4.56a (3.36) 4.10b (3.31) 3.65c (3.45) 
Farmer age years 61.27b (14.12) 60.73b (14.68) 62.90a (13.85) 62.74a (14.31) 60.69b (13.42)  

Fig. 1. Prediction tree for the extrapolation of farm typologies.  

T.C. Camacho-Villa et al.                                                                                                                                                                                                                     



Agricultural Systems 210 (2023) 103716

6

Differences are also evident in maize production attributes as pre-
viously reported by Sweeney et al., 2013 and Zepeda et al., 2020). 
Commercial farm types using mostly hybrid genetic materials and 
commercializing most of their production are the ones who obtain the 
highest maize yield. There is a yield gap of more than three Mg (ton/ha) 
between commercial and the next closest farm type, low-mechanized 
farmers, who use only hybrids. Landraces are cultivated by elder fam-
ilies, subsistence and diversified income farm units with yields that does 
not surpass the 2 Mg/ha. Maize sale prices present high values for the 
farm types selling most of their production (commercial, low- 
mechanized farm, and elder families) as they have been able to nego-
tiate “high commodity prices” (Eakin et al., 2014b). The low sale prices 
received by subsistence and diversified farm types have been explained 
in terms of cash losses when landrace maize production is valued at the 
price of commercially available maize in local markets (Arslan and 
Taylor, 2009). 

Social attributes become distinctive attributes of original farm types. 
The presence of women characterized diversified income and, in some 
extent subsistence farm types. Ethnicity becomes the primary trait to 
identify subsistence farmers with the lowest education value. The 
highest values on farmer age reflect the condition that characterized 
elder families farm types. However, the predicted new farmer’s char-
acteristics approximate to the Zepeda et al. (2020) typology as they are 
based on the individual farmer instead of the farm household 
description. 

A brief description from information reported in Zepeda et al. (2020) 
for the farm typology characterization (see details in Annex 4) is used to 
complement and contextualize the previous description. The informa-
tion is helpful to understand distinctive attributes of each farm type as 
this characterization contemplates other farm resources (such as live-
stock and labor), farm management and family livelihood strategies 
(crop distribution, proportion of on/off/non-farm activities, etc.), and 
farm family social attributes (such as family age and composition). 

4.1.1. Commercial farms (commercial) 
This farm type presents the major land extension in irrigated and flat 

conditions. Their farms are near urban areas. They present the most 
considerable quantities of livestock, and most of their cultivation ac-
tivities are mechanized. Most of their income comes from agricultural 
activities on their farms, and they are the ones who hire more labour. 
The gap between this group and the others concerning their total income 
and their maize yield is significant, representing more than double from 
the near farm type (low mechanized farms). 

4.1.2. Low Mechanized farms (low-mechanized) 
Their farms are in the lowest altitude regions, far from urban areas 

with low access to irrigation infrastructure and machinery. Their maize 
production is manual as they cultivate in hilly and rainfed conditions. 
However, they are the ones who use more hybrid seeds and reach higher 
yields. Their primary income comes from agriculture representing 70% 
of their total income. Like subsistence farmers, their income is one of the 
more unstable throughout the year. 

4.1.3. Elder families’ farms (elder families) 
The most distinctive attribute of this farm type is that they present 

the highest family age rate with an average age of 65 years old and a 
smaller family size (number of members). Their farms are near urban 
areas. Their farming activities are semi-mechanized or undertaken by 
animal traction. Their production is semi-commercial. They commer-
cialize their maize production but cultivate landraces because self- 
provision is crucial for their livelihood. More than half of their income 
comes from agriculture that is complemented by cash transfers of social 
protection programs. 

4.1.4. Diversified income farms (diversified income) 
The location of their farms is near urban areas and in some cases peri- 

urban areas. Although their land area is the smallest, some of agricul-
tural activities are manual and others mechanized as they have access to 
machinery. Some of their fields are irrigated. Livestock represents a 
critical income. Their maize production is used for human and animal 
consumption on their farms. Their income is diversified, and non-farm 
(temporal migration to cities) activities contribute more than crop and 
livestock incomes. 

4.1.5. Subsistence farms (subsistence 
This farm type presents one of the small land areas, and they are 

located the farthest from urban areas. Maize is cultivated in moun-
tainous areas or stony soils and that is why most of the activities are 
manual. These farm type concentrates the major percentage of indige-
nous people, and they present the lowest years of education. Their 
agricultural income is the lowest and the most unstable during the year. 
Their cash transfers from social protection are the highest. They also 
receive income from selling their labor in off-farm activities. They are 
the group that buys more maize to satisfy the annual household con-
sumption needs. 

4.2. Network analysis 

The network analysis results also show differences between farm 
types that, in most cases, are significant. This is because they are based 
on the information flows around maize technological innovations 
adopted by farmers and the primary source of information. We call them 
innovation networks because they map the information/knowledge flow 
for promoting the adoption of agricultural practices for maize produc-
tion to improve productivity. 

4.2.1. External and Internal Index (EI index) 
Differences in the External and Internal Index values between the 

innovation networks of the five farm types are evident, as illustrated in 
Fig. 2. The E-I index values for all farm types tend to converge around 
zero, suggesting an equitable distribution of strong and weak ties within 
their respective innovation networks. However, it is worth noting that 
the commercial and elder families’ farm types markedly deviate from 
the remaining farm units, displaying a pronounced inclination towards 
association with external links, which indicates weaker ties. Conversely, 
the low-mechanized units occupy an intermediate stance concerning 
their network connections. Finally, the subsistence and diversified farms 
have relatively higher level of internal linkages or strong ties. 

4.2.2. Specialization index and normalized degree 
The variation in the specialization index provides important infor-

mation related to the differential contribution of strong and weak ties. 
Although most of the values tend to more generalized ties, the com-
mercial network (Fig. 3 C) has the highest d’ index, with the weighted 
mean degree of specialization d’ > than the rest of the networks (p ≤
0.05). Commercial farmers use both strong and weak in their innovation 
networks. First, input suppliers and, in second place, institutions play an 
important role in adopting agriculture practices. In contrast, the sub-
sistence and diversified networks are dominated by generalized (low 
and similar d’) centered in strong rather than in weak ties (Fig. 3 A and 
B). The minor contribution of weak ties in adopting new agricultural 
practices is first played by institutions and later by input suppliers. Elder 
and Low-mechanized farmer’ networks were located in between 
generalized to specialized, differing among the two extremes but 
following commercial farmers in the pattern of external contribution. 
Although in all the cases, strong ties (links to other farmers and rela-
tives) are the most frequent by the farmers, the normalized degree shows 
how the commercial networks establish a wider variety of relationships, 
including weak and strong ties, while the rest of the networks are 
centered mostly in strong with different magnitude. 

A clear trend appears when combining the social network index 
values and the farm typology characteristics. As Fig. 4 shows, the 
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commercial farm type presents the highest values on the social network 
indexes with significant ties for innovation from peer farmers and input 
suppliers. Commercial farm types are also characterized by the highest 
values on farm resources (like farmland area, irrigation, and machinery) 
and a maize production system using high yielded hybrids varieties for 
commercial purposes, attributes that characterized this farm type as 
Fig. 1 and Table 3 illustrate and Eakin et al. (2014b) reported. On the 
other extreme of the spectrum, the lowest values of E-I and Specializa-
tion Indexes are from diversified income units, followed by subsistence 
farm types who receive support from institutions and later supply inputs. 
Diversified and subsistence farm types also present the lowest values for 
farm resources, cultivate landraces for self-consumption purposes, 
characteristics that distinguish these types in Table 3 that have been 
documented by Eakin et al. (2014a) and other authors. Finally, low- 
mechanized and elder families farm types present intermediate values 
for both social network analysis and farm resources. 

5. Discussion 

Findings from E-I and Specialization indexes show that strong and 
weak ties contribute to innovation networks of different maize small-
holder farm types in Mexico. This result is in line with the narrative that 
values the complementary contribution of weak and strong ties for 
innovation processes that lead to resilience (Rost, 2011; Cofré-Bravo 
et al., 2019; Bruce et al., 2021). Results also demonstrate differences 
between innovation networks that can be explained by farm-type attri-
butes highlighting the context specific-nature of their innovation- 
resilience strategies (Darnhofer, 2014; Rockenbauch and Sakdapolrak, 
2017). Each farm type presents characteristics described in literature 
discussing maize farming systems in Mexico. Nevertheless, for the case 
of the contribution of strong and weak ties to their innovation networks, 
findings distinguish three groups. We will elaborate on this discussion 
focusing on these three groups. 

The first group is represented by commercial farm units presenting a 

more comprehensive network and more variety of relationships. Their 
social ties configuration towards weak ties facilitates the adoption of 
innovations (Van Rijn et al., 2012). Social networks of commercial farm 
types are exposed to dynamic processes driven by markets, technology, 
and competition that increase the dependency on external resources and 
the need to establish a wider variety of linkages that create social and 
information proximity (Fritsch and Kauffeld-Monz, 2008). However, the 
contribution of strong ties (represented by other farmers and relatives) 
should not be underestimated for the adoption of agricultural practices. 
Commercial farmers have more access to farm resources to practice 
highly productive farming systems using external inputs and receiving 
external support, attributes that have been proven to facilitate innova-
tion (Cofré-Bravo et al., 2019). They form part of what Eakin et al. 
(2014b) call the agrarian winners of the maize boom in Mexico who 
have received and negotiated governmental investment and support to 
modernize their maize farming systems. They not only count on the 
resources for high productive and commercial production but also on an 
extensive network that facilitates knowledge flows between them and 
research centers, transnational enterprises, agroindustry, and farmers 
associations (Casas et al., 2000). 

Low-mechanized and elder families farm types represent interme-
diate points in the gradient of commercial to diversified income farming 
systems. The contribution of weak ties is similar between these two farm 
units in terms of input suppliers and institutions playing essential roles 
in their innovation networks. Nevertheless, low-mechanized farm units 
have higher values on agricultural land area and maize yields using 
hybrid materials for commercial purposes, evidencing the importance of 
resource endowment for social interactions (Cofré-Bravo et al., 2019). 
They reflect the partial modernization process in some tropical regions 
of Mexico with limited mechanization and irrigation facilities (Hellin 
et al., 2013). The location of low mechanized farm units far away from 
urban areas explains the challenges of interacting with other stake-
holders different from farmers (McCune et al., 2012; Díaz-José et al., 
2018). However, spatial distance cannot be used to explain the limited 

Fig. 2. Results of the E-I calculated across the five farm types*. 
* Bars show the average E-I index values for each farm type. The pair-wise comparison using the Kruskal Wallis test is represented by a, b and c showing that they are 
significantly different (p < 0.05). 
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contribution of weak ties to elder families’ farm units as they are located 
near urban areas. Elder families farm types commercialize their maize 
production but cultivate landraces because self-provision is crucial for 

their livelihood. These farm types illustrate the ageing process occurring 
in Mexico (SAGARPA and FAO, 2014) and worldwide (FAO, 2017). This 
distinctive social attribute highlights the relevance of family dynamics 
for resilience strategies (Darnhofer, 2014). Both farm types illustrate 
how factors such as rural isolation or stage of life shape the possibilities 
of social interactions. 

Finally, diversified income and subsistence farm types are the third 
group centered on strong/bonding ties. Weak ties from institutions are 
also present in their innovation networks as they are beneficiaries from 
social protection programs. These two farm types have less access to 
farm resources and cultivate maize landraces for consumption. Diver-
sified income but especially subsistence farmers, are the ones that 
literature commonly identifies as small-scale farmers. These farm types 
have received particular attention concerning their persistence to sur-
vive political and climatic challenging conditions (Appendini and Liv-
erman, 1994; Eakin et al., 2014a; Bada and Fox, 2022). Diversified 
income farm types receive the lowest values on both social network 
indexes showing that they rely more on strong ties. This result highlights 
that more than distance to urban areas, as some of these farm types are 
in peri-urban areas, is their persistence to grow maize for tradition and 
consumption the one defining their innovation network (Lerner et al., 
2014). Persistence becomes vital due to the socio-cultural significance of 
producing and consuming maize as part of their culture and traditions 
(Lerner and Appendini, 2011; Eakin et al., 2014a). The redundancy and 
self-exclusion of networks as strong rather than weak ties could then be 
explained to preserve maize culture through time (Wood et al., 2014; 
Gosnell et al., 2019). 

Results in this study show visible trends between social network 
indexes and farm types, illustrating the differential contribution of social 
ties between farm types. They call to explore further how different 
configurations of strong/bonding and weak/bridging ties can lead to 
greater resilience (Newman and Dale, 2005). Farm, farming systems and 
farmers’ attributes, and their contextual circumstances become crucial 
to find what mixes of strong and weak ties will be strong enough to 
“engage in joint problem-solving in the face of adversity but loose 
enough to give them room to pursue new opportunities” (Fath et al., 
2021). Adaptation is only half the advantage gained by such social 
networks; further exploration is required to identify persistence’s 
contribution to enhancing the farming system’s collective capacity to 
use innovations as a pathway to resilience. 

Fig. 3. Patterns of specialization and normalized degree index within small-
holder farmer’ networks*. 
* Bars show the normalized degree (Martín González et al., 2010) as the 
normalized number of links of each type of actors with whom the smallholder 
farmers are linked. The number in parentheses indicates the specialization 
index (d’) for the different networks. The pair-wise comparison using the 
Kruskal Wallis test, shows that indices (d’) containing different symbols (in red) 
are significantly different (p < 0.05). 

Fig. 4. Graphic summary of the analysis’s main findings.  
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6. Conclusion 

At a time when agriculture faces increasing and diverse challenges, 
various combinations of strong and weak ties are needed to enhance the 
resilience strategies used by different types of farmers. Each farm type 
had developed a functional combination (or adapted to it) based on their 
access to resources and productive attributes concerning their innova-
tion process. Despite the heterogeneity and diversity of relationships, 
the balance tends to tilt towards either internal or external links, as farm 
types seek to position themselves on one side or the other based on their 
capacity to respond and available resources. Commercial farm units rely 
on weak relationships to evolve towards new models that enable them to 
maintain or transform the productive system. In contrast, subsistence 
farming systems have endured for centuries and find strategies within 
their environment and their strong ties to resist and maintain the system. 
They illustrate how diverse possibilities appear when particular attri-
butes and contexts are considered for strengthening strong and weak ties 
highlighting the need to promote not only weak but also strong ties to 
increase resilience through innovation. The contribution of weak and 
strong ties to heterogenous innovation networks has proved crucial for 
increasing resilience through adaptation. However, it implies different 
results in the same innovative scale of adoption and production 
enhancement, and then, food or economic security. Further research is 
required to explore how weak and strong ties interact and contribute to 
resilience through persistence in innovation networks. 
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de innovación en sistemas de producción de milpa. Re. Geogr. Agríc. 63, 45–62. 

Rost, K., 2011. The strength of strong ties in the creation of innovation. Res. Policy 40 
(4), 588–604. 

SAGARPA and FAO, 2014. Estudio sobre el envejicimiento de la poblacion rural en 
Mexico. Secretaria de Agricultura, Desarrollo Rural, Pesca y Alimentacion and Food 
and Agriculture Organization, Mexico, 43 pp.  
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