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High-resolution CMIP6 climate 
projections for Ethiopia using the 
gridded statistical downscaling 
method
Fasil M. Rettie  1,2 ✉, Sebastian Gayler  1, Tobias K. D. Weber  1,3, Kindie Tesfaye  4  
& thilo Streck  1

High-resolution climate model projections for a range of emission scenarios are needed for designing 
regional and local adaptation strategies and planning in the context of climate change. To this end, 
the future climate simulations of global circulation models (GCMs) are the main sources of critical 
information. However, these simulations are not only coarse in resolution but also associated with 
biases and high uncertainty. To make the simulations useful for impact modeling at regional and local 
level, we utilized the bias correction constructed analogues with quantile mapping reordering (BCCAQ) 
statistical downscaling technique to produce a 10 km spatial resolution climate change projections 
database based on 16 CMIP6 GCMs under three emission scenarios (SSP2-4.5, SSP3-7.0, and SSP5-8.5).  
The downscaling strategy was evaluated using a perfect sibling approach and detailed results are 
presented by taking two contrasting (the worst and best performing models) GCMs as a showcase. The 
evaluation results demonstrate that the downscaling approach substantially reduced model biases and 
generated higher resolution daily data compared to the original GCM outputs.

Background & Summary
The unavailability of high-resolution climate data is an important obstacle for local climate change impact stud-
ies on agriculture and biodiversity. The analysis of climate change impact requires forcing data at sufficiently 
high-resolution for crop and hydrological models, both temporally (daily) and spatially (~1–10 km). Climate 
projection data produced by GCMs only exist at a coarse spatial resolution (typically a horizontal grid spacing 
>70 km) and with a high spread between models1. This variability (i.e., the range between models) induces 
uncertainties that propagate to calculated impacts (e.g., model outputs), which makes the studies less relevant to 
decision-making2. In the recent decade, this high uncertainty has been addressed using multi-model ensemble 
approaches which heavily lean on the use of multiple GCMs in crop modeling3–6 and hydrological modeling7–9. 
These studies require multiple state variables, in general from different emission scenarios, to be bias-corrected 
and downscaled to a higher temporal and spatial resolution than the original GCMs10–13. Downscaling is mainly 
necessary since GCMs do not resolve small-scale climate-affecting land surface features such as smaller moun-
tain ranges. If GCM outputs are not appropriately corrected and downscaled, the process leads to highly erro-
neous results14.

For a country like Ethiopia with very diverse climate regimes modulated by its complex topography15,16, local 
planning, and monitoring are unimaginable without high-resolution climate data. In this regard, downscaling 
bridges the mismatch between coarse resolution climate outputs and data requirements by impact models17,18.  
Efforts have been made globally and regionally, including by WorldClim, CCAFS, and ref. 19, to create 
high-resolution climate projection datasets encompassing Ethiopia. For example, WorldClim (https://www.
worldclim.org/data/cmip6/cmip6climate.html) has publicly released high-resolution CMIP6 projection data-
sets for 23 GCMs and four Shared Socio-economic Pathways (SSPs) at resolutions of 10 minutes, 5 minutes, 
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2.5 minutes, and 30 seconds. However, these datasets are limited in that they are only available as monthly values 
averaged over 20-year periods, which may not meet the demands of ecological impact models that require daily 
data. Additionally, the datasets are produced to provide a global quick overview of the projected climate, and 

Model name Institution name Tmax Tmin Pr Resolution (lon. by lat.)

ACCESS-CM287–90
Commonwealth Scientific and Industrial Research 
Organization (CSIRO) and Bureau of Meteorology (BOM), 
Australia

✓ ✓ ✓ 1.9° × 1.3°

ACCESS-ESM1-591–94
Commonwealth Scientific and Industrial Research 
Organization (CSIRO) and Bureau of Meteorology (BOM), 
Australia

✓ ✓ ✓ 1.9° × 1.3°

AWI-CM-1-1-MR95–98
Alfred Wegener Institute, Helmholtz Centre for Polar and 
Marine Research, Am Handelshafen 12, 27570 Bremerhaven, 
Germany

✓ ✓ o 0.9° × 0.9°

CMCC-CM2-SR599–102 Fondazione Centro Euro-Mediterraneo sui Cambiamenti 
Climatici, Lecce 73100, Italy ✓ ✓ ✓ 1.3° × 0.9°

EC-Earth3-Veg103–106 EC-Earth-Consortium ✓ ✓ o 0.7° × 0.7°

EC-Earth3107–110 EC-Earth-Consortium ✓ ✓ o 0.7° × 0.7°

GFDL-ESM4111–114 NOAA Geophysical Fluid Dynamics Laboratory ✓ ✓ ✓ 1.3° × 1.0°

INM-CM4-8115–118 Institute for Numerical Mathematics ✓ ✓ ✓ 2.0° × 1.5°

INM-CM5-0119–122 Institute for Numerical Mathematics ✓ ✓ ✓ 2.0° × 1.5°

IPSL-CM6A-LR123–126 Institut Pierre Simon Laplace, Paris 75252, France ✓ ✓ o 2.5° × 1.3°

MIROC6127–130 Japan Agency for Marine-Earth Science and Technology, 
Kanagawa 236-0001, Japan ✓ ✓ ✓ 1.4° × 1.4°

MPI-ESM1-2-HR131–134 Max Planck Institute for Meteorology, Hamburg 20146, 
Germany ✓ ✓ ✓ 0.9° × 0.9°

MPI-ESM1-2-LR135–138 Max Planck Institute for Meteorology, Hamburg 20146, 
Germany ✓ ✓ ✓ 1.9° × 1.9°

MRI-ESM2-0139–142 Meteorological Research Institute ✓ ✓ ✓ 1.1° × 1.1°

NorESM2-LM143–146 NorESM Climate modeling Consortium, Norway ✓ ✓ ✓ 2.5° × 1.9°

NorESM2-MM147–150 NorESM Climate modeling Consortium, Norway ✓ ✓ ✓ 1.3° × 0.9°

Table 1. List of GCMs used in the study and availability of data with respect to maximum (Tmax) and 
minimum (Tmin) temperatures and precipitation (Pr) as well as spatial resolution.

Fig. 1 Homogeneous precipitation clusters (sub-regions) based on climatological (1983-2012) mean daily 
precipitation.
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the methods (https://worldclim.org/data/downscaling.html) used ignored the temporal trends and extremes 
and hence limiting its application in impact assessment studies. Similarly, CCAFS datasets (http://www.
ccafs-climate.org), which use a simple bias correction technique called the Delta method, also have a limited 
temporal resolution, with only 30-year averages available. Ref. 19 have produced similar datasets for regions of 
East Africa (including Ethiopia), but their datasets are based on station data from 211 stations, and the models 
they used were limited to two GCMs. Despite these limitations, these datasets can still provide valuable insights 
into climate trends and support impact assessment studies, but alternative approaches may be necessary to 
obtain more comprehensive and robust data for specific research needs.

A variety of techniques and approaches exist to downscale coarse resolution GCMs output to a higher reso-
lution. The most frequently used approaches in hydrological and agricultural studies are statistical and dynam-
ical downscaling methods. The one difference between the two approaches lies in the required computational 
resources, especially when daily data are to be produced, but also in the accuracy of the results20. Regional 
Climate Models (RCMs) are used to dynamically downscale GCM outputs to a finer resolution by using the 
boundary and initial conditions from a GCM as input21. However, dynamical downscaling through RCMs is 
computationally very expensive21. This explains why high-resolution data from sets of GCMs under different 
emission scenarios are rarely produced using RCMs22,23.

Statistical downscaling is a technique used to generate high-resolution climate data by relating large-scale 
climate variables, such as temperature and precipitation, to local-scale variables2,24,25. Bias correction (BC) sta-
tistical downscaling (SD) is a popular technique used to produce high-resolution climate data from General 

Fig. 2 Schematic flow diagram of (a) the BCCAQ downscaling technique showing the steps and processes 
followed in the study and (b) the method of constructed analogues (CA) modified from ref. 62.
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Circulation Model (GCM) outputs, and they are often computationally efficient compared to other methods. 
The approach involves first applying a statistical bias correction to the GCM outputs using observations at the 
GCM grid and then using spatial downscaling to generate a more fine-resolution result14,26. Bias correction is a 
statistical technique used to adjust data that has a bias or systematic error so that it reflects the true values. The 
bias correction process can be accomplished through several methods, such as applying a simple change factor 
(i.e., ‘delta’) between the GCM output and observation2,27, or by using quantile-mapping techniques to match the 
GCM output to observations28–31. Once the bias correction is complete, the downscaled data can be generated 
using spatial downscaling techniques14.

The objective of this study was to produce a database of high-resolution bias-corrected climate change pro-
jections for Ethiopia. To this end, we bias-corrected daily maximum and minimum temperatures from 16 GCMs 
and daily precipitation from 12 GCMs and downscaled it to a 10 km spatial grid covering all of Ethiopia using 
the bias correction constructed analogues with quantile mapping reordering (BCCAQ) statistical downscaling 

Historic evaluation Models

Bias (mm)

RMSE rq5 q50 q95

Before downscaling
CMCC-CM2-SR5 −360 3 205 76.2 0.46

MPI-ESM1-2-HR −369 −179 144 56.1 0.60

Downscaled
CMCC-CM2-SR5 −194 −47 35 67.1 0.33

MPI-ESM1-2-HR −13 2 30 55.3 0.65

Projected changes based on 
the downscaled data

(%)

CMCC-CM2-SR5 −30 −17 40

MPI-ESM1-2-HR −4 10 67

Table 2. Summary statistics of the countrywide area-averaged quantiles of mean bias, RMSE, and Pearson 
correlation coefficient (r) for JJAS total precipitation for the two selected contrasting GCMs (the least performed 
CMCC-CM2-SR5 and most performed, MPI-ESM1-2-HR) and the corresponding projected relative percentage 
changes by the 2050 s compared with the observation data (1983–2012).

Fig. 3 Spatial plots comparing averaged observation (1983-2012) JJAS total precipitation (a) and the absolute 
biases for the two models, CMCC-CM2-SR5 (b,c) and MPI-ESM1-2-HR (d,e) before and after the downscaling 
(units in mm). The base map shows the nine homogeneous precipitation subregions in text (R1, R2, …, R9).
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technique. GCM outputs under three emission scenarios, also called Shared Socioeconomic Pathways (SSPs), 
were taken from the Coupled Model Intercomparison Project Phase 6 (CMIP6). As reference data, we used 5 km 
resolution gridded data for the base period (1983–2012). Furthermore, a perfect sibling framework (see section 2)  
was employed to assess the value of the downscaling strategy.

Here, we produced high-resolution daily precipitation and temperature data through a gridded statistical 
downscaling method called BCCAQ32. The method significantly reduced the biases between the GCMs output 
and the observation data and minimized the errors in the projections. The data will help overcome limitations in 
climate change impact studies on crop growth33–36 and hydrology37–39 in Ethiopia resulting from the insufficient 
number of GCM used. Our evaluation allows a clear perspective on individual GCMs by means of correlations, 
biases, and temporal evolution. Our study will make a valuable contribution to future model comparison efforts 
in Ethiopia and beyond by revealing the differences between the various models. In particular, our findings 
indicate that the simulations produced by the two Norwegian GCMs (NorESM2-LM and NorESM2-MM) may 
be implausible despite their strong performance in East Africa40. Conversely, the consistent results observed 
across Ethiopia’s diverse regions suggest that for the purposes of our study, fewer homogeneous regions, similar 
to the approach taken by ref. 41 may be sufficient. Finally, the dataset will help researchers examine a wide range 
of scenarios, which can help inform more comprehensive and robust adaptation strategies.

Methods
Gridded observation data. Daily climate data is available for the study area (Supplementary Fig. 1a) from 
CHIRPS (Climate Hazards Group InfraRed Precipitation with Stations) for precipitation42 and from CHIRTS 
(Climate Hazards Group InfraRed Temperature with Stations) for temperature43 (Supplementary Fig. 1b–d). 
The climate hazards group database provides free daily climate data with a gridded 5 km spatial resolution with 
quasi-global coverage (50S–50 N) (ftp://ftp.chg.ucsb.edu/pub/org/chg/products/ or https://www.chc.ucsb.edu/
products). The data were generated in several stages by blending satellite records and in situ station data. They are 
available for precipitation since 1981 and for temperature from 1983 to 2016. The data have been evaluated for 
their reliability to represent the climatology and major meteorological systems in Ethiopia44–48 and elsewhere49–52.

The 16 GCMs from CMIP6 used for downscaling are listed in Table 1. The three selected SSPs are SSP2-4.5, 
SSP3-7.0, and SSP5-8.5 representing the medium, medium-high, and high-forcing scenarios, which in turn were 
based on so-called middle-of-the-road, regional rivalry, and fossil-fueled socioeconomic development scenar-
ios, respectively53,54. The data of precipitation, maximum and minimum temperature, at a horizontal grid spac-
ing ranging from about 70 km to 400 km were accessed from the CMIP6 web data portal55 (https://esgf-node.
llnl.gov/search/cmip6). To be consistent across the models, all downloaded GCM data belonged to the ‘r1i1p1f1’ 

Fig. 4 Cumulative density function plots for JJAS total precipitation for the nine homogeneous precipitation 
subregions (R1, R2, …, R9) under SSP3-7.0 scenario. HR represents models’ historical climate before downscaling 
and, HD and FD represent models’ historical climate and future projections after downscaling. Obs represent the 
observation data for the base period.
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variant (standing for 1st realization, 1st initialization, 1st physics, and 1st forcing). A 30-year period (1983–2012) 
was adopted as a baseline period for method validation and a period centered at the 2050 s (2036–2065) was 
adopted for the projected climate for the case studies.

Delineating homogeneous precipitation zones. Ethiopia is characterized by diverse climate regions 
modulated by complex topography (Supplementary Fig. 1a) where precipitation is a crucial component, particu-
larly for the agricultural sector15,16. To acknowledge this heterogeneity and better describe the follow-up analysis, 
we map out the long-term mean daily precipitation into homogeneous precipitation clusters using the CLARA 
algorithm (Clustering for LARge Application)56. In CLARA, a sample is drawn from a large dataset and parti-
tioned into k clusters based on the K-medoid approach. The remaining data are then assigned to the nearest k 
clusters. The clustering resulted in nine homogeneous precipitation regions (R1-R9) with distinct seasonal pat-
terns (Fig. 1), which are roughly like ecozones in previous studies57–59. Most regions receive precipitation mainly 
in June-September (months JJAS) except R1 and R2 where the main season is March-May (MAM) with a short 
rain in October. These relatively homogeneous (i.e., in terms of annual precipitation cycles) sub regions were used 
to facilitate aggregated comparisons between the different outputs before and after downscaling.

The downscalinsg approach. In this study, we followed an approach called bias correction constructed analogues 
with quantile mapping reordering (BCCAQ) to downscale the coarser scale GCM outputs to a finer scale26,32,60,61. 
Compared to other statistical downscaling approaches, BCCAQ has shown to reach a better skill in representing 
extremes32,60,61. In the BCCAQ approach (Fig. 2a), two stage independent calculations, Climate Imprint (CI) and 
Constructed Analogue (CA)26,62 are calculated in parallel, which we describe in more detail below.

Step A (Climate Imprint, CI, Fig. 2a): Step A1:- Calculating monthly climatologies separately from the daily 
observation and raw historical GCM datasets for the reference period (1983–2012) for the variable of interest 
(e.g., temperature) as follows (i-v).

 i. Extract the data for the month of interest (e.g., January) for each year in the reference period.
 ii. Calculate the average of all the daily values for each year.
 iii. Repeat step ii for all the years in the reference period.
 iv. Calculate the average of all the yearly averages. This gives the monthly climatology for the variable of inter-

est for the month of January.
 v. Repeat these steps for all the months in the reference period.

Step A2:- Prepare raw GCM daily anomalies (1983–2100): For each day of the year, subtract the corresponding 
monthly climatology value for that day from raw GCM daily values for that day. This will give the daily anomaly 
for each day of the year.
Step A3:- Interpolating the raw GCM daily anomalies (1983–2100) to the same spatial resolution as the obser-
vation data (fine resolution): This will result in finer resolution data with the same temporal length as the 
coarser-resolution GCM outputs.
Step A4:- Apply the monthly climatology of observation to the interpolated raw GCM daily anomalies (1983–
2100). For each day of the year and for each grid cell, add the corresponding monthly climatology value of the 
observation for that month to the interpolated raw GCM daily anomaly value.
Step A5:- Bias-correcting the raw GCM from Step A4 with the observation using quantile delta mapping (QDM, 
see below for detail description) and the data then will be ready for the next stage of the downscaling process.

Variable Historic evaluation Models

Bias (°C)

RMSE rq5 q50 q95

Maximum temperature

Before downscaling
CMCC-CM2-SR5 −8.68 −5.96 −3.44 6.39 0.49

MPI-ESM1-2-HR −3.2 −0.75 0.99 2.63 0.70

Downscaled
CMCC-CM2-SR5 −0.01 0.01 0.02 1.79 0.53

MPI-ESM1-2-HR −0.02 0.0 0.01 1.19 0.77

Minimum temperature

Before downscaling
CMCC-CM2-SR5 1.29 4.70 8.86 5.74 0.15

MPI-ESM1-2-HR −2.18 0.23 2.67 2.59 0.66

Downscaled
CMCC-CM2-SR5 0.0 0.01 0.03 1.75 0.49

MPI-ESM1-2-HR −0.02 0.0 0.01 1.10 0.75

Maximum temperature Projected changes by 
2050’s based on the 
downscaled data

CMCC-CM2-SR5 0.6 1.1 1.4

MPI-ESM1-2-HR 0.8 1.1 1.3

Minimum temperature
CMCC-CM2-SR5 0.6 1.1 1.4

MPI-ESM1-2-HR 1.4 1.7 2.0

Table 3. Summary statistics of the countrywide area-averaged quantiles of mean bias, RMSE, and Pearson 
correlation coefficient (r) for annual mean maximum and minimum temperature for the two selected 
contrasting GCMs (the least performed CMCC-CM2-SR5 and most performed, MPI-ESM1-2-HR) and the 
corresponding projected relative changes by the 2050 s compared with the observation data (1983–2012).
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Step B (Constructed Analogue, CA, Illustrated in Fig. 2b):
Step B1:- Aggregating the finer scale daily observation data to the GCMs grid.
Step B2:- Bias-correcting the raw GCM with the observation using QDM (see below for detailed description).
Step B3:- Searching for a subset of analogues GCM: For a given day of the year in the bias corrected GCM 
weather pattern to be downscaled (i.e., target pattern), a search is conducted for observed steps (i.e., +/− 45 days 
of form that particular day) to find a subset of analogues GCM weather patterns with the target pattern. Here, 
the top 30 closest time steps (days) that have the closest similarity (analogues) to a given GCM daily weather 
pattern are selected based on minimum root mean square error (RMSE)62.
Step B4:- The CA weights (regression coefficients) are then determined via ridge regression of the CA time steps 
(i.e., between the target weather pattern and the selected top 30 closest fields)26.
Step B5:- Linear combinations: For the given timestep, these derived CA weights (regression coefficients) in Step 
B4 are then used to linearly combine the 30 corresponding bias-corrected CI outputs in Step A3 to create the 
spatially downscaled high-resolution data.
Step B6:- Reordering: The daily downscaled data are reordered within a given month based on the daily 
bias-corrected CA ranks. The reordering process ensures a better representation of event-scale spatial variability 
and a broadly consistent long-term trend between the downscaled outputs and bias-corrected CI32,61,63 (Step A3).  
Further details can be found in ref. 26,32,60,62.

Fig. 5 Spatial plots comparing historical (1983-2012) biases in mean annual maximum temperature (°C) before 
(a,c) and after (b,d) downscaling for the two models, CMCC-CM2-SR5 (1st row) and MPI-ESM1-2-HR (2nd 
row). The base map shows the nine homogeneous precipitation subregions in text (R1, R2, …, R9).
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Quantile delta mapping (QDM). For a given meteorological state variable of interest, QDM28–31 starts by estimat-
ing the empirical cumulative distribution functions (CDFs) of the raw historical GCM series (Fh) and that of the 
observations data (Fo) during a reference period (1983–2012). Concurrently, it prepares the CDF of the raw GCM 
projected series (Fm (t)), which is estimated over a time t, using 30-year moving windows. The “30-year sliding 
window” here refers to a moving timeseries of 30 years. For instance, to perform QDM for the projection years (t) 
2035, 2036, 2037, etc., timeseries of 30 years i.e., 2021–2049 (centred at 2035), 2022–2050 (centred at 2036), 
2023–2051 (centred at 2037), etc., will be taken. Then, the non exceedance probability, ϵ(t) associated with the raw 
GCM projected value at time t is calculated within the projection period based on estimated CDF, Fm (t). Next, the 
inverse CDFs of the raw historical GCM series ( ε−F t( [ ( )])h

1 ) and observations −F t( [ ( )])o
1 ε  during a reference 

period (1983–2012), and that of the raw GCM projected series εF t( [ ( )])m
1−  are all evaluated at the nonexceed-

ance probability (ϵ(t)) associated with the modelled value at time t. Then, for precipitation (temperature), the 
relative (absolute) change in quantiles between the reference periods and project time t, Δt can be calculated as 
the ratio (difference) of the ε−F t( [ ( )])m

1  and − εF t( [ ( )])h
1 . Finally, the bias-correction results δ(t) in the future 

period at time t equals F t[ ( )]o
1 ε−  × Δt for precipitation, and −F t[ ( )]o

1 ε  + Δt for temperature.

Evaluation approach. For computational reasons, the observation data (daily minimum and maximum temperature, 
and precipitation) were first aggregated from 5 km to 10 km resolution using bilinear interpolation. Bilinear interpo-
lation is a widely used technique in climate studies to re-grid data e.g.64–66. The final downscaled GCM outputs were 
produced for all three emission scenarios until 2100 (SSP2-4.5, SSP3-7.0, and SSP5-8.5).To evaluate the impact of the 
chosen downscaling strategy we used an approach called the perfect sibling (PS) framework2,27,67. This approach serves 
to evaluate the evolution of future simulation when no observations exist such as in the case of future climate. In the 
perfect sibling framework, a random GCM will be selected from the list of available GCMs as pseudo-observations 
for a certain reference period. The rest of the GCMs are used as a prediction of the pseudo-observations and, hence, 
comparisons can be made between the performance of the individual GCMs for the selected reference period. In this 
study, MPI-ESM1-2-HR GCM was selected as a reference simulation (mimicking observations) or perfect sibling. 
The remaining GCMs were compared to it for the base period (1983–2012) and the 2050 s periods (2036–2065). A 
two-stage evaluation was conducted i) for the base period and ii) for the projected climate. First, Pearson correlation 
coefficients (r) and root mean squared errors (RMSE) were calculated between the simulated and gridded observa-
tions of annual mean maximum and minimum temperature (JJAS total precipitation) for the base period (1983–2012) 
for each grid cell. This allowed us to compare the skill of the models in representing the base climate before and after 
the application for the downscaling. Next, for the future projection period, the RMSEs between the perfect sibling and 

Fig. 6 Cumulative density function plots for mean annual maximum temperature (°C) for the nine homogeneous 
precipitation subregions (R1, R2, …, R9) under SSP3-7.0 scenario. HR represents models’ historical climate before 
downscaling and, HD and FD represent models’ historical climate and future projections after downscaling. Obs 
represent the observation data for the base period.
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the rest of the GCMs were calculated to assess the skill of the GCMs in reproducing the perfect sibling for the whole 
grid cells. Here, the primary objective of the evaluations was not to compare the performance of different models but 
rather to assess the impact of the downscaling strategy. However, in order to provide a more comprehensive anal-
ysis of the evaluation’s temporal and spatial aspects, we selected two contrasting Global Climate Models (GCMs): 
CMCC-CM2-SR5, which had relatively poor performance, and MPI-ESM1-2-HR, which had better performance in 
reproducing observations during the reference period (prior to downscaling). To demonstrate the differences before 
and after the application of the downscaling process, we compared the cumulative density functions (CDFs) of var-
ious datasets, including observations, historical raw GCMs data, future raw GCMs data, and downscaled data. The 
term “bias” in this study refers to the absolute difference between the values of two fields, specifically the modeled 
value minus the observed value. The downscaling was performed using the High-Performance Computing Cluster 
bwUniCluster 2.0 (https://wiki.bwhpc.de/e/Main_Page). All statistical and spatial analyses in this study were per-
formed using R, an open-source statistical software68. Downscaling was conducted using the ClimDown69 package. 
The ncdf470 and cmsafops71 packages were used to read and edit the GCMs’ NetCDF files. Regionalization of the 
country into homogeneous precipitation zones was done using the cluster package72. All plots were produced using 
packages ggplot273, cowplot74, gridExtra75, raster76, rasterVis77 and rgdal78 packages.

Data records
The database of the statistically downscaled daily precipitation (pr), maximum temperature (tasmax) and min-
imum temperature (tasmin) for the current climate (1975–2015) and future scenarios (2016–2100) under the 
three SSPs (SSP2-4.5, SSp3-7.0 and SSP5-8.5) are stored in the CIMMYT repository79. The total file size is ~400 
GB where each file is stored as a self-describing NetCDF file format with the same naming as their original 
GCM names with ‘Eth_’ as a prefix. For instance, the file name “Eth_pr_ACCESS-CM2_ssp370.nc” refers to the 
downscaled daily precipitation (pr) data for the GCM (ACCESS-CM2) under the SSP3-7.0 (ssp370) emission 
scenario and “Eth_tasmax_EC-Earth3-Veg_ssp245.nc” refers to the downscaled daily maximum temperature 

Fig. 7 Spatial distribution of Pearson correlation coefficients (left column) and RMSE (right column) between 
models and observation before (upper row) and after (lower row) downscaling for JJAS precipitation for the 
period 1983-2012.
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(tasmax) data for the GCM (EC-Earth3-Veg) under the SSP2-4.5 (ssp245) emission scenario. The gridded obser-
vation data sets are provided by the Climate Hazards Group and are publicly available at https://www.chc.ucsb.
edu/data. The original CMIP6 data were downloaded from the Earth System Grid Federation (ESGF) website 
(https://esgf-node.llnl.gov/search/cmip6/), with detailed information about the data, including the terms of use.

Technical Validation
For the purposes of the demonstrations, we show the comparisons for the SSP3-7.0 emission scenario for the 
mid of the century (2036–2065) centered on the 2050 s for precipitation and temperature. We also show the 
comparison of the CDFs for the annual mean maximum and minimum temperature and JJAS total precipitation 
under each homogeneous precipitation region. The respective spatial plot for the long-term mean values where 
the CDFs are calculated from are also presented for the two contrasting GCMs.

Precipitation. Table 2 presents the 5th percentile, the median, and the 95th percentile of the spatial dis-
tribution model biases aggregated across the country of the 30-year JJAS (June-July-August-September) total 
precipitation for the two selected contrasting GCMs (the least performed CMCC-CM2-SR5 and most performed, 
MPI-ESM1-2-HR) and the corresponding observations (see Supplementary Table 1 for model evaluation results 
for the rest of the models). Spatially aggregated values of the GCMs and the respective biases (defined as the dif-
ference between model and observation, defined by bias = modeled value – observed value) with the observation 
before and after the downscaling process were compared. Table 2 also presents the projected values for the 2050 s 
under the SSP3-7.0 emission scenario with the respective biases and relative percentage changes after the down-
scaling. The ranges in the remainder of this section always refer to the 5th and 95th quantile ranges, unless stated 
otherwise. The JJAS period is the main rainy season for the large parts of the country except for eastern and south-
eastern parts57–59, where the long term mean JJAS total precipitation ranges from 250 to 1200 mm (Table 2 and 
Fig. 3a). Figure 3 shows the spatial plots of the two GCMs before and after downscaling with the corresponding 
biases during the base period and mean JJAS total precipitation. The subplots in the figure show marked spatial 
differences between the two GCMs both before and after downscaling. Before downscaling, both models show 
largely wet biases with the JJAS climatology values ranging from 345–1100 mm for the CMCC-CM2-SR5 (i.e., 
least performed) and 80–1010 mm for the MPI-ESM1-2-HR (i.e., most performed) (Table 2). Both models also 
show dry biases up to 600 mm over the northern highland parts of the country. The evaluation of CMIP5 models 
for Ethiopia also shows a dry bias over the highlands, underrepresenting orographic uplift80. Whereas the corre-
sponding countrywide area-averaged JJAS climatology values range from 260 to 1000 mm and 260 to 1200 mm 
by the CMCC-CM2-SR5 (i.e., least performed) and MPI-ESM1-2-HR (i.e., most performed), respectively, after 
the application of the downscaling. The respective biases range from −360 to 205 mm and from −370 to 145 mm 

Fig. 8 Evaluation (based on RMSE) of GCM outputs using the PS framework (MRI-ESM2-0 selected as a perfect 
sibling) for JJAS total precipitation (mm) for the 2050s under the SSP3-7.0 scenario, (a) before downscaling and 
(b) after downscaling. The mean RMSE errors for the whole region are shown in brackets (E) on top of each plot.
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before downscaling and the biases decreased to a range of −195 to 35 mm and −15 to 30 mm after downscaling 
for the CMCC-CM2-SR5 (i.e., least performed) and MPI-ESM1-2-HR (i.e., most performed), respectively, show-
ing an overall improvement due to the downscaling. However, the CDF plots in Fig. 4 highlight the importance of 
visually inspecting the spatial variations of the zonal averages across the homogeneous precipitation regions. It is 
very clear that, before downscaling, the CMCC-CM2-SR5 (i.e., least performed) outputs could not reproduce the 
CDFs of the observations well in many the regions (Fig. 4). Figures 3, 4 also show that the MPI-ESM1-2-HR (i.e., 
most performed) model’s relatively better representation is only valid on a country scale. However, the improve-
ment due to the downscaling still holds to some extent in each homogeneous zone.

Based on the downscaled data, the projected JJAS total precipitation quantiles range from 280 to 900 mm 
and from 350 to 1235 mm for the CMCC-CM2-SR5 (i.e., least performed) and MPI-ESM1-2-HR (i.e., most 
performed), respectively, for the 2050 s under the SSP3-7.0 emission scenario (Supplementary Fig. 2). The 
corresponding percentage of change ranges −30 to 40% and from −5 to 65% for the CMCC-CM2-SR5 (i.e., 
least performed) and MPI-ESM1-2-HR (i.e., most performed), respectively, where mostly a negative (positive) 
anomalous JJAS total precipitation (up to 500 mm) is projected by the CMCC-CM2-SR5 (MPI-ESM1-2-HR) 
in large parts of the country (Table 2). This is clearly shown in the CDF plots where large leftward (rightward) 
shifts are observed particularly for high precipitation receiving regions (i.e., R6 - R8) in the CMCC-CM2-SR5 
(MPI-ESM1-2-HR) projected JJAS precipitation. As in the MPI-ESM1-2-HR (i.e., most performed) model, pos-
itive projected changes in JJAS total precipitation were also reported for Ethiopia80 and across East Africa81,82. 
Figure 7. depicts the spatial pattern of the correlation (Pearson r) and the RMSEs between the observation and 
the 12 GCM outputs for JJAS total precipitation in the base period (1983–2012) before and after downscaling. 
The spatial correlation plots reveal that the two models from the Norwegian climate modeling consortium, 
(i.e., NorESM2-LM and NorESM2-MM), were exceptionally different from the rest of the models with negative 
correlation with the observation and higher biases (RMSE > 150 mm) for the largest part of JJAS precipita-
tion benefiting regions of the country (Fig. 7a,b). Despite positive spatial correlations, higher biases were also 
observed in MIROC6 and ACCESS-ESM1-5 models for a considerable part of the country. The application of 

Fig. 9 Spatial distribution of Pearson correlation coefficients (left column) and RMSE (right column) between 
models and observation before (upper row) and after (lower row) downscaling for annual mean maximum 
temperature for the period 1983-2012.
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the downscaling strategy reduced the biases (RMSE < 150 mm) across a large part of the country in all the GCMs 
except for those two GCMs (Fig. 7c,d). Despite downscaling, the two Norwegian climate models (NorESM2-LM 
and NorESM2-MM) still exhibit negative correlations and higher biases errors. Moreover, the downscaling pro-
cess led to an increase in both the intensity and spatial extent of the root mean square error (RMSE). Ref. 83 also 
identified those two models as outliers compared to other models. Figure 8 illustrates a comparison between the 
RMSE errors in the projected JJAS (June-July-August-September) total precipitation for the 2050 s under the 
SSP3-7.0 emission scenario, before and after applying downscaling techniques. The comparison is made between 
a perfect sibling projection and the other GCMs during the same projected climate period. The evaluation with 
the perfect sibling framework (Fig. 8 & Supplementary Table 2) shows that the downscaling substantially mini-
mized the bias in the projected climate outputs (the mean RMSE over the whole region denoted by E measured 
in mm/season are shown on the top of each figure) for all models except for the two Norwegian models. The 
reduction in the errors ranges from 125 mm/season (~40% lower) for ACCESS-CM2 to 340 mm/season (~80% 
lower) for MIROC6.

Temperature. Table 3 presents the 5th percentile, the median, and the 95th percentile of the spatial dis-
tribution across the country of the 30-year mean annual maximum and minimum temperature for the two 
selected contrasting GCMs (the least performed CMCC-CM2-SR5 and most performed, MPI-ESM1-2-HR) 
and the observation (see Supplementary Tables 2, 3 for model evaluation results for the rest of the models). 
Aggregated across the country, the observed mean maximum (minimum) temperature ranges from 23 to 37 °C 
(12 to 27 °C) (Fig. 5a & Supplementary Fig. 4a). For maximum temperature, the historical mean values range 
from 21 to 30 °C for the CMCC-CM2-SR5 (i.e., least performed) and from 26 to 36 °C for MPI-ESM1-2-HR (i.e., 
most performed), resulting in absolute biases (from the observation) between −8.7 and −3.4 °C and between −3.2 
and 1.0 °C, respectively, before downscaling (Fig. 5). Similarly, for minimum temperature, the historical mean 
values ranged from 21 to 30 °C and from 15 to 27 °C with absolute biases between 1.3 and 8.9 °C and between 
−2.2 to 2.7 °C for the CMCC-CM2-SR5 (i.e., least performed) and MPI-ESM1-2-HR (i.e., most performed), 
respectively (Supplementary Fig. 4). The historic GCM outputs of the models were also largely consistence across 
the country in reproducing the observed CDFs (Fig. 6 & Supplementary Fig. 6). Both models underestimate the 
maximum temperature in all homogeneous regions except R4-R6 and R8 for MPI-ESM1-2-HR. On the other 
hand, both models overestimate the minimum temperature in all regions except R2 and R3 for MPI-ESM1-2-HR. 
By downscaling, the biases of both maximum and minimum temperature were substantial reduced to about 
0.1 °C in all regions. After downscaling, the projected (the 2050 s) mean annual maximum (minimum) temper-
ature quantiles range from 25 to 39 °C (from 14 to 29 °C) in both models under the SSP3-7.0 emission scenario. 
Both models project a mean change of annual maximum (minimum) temperature between 0.6 to 1.4 °C (0.6 to 
2.0 °C) (Supplementary Figs. 3a,c, 5a,c). The projected changes of minimum temperature were higher by approx-
imately 0.6 °C in MPI-ESM1-2-HR (i.e., most performed) than in the CMCC-CM2-SR5 (i.e., least performed) 
(Supplementary Figs. 3b,d, 5b,d).

Figure 9 and Supplementary Fig. 7 illustrate the spatial pattern of Pearson correlation coefficient and of RMSE 
between the observations and the 16 GCM outputs for maximum and minimum temperature, respectively, in 
the base period (1983–2012) before and after downscaling. As in precipitation, the correlation plots show that 

Fig. 10 Evaluation (based on RMSE) of GCM outputs using the PS framework (MRI-ESM2-0 selected as a 
perfect sibling) for annual mean maximum temperature for the 2050s under the SSP3-7.0 scenario, (a) before 
downscaling and (b) after downscaling. The mean RMSE errors for the whole region are shown in brackets (E) 
on top of each plot.
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the two Norwegian models were strikingly different from the rest of the models, showing a negative correlation 
with observations (Fig. 9a,c and Supplementary Fig. 7a,c). For CMCC-CM2-SR5, the figures show also negative 
correlations across a substantially large part of the country for minimum temperature (Supplementary Fig. 7a). 
Before downscaling, substantially larger errors (RMSE > 10 °C) in minimum temperature across the peripheral 
part of the country were produced by all models (Supplementary Fig. 7b). Similarly, particularly in the eastern 
parts of the country, higher errors in maximum temperature were observed for MIROC6 and CMCC-CM2-SR5 
(Fig. 9b). By downscaling, the errors of all models in both maximum and minimum temperatures were substan-
tially decreased to below 2 °C across the country, except the two Norwegian models (Fig. 9d & Supplementary 
Fig. 7d). In case of CMCC-CM2-SR5, where simulated minimum temperature was mainly negatively correlated 
with observations, downscaling resulted in a positive correlation across a substantially large part of the country 
(Fig. 9c & Supplementary Fig. 7c). In case of the two Norwegian models, there was no improvement by down-
scaling, both in terms of pattern correlation and error minimization. Maximum and minimum temperatures 
produced by these two models remained negatively correlated with observations and also showed larger errors 
(RMSE up to 8 °C) in a larger part of the country, particularly in the northwestern and northeastern parts.

Figure 10 (Supplementary Fig. 8) illustrates a comparison between the RMSE errors in the projected 
annual maximum (minimum) temperature for the 2050 s under the SSP3-7.0 emission scenario, before and 
after applying downscaling techniques. As with the precipitation, the evaluation by the perfect sibling com-
parison showed that downscaling substantially decreased the bias (the mean RMSEs over the whole region 
are denoted by E measured in °C are shown on the top of each figure) in the projected annual temperature 
outputs (Fig. 10, Supplementary Fig. 8 & Supplementary Table 4). For maximum temperature, the minimum 
reduction in error was 0.9 °C (~70% lower) for EC-Earth3-Veg while the maximum reduction was 7.3 °C (~93% 
lower) for MIROC6 (Fig. 10). Whereas for minimum temperature, the minimum reduction in error was 0.8 °C 
(~60% lower) for GFDL-ESM4 while the maximum reduction was 4.2 °C (~93% lower) for CMCC-CM2-SR5 
(Supplementary Fig. 8). Overall, the downscaling strategy reduced the errors in projected annual temperature 
approximately by about 51 to 94%. Using a simple delta bias correction strategy, comparable bias minimization 
was reported through the perfect sibling evaluation framework2. Our results confirm that better performance is 
found for temperature compared to precipitation in regions where climate systems are modulated by complex 
topography84.

Our downscaled data sets provide high-resolution climate projections that can be used to assess the potential 
impacts of climate change on various sectors such as agriculture, water resources, and energy. By using our data 
sets, researchers can gain valuable insights into the potential changes in climate patterns at a local or regional 
scale, which can inform decision-making and policy development. However, it is important to note that our 
data sets have some limitations that should be considered when interpreting the results of impact studies. For 
example, the downscaling technique used in this study assumes that the historic model bias is stationary and 
valid for the future while it is not warranted that this is the case. Additionally, we would like to note that the 
technique used here is merely a statistical post-processing and cannot compensate or eliminate the individual 
GCM’s structural deficiencies. Furthermore, these techniques are not always perfect and can introduce their 
own sources of bias, so it is important to carefully evaluate the quality of the data generated using these methods. 
Furthermore, the presented evaluation could only cover some central aspects and further evaluations, e.g., inter-
annual variability or spell length distributions, are encouraged to help explain the uncertainties related to the 
methodology85,86. Therefore, we recommend that researchers carefully evaluate the assumptions and limitations 
of our data sets when interpreting the results of their impact studies. In terms of the downscaled data sets from 
the different models, we recommend using the data sets that have the highest spatial correlations and lowest bias 
and errors (see Supplementary Table 1), as these will likely provide the most accurate representation of the local 
climate. However, we encourage researchers to explore the performance of multiple downscaled data sets from 
different models to evaluate the uncertainty associated with the projections.

Code availability
The R packages used in this study are freely available and detailed in the methods section. The R codes utilized for 
the analysis, along with the necessary input data, are publicly available at https://doi.org/10.5281/zenodo.7950777. 
The code demonstrates how to implement the climate downscaling technique and compute the means and 
sums of climate variables for various periods on the netcdf files to replicate all the findings mentioned in the 
manuscript.
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