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Abstract: Climate change impact assessment along with adaptation measures are key for reducing
the impact of climate change on crop production. The impact of current and future climate change
on maize production was investigated, and the adaptation role of shifting planting dates, different
levels of nitrogen fertilizer rates, and choice of maize cultivar as possible climate change adaptation
strategies were assessed. The study was conducted in three environmentally contrasting sites in
Ethiopia, namely: Ambo, Bako, and Melkassa. Future climate data were obtained from seven
general circulation models (GCMs), namely: CanESM2, CNRM-CM5, CSIRO-MK3-6-0, EC-EARTH,
HadGEM2-ES, IPSL-CM5A-MR, and MIROC5 for the highest representative concentration pathway
(RCP 8.5). GCMs were bias-corrected at site level using a quantile-quantile mapping method. APSIM,
AquaCrop, and DSSAT crop models were used to simulate the baseline (1995–2017) and 2030s
(2021–2050) maize yields. The result indicated that the average monthly maximum air temperature
in the 2030s could increase by 0.3–1.7 ◦C, 0.7–2.2 ◦C, and 0.8–1.8 ◦C in Ambo, Bako, and Melkassa,
respectively. For the same sites, the projected increase in average monthly minimum air temperature
was 0.6–1.7 ◦C, 0.8–2.3 ◦C, and 0.6–2.7 ◦C in that order. While monthly total precipitation for the
Kiremt season (June to September) is projected to increase by up to 55% (365 mm) for Ambo and
75% (241 mm) for Bako respectively, whereas a significant decrease in monthly total precipitation is
projected for Melkassa by 2030. Climate change would reduce maize yield by an average of 4% and
16% for Ambo and Melkassa respectively, while it would increase by 2% for Bako in 2030 if current
maize cultivars were grown with the same crop management practice as the baseline under the future
climate. At higher altitudes, early planting of maize cultivars between 15 May and 1 June would
result in improved relative yields in the future climate. Fertilizer levels increment between 23 and
150 kg ha−1 would result in progressive improvement of yields for all maize cultivars when combined
with early planting for Ambo. For a mid-altitude, planting after 15 May has either no or negative
effect on maize yield. Early planting combined with a nitrogen fertilizer level of 23–100 kg ha−1

provided higher relative yields under the future climate. Delayed planting has a negative influence
on maize production for Bako under the future climate. For lower altitudes, late planting would have
lower relative yields compared to early planting. Higher fertilizer levels (100–150 kg ha−1) would
reduce yield reductions under the future climate, but this varied among maize cultivars studied.
Generally, the future climate is expected to have a negative impact on maize yield and changes in
crop management practices can alleviate the impacts on yield.

Keywords: adaptation options; crop models; GCMs; multimodel ensemble; representative
concentration pathway
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1. Introduction

Climate change has become a major environmental and socio-economic threat to the
world. Past climate change studies in Ethiopia have shown significant changes in air
temperature [1,2] and precipitation patterns [3–5] in the past decades. Climate change
projection studies based on emission scenarios indicate air temperature increases over the
country [6] by the year 2050. Similarly, by 2050 mean annual rainfall is expected to increase
by 1%, with high uncertainty, in amount and intensity [7]. Climate change influences
agriculture by affecting the crop’s physiological processes. The change in the amount and
distribution of precipitation and air temperature affect crop water balance by modifying
evapotranspiration which in turn affects yields [8].

Agriculture is a fundamental part of the economy in Ethiopia. With a population
of more than 110 million [9], Ethiopia is the second most highly populous country in
Africa. Over 70% of the population is engaged in subsistence farming [10]. Agriculture
accounts for almost one-third of the change in Gross Value Added per capita as compared
to the industrial sector, which contributed about 22.2%. Agriculture in Ethiopia is the basis
of the economy, contributing 35.8% of the GDP [10]. However, agriculture in Ethiopia
is highly affected by rainfall variability and recurrent drought, resulting in severe food
insecurity [11]. Moreover, climate change seriously impacts agricultural productivity and
causes the loss of human life and livestock [12]. According to [13], the frequency of drought
and irregular precipitation occurrences has increased in recent decades and continues to
increase with increased impacts under future climate change [14,15]. There is no doubt that
Ethiopia’s agriculture is already extremely vulnerable to climate change and consequential
crop failure [11]. It is thus very important to assess the impacts of future climate for proper
adaptation mechanisms [7,16].

Maize (Zea mays L.) is one of the dominant cereal food crops second after tef (Eragrostis
tef ) in terms of production and area coverage in Ethiopia. In the 2019/2020 production
season, 2.3 million hectares of land were under maize cultivation at the national level
from which 9.6 million tons of yield was produced by more than 11.4 million smallholder
farmers [17]. About 88% of maize production in the country is consumed as food, both
as green and dry grain [18]. However, the production of maize is seriously limited due to
abiotic and biotic factors, such as drought, low soil fertility, insufficient improved varieties,
pests, and diseases [19–21]. In addition, maize yield reduction in Ethiopia is exacerbated
by climate change [22]. Recent climate projections indicate that in the near (2035) and
mid-future (2055), there will be an increase in air temperature in most parts of Ethiopia
resulting in an average decrease in maize yield for the coming years [23].

Adaptation is a key factor in agriculture to reduce the impacts of climate change [24–26].
Authors of Ref. [23] emphasized that alternative agronomic practices, such as fertilizer
use, shifting planting dates, and change in cultivars, are possible solutions to the negative
impacts of climate change with improvements to maize production in Ethiopia. Studies
also revealed that adaptation options should be site-specific and need to be addressed for
the various agroecological zones [27,28].

Process-based crop simulation models (hereafter referred to as crop models) are com-
monly applied tools for multiple areas to assess the impact of climate variability and change
on agricultural production [29–34]. The coupling of crop models to climate models has been
a common method for analyzing the potential impact of climate change on crop production
and evaluating adaptation options [35].

In Ethiopia, various climate change impact assessment studies have been conducted
using crop models to simulate maize yield under different environments and field condi-
tions [21–23,36–39]. The purpose of most of these studies was limited to climate change
impacts, yield variability, and yield gap estimation of maize and did not consider the adap-
tation aspect. Only a few studies addressed both climate change impacts and adaptation
options on maize productivity in Ethiopia, such as [37–39]. Nevertheless, both studies used
one or two crop model(s) to simulate maize yield which is still inadequate for a detailed
analysis of crop model uncertainty. Authors of Ref. [21] also recommended the multi-crop
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model approach and multi-GCM ensemble projections for more in-depth analysis and
reliable climate change sensitive assessments. In addition, there is insufficient research de-
voted to adaptation strategies developed based on climate change scenarios in Ethiopia [40].
Hence, there is a need to design climate change adaptation strategies using multiple crops
and climate models under the future climate.

Therefore, the objectives of this study were to (1) assess the impact of climate change on
maize yield, and (2) identify possible adaptation mechanisms using multiple crop models
and multiple climate models at three sites representing contrasting agroecological zones
in Ethiopia.

2. Materials and Methods
2.1. The Study Sites

The sites used in this study are located in central Ethiopia (Ambo, high altitude),
south-western Ethiopia (Bako, mid-altitude), and central Rift Valley of Ethiopia (Melkassa,
low altitude). They have different soil and climatic characteristics and hence maize cultivars
that differ in their maturity period are grown across the study sites. The soils range from
sandy clay loam to clay texture. The seasonal rainfall and reference evapotranspiration
ranged from 587 to 1206 mm and 431 to 770 mm, respectively. The mean maximum and
minimum air temperature ranges from 24.0 to 28.4 ◦C and 10.3 to 14.5 ◦C during the maize
growing season in the study sites (Table 1). Maize field experiments were conducted under
rainfed conditions for the sites. Detailed information can be found in [40].

Table 1. Characteristics of the study sites in Ethiopia.

Location Ambo Bako Melkassa

Latitude (o) 8.57 9.12 8.42
Longitude (o) 38.07 37.04 39.32
Altitude (m) 2225 1650 1550

Soil characteristics
Soil type Eutric regoSol Nitosol Vitric andosols

Soil texture sandy clay loam clay loam
Baseline climate (1995–2017)

Seasonal total precipitation (mm) 718 1206 587
Seasonal ETo (mm) * 543 431 770

Mean max. air temperature (◦C) 24.0 24.0 28.4
Mean min. air temperature (◦C) 10.3 14.5 13.9

* ETo: grass reference evapotranspiration.

2.2. Data Collection
2.2.1. Weather, Soil, and Crop Data

Historical weather and soil data are the main input data sources used in the crop
models, in addition to crop management practices such as planting date, plant density, row
spacing, and fertilization. For Ambo, Bako, and Melkassa the daily rainfall, maximum and
minimum air temperature, and solar radiation data for the study sites were obtained from
meteorological stations at the experimental sites and/or from the national meteorological
agency where the study sites are located (for the spatial location map, ref. [41]). Daily
grass reference evapotranspiration (ETo) was computed by the FAO Penman-Monteith
method [42,43]. For the weather data quality control measures were undertaken and
patching of missing values was utilized using [42] for all the study sites. The soil profile
data were obtained from [44,45] and the International Maize and Wheat Improvement
Center (CIMMYT) in Ethiopia and field measurements.

Four improved and most widely grown hybrid maize cultivars were used for this
study. The hybrid maize cultivars were Jibat, BH661, BH546, and MH140. The choice of
maize cultivars was based on farmers’ preferences.
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2.2.2. Crop Simulation Models

Maize yield was simulated using three crop simulation models, namely Agricultural
Production Systems Simulator (APSIM)-maize v 7.9 [46], FAO—AquaCrop v. 7.9 [47], and
Decision Support System for Agrotechnology Transfer (DSSAT)—CERES—maize v 4.7 [48]
(hereafter, the crop models are referred to as APSIM, AquaCrop and DSSAT respectively).
These crop models have been used widely and provide a realistic simulation of maize yield
across the world [49–51] under both current and future climate change conditions. The
input data to run the models are daily total solar radiation (calculated from daily sunshine
hours data), daily minimum and maximum air temperatures, and daily precipitation.
Additional inputs necessary to run the crop models are soil type, cultivar type, and crop
management. This study is based on well-calibrated and evaluated crop models in our
previously published article [41]. The three crop models were calibrated and evaluated
for four maize cultivars (Jibat, BH661, BH546, and MH140) using data from field trials
conducted in the 2017/18 cropping season in Ethiopia [41]. For a detail description of the
individual models and their calibration and evaluation, refer to [41].

2.2.3. Climate Change Projections

The daily climate data downscaled from seven Global Circulation Models (GCMs),
namely, CanESM2, CNRM-CM5, CSIRO-MK3-6-0, EC-EARTH, HadGEM2-ES, IPSL-CM5A-
MR, and MIROC5 from the Coupled Model Intercomparison project phase 5 (CMIP5)
were used to simulate maize yield in this study. The GCMs used in this study are listed
in Table 2 together with the institutions which developed them, their country of origin,
and references.

Table 2. Description of the global climate models (GCMs) used.

GCM Name Institute Country References

CanESM2 CCCma: Canadian Centre for Climate Modelling and Analysis Canada [52]

CNRM-CM5
CERFACS: Centre Européen de Recherche France [53]

et de Formation Avancée en Calcul Scientifique

CSIRO-MK3-6-0 CSIRO: Commonwealth Scientific and Industrial Research
Organization Australia [54]

EC-EARTH
ICHEC: Consortium of European research Europe [55]

institutions and researchers
HadGEM2-ES MOHC: Met Office Hadley Centre United Kingdom [56]

IPSL-CM5A-MR IPSL: Institut Pierre Simon Laplace France [57]
MIROC5 AORI: Atmospheric and Ocean Research Institute Japan [58]

The data were downscaled using the Regional Climate Model (RCM)-RCA4 [59]. The
RCM-RCA4 simulation covers the Coordinated Regional Climate Downscaling Experiment
(CORDEX)-Africa domain at a 44-km horizontal resolution in Africa for the 1951–2100 pe-
riods which is divided into two: historical (1951–2005) and scenario (2006–2100) periods.
The CORDEX initiative sets a standard grid, domain size experiment protocols, and data
format allowing for direct comparison of the model outputs [60,61]. Within this framework,
only models which were widely available and provide projections for the Representative
Concentration Pathway (RCP 8.5) were selected as this is deemed the highest level expected
to assess future climate change impact and responses. There is no difference between RCP
4.5 and RCP 8.5 until the year 2050 [62,63]. The difference between the two becomes clear
after 2050. Therefore, all projected climate and crop model simulations in our study are
based on RCP 8.5 emission scenario.

The data were bias-corrected using the quantile-quantile mapping procedure [64]. At-
mospheric CO2 concentrations specified for each period according to the Intergovernmental
Panel on Climate Change Special Report on Emission Scenarios IPCC SRES [40] were used:
380 µL L−1 for the baseline (1995–2017) and 450 µL L−1 for the future (2021–2050) period.
In this study, downscaled precipitation, and maximum and minimum air temperature data
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from seven GCMs for the three study sites (Ambo, Bako, and Melkassa) were evaluated.
The baseline data at a daily scale (1995–2017) were used for evaluating CORDEX-Africa
precipitation, and maximum and minimum air temperature for future climate scenarios.
The comparison between GCM’s historical runs and observations was performed using
average monthly values of precipitation, and maximum and minimum air temperature for
the reference period of 1995–2005. The performance of GCMs in simulating the observed
precipitation, and maximum and minimum air temperature data were evaluated statisti-
cally and presented graphically. The statistical measurements include root mean square
error (RMSE) and correlation coefficient (R2) calculated using the following equations:

R2 =
n ∗
√

∑ Si×Oi−∑ Si×∑ Oi√
[n ∗∑ Si2 − (∑ Si)2] ∗ [[n ∗∑ Oi2 − (∑ SOi)2]

(1)

RMSE =

√
1
n ∑n

i=1(Si−Oi)2 (2)

where Si and Oi represent the simulated and the observed values of the ith year respectively,
and n is the total number of years that data values were used.

2.2.4. Crop Management Practices for Climate Change Adaptation

The study considered three agronomic management options: planting date shift,
nitrogen fertilizer levels, and maize cultivars with different maturity lengths. To assess the
impact of climate change on maize yield, the study considered the recommended planting
date, nitrogen fertilizer level, and cultivar for each site studied as a control treatment for
the baseline period. The control treatments are planting dates: 15 June for Ambo and
Bako and 30 June for Melkassa. Nitrogen fertilizer: 100 kg ha−1 used for all sites. Maize
cultivars: late maturing (Jibat) for Ambo, late (BH661) and medium (BH546) maturing
for Bako, and early maturing (MH140) for Melkassa. These treatments are the baseline
practices used by farmers and agricultural research centers in the respective study sites. The
control treatments were simulated for the baseline (1995–2017) and for the future 2021–2050
(the 2030s) climate. The relative yield reduction was used as a measure of climate change
impact. To assess the adaptation options for the baseline and for the future period, shifting
the planting date within the planting window (15 May to 15 July) was used. The normal
planting periods were between 15 May to 15 June for Ambo and Bako, and between 1 June
to 15 July for Melkassa [65].

Optimum planting dates, which provided the highest yield, were determined from
simulations of the baseline and the climate change scenarios using sowing dates of two
weeks intervals around the earliest and latest possible sowing date within the planting
window. Hence, we adopted four different planting dates: 15 May, 1 June, 15 June, and
30 June for Ambo and Bako, and 1 June, 15 June, 30 June, and 15 July for Melkassa. Different
nitrogen fertilizer levels below and above the recommended level (0, 23, 100, 150, and
200 kg ha−1) were used with 50% nitrogen at planting and 50% of nitrogen 30 days after
planting. Four different maize cultivars: BH546, BH661, Jibat, and MH140 under three
maize agro-ecology zones were also used as future adaptation options. Maize yield was
simulated for a baseline period (1995–2017) and future 2021–2050 (the 2030s) climatic
conditions. The 2030s represent the average between 2021 and 2050. The potential impact
of climate change under the RCP8.5 scenario was estimated by calculating changes in maize
yield between baseline and future climates for each treatment as follows:

∆Y =

(
Yf i −Yb

)
Yb

(3)

where ∆Y is a change of yield, Yf i is yield under future climate i, and Yb is yield under the
baseline climate.
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The variability of yield (uncertainty) due to temporal variation, model, or location
in the climate change impact assessment was calculated based on the method described
in [66]. Note that ensemble GCMs refer to the results averaged over the seven GCMs while
ensemble crop models refer to the results averaged over the three crop models.

3. Results
3.1. Projected Climate Change by 2030s
3.1.1. Precipitation

Projections using RCP 8.5 at Ambo, Bako, and Melkassa sites clearly showed changes
in monthly precipitation amount by 2030. Relative to the baseline period (1995–2017), the
percentage changes in monthly total precipitation by 2030 varied among GCMs and sites
(Supplementary Figure S1). The monthly total precipitation for the most relevant months
from the point of view of rainfed crop production (i.e., June to September- Kiremt season)
is projected to increase by up to 55% (365 mm) for Ambo and 75% (241 mm) for Bako
respectively, whereas a significant decrease in monthly total precipitation is projected for
Melkassa compared to the baseline period by 2030 (Supplementary Figure S1). For the short
rainy season (March to May-Belg season), most of the GCMs projected a decrease in monthly
total precipitation for all sites, except a few GCM models that projected a slight increase
for Bako relative to the baseline period. Interestingly, the total monthly precipitation for
the dry season (October to February-Bega season) for almost all GCM models projected a
great increase for Melkassa particularly for November, December, and January. Similarly,
most of the GCMs projected an increase in monthly total precipitation for October and
November in Ambo while the majority of the GCM models projected a decrease in monthly
total precipitation for Bako in the near future (the 2030s) (Supplementary Figure S1).

Figure 1 shows the total monthly precipitation amount projected by an ensemble of
multiple GCMs for 2030 as compared to the observed (1995–2017) period. Results show that
monthly total precipitation will remain almost the same as the baseline, while the in Belg
(Mar–May) season total precipitation will decrease at Ambo under the future climate. In the
Kiremt (Jun–Sept) season, monthly total precipitation, on the other hand, may significantly
increase at Bako in 2030. However, future monthly total precipitation is projected to reduce
significantly for Belg and Kiremt seasons at Melkassa by 2030 (Figure 1).
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3.1.2. Maximum Air Temperature

The projected changes in average monthly maximum air temperatures from all GCM
runs are shown in Supplementary Figure S2. The changes in average monthly maximum
air temperatures projected by GCMs are quite different in magnitude, but similar in pattern.
All models indicate incremental changes with respect to the historical period in the near
future. According to the GCM models, the average monthly maximum air temperatures
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would increase by 0.3–1.7 ◦C for Ambo, 0.7–2.2 ◦C for Bako, and 0.8–1.8 ◦C for Melkassa
compared to the historical period (Supplementary Figure S2). In addition, the Kiremt
season will experience the highest air temperature change, particularly in the month of
August at Ambo. Similarly, the Bega season will experience the highest air temperature
in February and January at Bako and Melkassa respectively in 2030. Overall, for a given
future period and emission scenario though, warming is found for all study sites although
larger relative increases are projected for Bako.

Monthly average maximum air temperature projected values obtained by the GCMs
ensemble, and the observed values are presented in Figure 2. According to the GCMs
ensemble means, the monthly average maximum air temperature is expected to increase by
24.0–29.7, 25.6–33.1, and 27.8–32.5 ◦C for Ambo, Bako, and Melkassa respectively compared
to that observed by 2030. In addition, the GCMs ensemble means clearly indicate that the
increase in monthly average maximum air temperature by the 2030 will be higher during
the small rainy season (Belg) and the dry season (Bega) across all sites compared to the
main rainy season (Kiremt) (Figure 2).
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3.1.3. Minimum Air Temperature

The results of projections for monthly average minimum air temperature are shown in
Supplementary Figure S3. The projection shows that the monthly average minimum air
temperatures are projected to continue to increase in comparison to the historical period.
Likewise, the monthly average minimum air temperature is projected to increase in the
range of 0.6–1.7 ◦C for Ambo, 0.8–2.3 ◦C for Bako, and 0.6–2.7 ◦C for Melkassa in 2030
(Supplementary Figure S3). This is greater than the 2 ◦C limit specified by the IPCC as the
point beyond which ecological systems may become severely disrupted [40]. The result
also clearly shows that the future average monthly minimum air temperature increases
are similar to the results shown for average monthly maximum air temperature changes.
In addition, the Kiremt season will experience the highest monthly average minimum air
temperatures in June at Ambo in the near future. Similarly, the Bega season will have the
greatest monthly average minimum air temperature in December and October at Bako
and Melkassa respectively in 2030. Overall, for the period of 2030, there will be a clear
increase in the average monthly minimum air temperature compared to the maximum air
temperature change, due to climate change impacts.
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The projected values of the monthly average minimum air temperature obtained by the
GCM ensembles and the observed values are presented in Figure 3. The ensemble GCMs
were able to replicate the monthly average downward trend in minimum air temperature
levels as the observed data show (Figure 3). Based on the GCMs ensemble projections, the
monthly average minimum air temperature is expected to increase by 10.1–13.2, 13.2–16.5,
and 11.6–18.0 ◦C for Ambo, Bako, and Melkassa respectively compared to that observed in
the near future. According to the GCMs ensemble means, by 2030 the increase in monthly
average minimum air temperature will be higher during the Belg (Mar–May) season for all
sites studied as compared to the other two seasons (Figure 3).

3.2. Yield Simulation for the Baseline (1995–2017) Climate

Yield simulations for the baseline period using the observed climate data indicated
higher yields at mid-altitude yields for Bako (Figure 4). Simulation of yield by all crop
models suggests that increased nitrogen (N) application produces an increased yield for
all maize cultivars on all sites. The simulated maize yield for Ambo ranges between 2.0
and 6.7 t ha−1, 2.0 and 15.5 t ha−1 for Bako, and 2.9 and 13.1 t ha−1 for Melkassa for the
baseline 1995–2017 period. The average of the three models provides an increased yield
(up to 12.5 t ha−1) as compared to the measured maize yield values (up to 6.7 t ha−1) across
all cultivars and sites.

3.3. Impact of Projected Climate on Maize Yield

Figure 5 presents the impact of future climate on maize yield if the existing agronomic
practices used by farmers continue in 2030 in the study sites. Relative to the baseline, all
the crop models showed either an increase or a decrease in maize yield depending on the
treatment level. Figure 5 Assuming the current agronomic practice in the future climate,
the mean (i.e., averaged over all cultivars and crop models and climate models) maize yield
is expected to decrease by 4 % and 16 % for Ambo and Melkassa, respectively, by 2030
(Figure 5). In contrast, the corresponding mean maize yield is expected to increase by 2%
for Bako by 2030 (Figure 5). Note that, the current planting dates are 15 June for Ambo and
Bako, and 30 June for Melkassa whereas the control Nitrogen fertilizer was 100 kg ha−1 for
all sites to reflect the “no adaptation option”.
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3.4. Crop Management Practices as Adaptation Options

According to Figure 6, the result indicated that for Ambo crop model differences
in predicting maize yield are small. Early planting from 15 May to 1 June would give
improved relative yields for all cultivars. Fertilizer levels increment between 23–150 kg
ha−1 result in progressive yield improvement for all cultivars when combined with early
planting at Ambo in 2030.

For Bako, there are differences between the models in the relative yield changes of
maize, particularly for the early planting dates. Early planting increased maize yield for
all cultivars under the future climate. Planting after 15 May has either no effect or has
a negative effect on maize yield. All cultivars studied responded in the same way to
planting date shifts. Early planting combined with a nitrogen fertilizer level of 23–100 kg
ha−1 provided increased relative yields under the future climate. Delayed planting has a
negative influence on maize production for Bako under the future climate (2030).

For Melkassa, all models responded similarly to planting dates, fertilizer, and cultivar
levels. All planting dates considered resulted in negative relative yield. However, late
planting had reduced relative yields compared to early planting. Higher fertilizer levels
(100–150 kg ha−1) seem to reduce yield reductions under the future climate, but this varied
among maize cultivars studied. Planting the Jibat cultivar between 15 and 30 June at higher
N levels may reduce severe yield reduction of maize at Melkassa (Figure 6).



Atmosphere 2023, 14, 497 13 of 25

Atmosphere 2023, 14, x FOR PEER REVIEW 13 of 25 
 

 

 
(a) Ambo 

 
(b) Bako 

Figure 6. Cont.



Atmosphere 2023, 14, 497 14 of 25
Atmosphere 2023, 14, x FOR PEER REVIEW 14 of 25 
 

 

 
(c) Melkassa 

Figure 6. Effects of planting dates on mean maize yield under future climate change scenarios rel-
ative to the baseline for (a) Ambo (high altitude), (b) Bako (mid-altitude), and (c) Melkassa (low 
altitude) as simulated using the APSIM, AquaCrop, and DSSAT crop models. Error bars show the 
standard deviation of the change of maize yield simulated for multiple GCM projections. 

3.5. Crop Model Uncertainty in Yield Simulation 
Predicted yield differences amongst the models were noted for the higher altitude 

(Ambo), mid (Bako), and lower altitude (Melkassa) sites. The impact of the crop models 
in predicting yield varied from −38 to 38% for Ambo, from −4 to 65% for Bako, and −12 to 
−36% for Melkassa (Figure 7). The crop model yields were inconsistent even for the sim-
ulated mean yield change under the same climate projection. The DSSAT model pro-
jected a large mean yield reduction whereas the AquaCrop model projected a high mean 
yield increase for Ambo and Bako for most climate projections. The APSIM model pro-
jected both the lowest and the highest yield reduction for Melkassa for most of the cli-
mate projections (Figure 7). The differences in the simulated mean yield changes could to 
some extent be attributed to the different responses of these crop models to the projected 
climate conditions. 

Figure 6. Effects of planting dates on mean maize yield under future climate change scenarios relative
to the baseline for (a) Ambo (high altitude), (b) Bako (mid-altitude), and (c) Melkassa (low altitude)
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3.5. Crop Model Uncertainty in Yield Simulation

Predicted yield differences amongst the models were noted for the higher altitude
(Ambo), mid (Bako), and lower altitude (Melkassa) sites. The impact of the crop models
in predicting yield varied from −38 to 38% for Ambo, from −4 to 65% for Bako, and
−12 to −36% for Melkassa (Figure 7). The crop model yields were inconsistent even for
the simulated mean yield change under the same climate projection. The DSSAT model
projected a large mean yield reduction whereas the AquaCrop model projected a high
mean yield increase for Ambo and Bako for most climate projections. The APSIM model
projected both the lowest and the highest yield reduction for Melkassa for most of the
climate projections (Figure 7). The differences in the simulated mean yield changes could
to some extent be attributed to the different responses of these crop models to the projected
climate conditions.
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Figure 7. Crop model uncertainty in simulated mean maize yield (averaged for all cultivars) for
different planting dates and nitrogen fertilizer levels for (a) Ambo (high-altitude), (b) Bako (mid-
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3.6. Climate Model Uncertainty in Yield Simulation

The simulated mean maize yield changes for different climate projections were quite
different. For example, using the IPSL-CM5A resulted in the highest mean yield increase
for both Ambo and Bako, whereas data for HadGEM2-ES and CSIRO-Mk3-6-0 models
resulted in the lowest mean yield for Ambo and Bako respectively. Both the HadGEM2-ES
and CSIRO-Mk3-6-0 models projected the lowest and the highest decrease in mean yield,
respectively for Melkassa (Figure 8). Overall, the impact of the choice of GCM on yield
varied from −52 to 78% for Ambo, −5 to 41% for Bako, and −4 to −62% for Melkassa
(Figure 8). This result demonstrated that the yield uncertainty is greater among GCMs than
crop models.
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4. Discussion
4.1. Climate Change Projections and Impacts

Maize production is very likely to be negatively affected by climate change in
Ethiopia [37,38] and there is an urgent need to develop strategies that adapt to the changing
climate. Therefore, this study investigated the potential impact of climate change on maize
yield for three sites (Ambo, Bako, and Melkassa) in tropical environments of Ethiopia in
2030 under RCP 8.5 scenario using downscaled CORDEX-Africa domain precipitation and
air temperature data. The study indicated that both the individual GCM models and their
ensemble mean projected an increase for the Kiremt season total monthly precipitation
for Ambo and Bako while a decrease in total monthly precipitation for Melkassa by 2030
as compared to the baseline period. A projected precipitation increase for the Kiremt
season up to 55% (365 mm) for Ambo and 75% (241 mm) for Bako, respectively, can be
explained since the two sites received more precipitation as compared to the low-land
areas, such as Melkassa (Figure 1). Moreover, the Kiremt season is the main rainy season
which receives most of the annual precipitation. Hence, the future climate might favor
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the site during this season. A future increase in the Kiremt total monthly precipitation at
Ambo and Bako may have a positive impact on maize production though this might be
changed due to an increase in the air temperature for the sites that leads to an increase in
evapotranspiration [7].

The result from the GCMs model showed that the Belg season total monthly precipita-
tion was projected to decrease for Ambo and Melkassa while projected to increase for Bako
by 2030. However, the GCMs ensemble clearly indicates that the Belg season total monthly
precipitation is expected to decrease by 2030 for all sites. Therefore, the projected decrease
in Belg season precipitation will negatively affect long-cycle crop yield in the study sites.
The decrease in the Belg season precipitation agrees with [2] who investigated the impact
of predicted changes in precipitation and atmospheric carbon dioxide on maize and wheat
yields in the Central Rift Valley of Ethiopia.

By contrast, despite some differences in the magnitude of changes, the total monthly
precipitation is projected to increase for the Bega season (November, December, and Jan-
uary) for Melkassa by 2030. Even though some of the GCMs indicated an increase in
the Bega season total monthly precipitation for Ambo and Bako, the GCMs ensemble
evidently illustrated that the total monthly precipitation would remain almost the same as
the baseline for Ambo and Bako by 2030. Overall, the projected increase and decrease in
precipitation for the Bako and Melkassa sites, respectively are in agreement with [21,37].
Under normal conditions, the Bega season is a time for harvesting, particularly for the lower
altitude areas [67]. Hence, the anticipated increase in monthly total precipitation mainly
for November and December might affect the agricultural operation such as harvesting at
Melkassa. Therefore, harvesting time should be adjusted accordingly for this site.

The projected air temperature showed that the study region will get warmer under
the future climate compared to the historical period although the magnitude of change
may vary depending on the site. Across the study sites, the average monthly maximum
air temperature may increase by between 0.3 and 1.7, 0.7 and 2.2, and 0.8 and 1.8 ◦C for
Ambo, Bako, and Melkassa, respectively during 2030 compared to the historical period.
The expected increase in monthly average maximum air temperature by 2030 is greater
for Bako compared to the other sites. This agrees with the previous reports that indicated
future warming for the study sites [21,37]. Similarly, the average monthly minimum air
temperature may change by between 0.6 and 1.7, 0.8 and 2.3, and 0.6 and 2.7 ◦C for the
corresponding sites in the near future. The increase in minimum air temperature is expected
to be higher at lower altitude (Melkassa) compared to those in mid and higher altitudes.

Rising maximum and minimum air temperatures played a crucial role in maize yield
reduction which negatively impacts maize growth and development. For instance, the
increased air temperature may lead to the shortening of the reproductive phases and
reduce the available time for radiation interception and carbon assimilation as previously
reported [68–70]. Authors of Ref. [68] projected a reduced period of 10 to 30 days for the
grain-filling phase and a decrease in maize yield. Authors of Ref. [69] illustrated that
for maize in the USA, there would be a decrease in days to flowering by 17 days and a
yield loss of 13% if air temperature increased by 2 ◦C. Similarly, for the March, June, and
November planting season in South Asia, authors of ref. [70] projected that an increase in
maximum and minimum air temperatures by 1 ◦C caused a yield reduction of 55, 13, and
32% respectively while an increase of 5 ◦C caused a reduction of 98, 64, and 75% for the
respective months.

The GCMs ensemble mean also indicated that the average monthly maximum air
temperature by the 2030s will increase to between 24.0 and 29.7, 25.6 and 33.1, and 27.8
and 32.5 ◦C for Ambo, Bako, and Melkassa respectively. Similarly, the average monthly
minimum air temperatures are expected to increase by between 10.1 and 13.2, 13.2 and 16.5,
and 11.6 and 18.0 ◦C for the corresponding sites by 2030. In addition, the GCMs ensemble
means clearly indicates that the increase in monthly average maximum air temperature
in the 2030s will be less during the main rainy season (Kiremt) than that for the small
rainy season (Belg) and the dry season (Bega) for all sites. The lower increase in average
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monthly air temperature during the main rainy season (Kiremt) may lead to reduced
evaporation followed by reduced drying of the surface. Furthermore, by 2030 the monthly
average minimum air temperature is expected to be higher during the Belg season for
Ambo. Likewise, the monthly average minimum air temperature is anticipated to increase
for both Belg and Kiremt seasons for Bako and Melkassa compared to the Bega season in
2030. The increase in maximum and minimum air temperatures for the study sites is in
agreement with [21,37].

4.2. Impact of Climate Change on Maize Yield Compared to the Baseline

The average simulated maize yields of up to 12.5 t ha−1 for the baseline period
(1995–2017) were comparable to measured maize yield of up to 6.7 t ha−1 across all cultivars
and sites while simulated maize yield at Bako slightly higher (up to 15.5 t ha−1) than the
rest of the sites. This difference might have been associated with an increased annual total
rainfall and decreased average maximum air temperature and evapotranspiration during
the maize growing period at the Bako site (Supplementary Figures S4 and S5).

If the existing agronomic practices by farmers are not improved and/or continue
in the near future, the simulated mean yield indicates that maize yields are likely to be
negatively impacted by climate change at Melkassa and Ambo as compared to Bako by
2030. The impact was greatest for Melkassa (low altitude) where the air temperature is
naturally high, and precipitation is low. The projected increase in air temperature and
decrease in precipitation particularly during the main rainy season (Kiremt) might cause a
maize yield reduction. The result is consistent with other studies [37,38]. Previous studies
also indicated an increase in air temperature will cause an increase in maize development
rate and a decrease in the total growth duration. This decrease limits the available time
for the anthesis stage and leads to a depletion of kernels per plant which subsequently
reduced the simulated yield in comparison to the baseline conditions [71]. Authors of
Ref. [72] reported that further increases in air temperature may shorten crop life cycles and
accelerate crop development rates, implying increased respiration losses, reduced biomass
accumulation, and reduced crop yields. Authors of Ref. [73] also found that climate change
will cause crops to complete their growth in a shorter period of time and this will result in
a 10 to 30% reduction in yield in the future.

Climate change is likely to reduce maize yield at Ambo by an average of 4% in
2030 if the current varieties are grown under the existing agronomic practice in the near
future. This could be associated with the decrease in precipitation and the increase in air
temperature during the short rainy season (Belg) leading to yield reduction. Low maize
yields have a direct impact on food security in the study areas. Rapid changes in basic crop
management practices are necessary for the study areas and if not, farmers will be at risk of
future climate shocks. Thus, improved crop management practice is needed for the maize
cropping system to be more resilient to the changing environmental conditions [74].

On the contrary, future maize yield was projected to increase slightly relative to the
baseline yield for Bako. This could be attributed to the increase in precipitation in the
main rainy season (Kiremt) and the increase in air temperature which seemed to remain
favorable for maize yield for this study site. This finding agreed with [21], who showed
that future maize yield was slightly higher than the baseline yield at Bako.

4.3. Crop Management Practices as Adaptation Options

The challenge to produce enough food for the fast-growing population in Ethiopia will
be greater under the changing climate unless the farming systems used involve adaptation
strategies and/or new technological advancements are achieved. Since rainfed maize
production is vital for food security in Ethiopia [18] adapting this cropping system to drier
and warmer future climatic condition is important. In the future climate, maize would
have a reduced time to flowering and to maturity due to the projected high maximum and
minimum air temperature for the study sites. Therefore, adjusting planting date, nitrogen
application level, and choosing the appropriate cultivar could be considered the three
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agronomic approaches which can be used to minimize the impact of climate change on
maize and to increase yield.

Under future climate, early planting between 15 May and 01 June resulted in improved
relative yields for all maize cultivars for Ambo. The result is supported by [71] who reported
that early planting allows the maize crop to escape the hot weather of a future environment
and increase yield compared to that for the local and late planting dates in the midlands
of KwaZulu-Natal, South Africa. The increased N fertilizer level from 23–150 kg ha−1

resulted in improved yields for all cultivars when combined with early planting at Ambo.
Nitrogen fertilizer is a key nutrient for crop growth to achieve the yield potential of new
cultivars [75].

Nitrogen management together with a shift in planting dates were one of the most
important adaptation strategies tested, in terms of yield impact for Bako. For example,
early planting combined with a nitrogen fertilizer level of 23–100 kg ha−1 provided higher
relative yields under the future climate. Delayed planting has a negative influence on maize
production in the future climate.

Our results differed from [76] who suggested that combining high fertilizer levels
with late planting resulted in increased yields for Bako. The differences could be due to the
differences in the climate downscaling method used to produce future climate projections.
This study used climate projection data downscaled dynamical RCM [59] while a simple
delta factor method was used in [76]. In general, the results from the current study suggest
that improvements in crop management practices could lead to increased yields.

All planting dates considered resulted in negative relative yields for Melkassa. How-
ever, late planting had reduced relative yields compared to early planting. Higher fertilizer
levels (100–150 kg ha−1) seem to reduce yield reductions under the future climate, but this
varied among maize cultivars studied. Planting the Jibat cultivar between 15 and 30 June at
higher N levels may reduce severe yield reductions of maize at Melkassa. The result agrees
with [77] who showed that long-season cultivar can compensate for the reduced growth
duration resulting from future increased air temperatures.

4.4. Crop and Climate Models Uncertainty in Yield Simulation

The AquaCrop (water-driven) model over-predicted maize yield in most cases during
the simulation period for the study sites. This might be due to the simplification of
complex processes in AquaCrop [78,79] as compared to DSSAT and APSIM (radiation-
driven) models. In addition, the AquaCrop model has high extrapolative capability by
allowing the normalized water productivity to account for climatic conditions and yield
simulation [80]. Furthermore, there are several factors such as biotic and abiotic stresses [81]
as well as pedo-climatic conditions [82] that are not accounted for in the models used and
could have attributed toward the over-prediction of crop yield. On the other hand, DSSAT
(radiation-driven) model underestimated maize yield for some cultivars for the study sites.
This is explained by the performance of the DSSAT model varied amongst locations and
cultivars [83]. For this study, compared to crop models, GCM uncertainty in predicted
future maize yield is relatively larger. These results are consistent with other studies of
climate change impact quantification on maize [37,84]. However, the result is in contrast to
the findings of another study reporting that uncertainty from crop models was higher than
those from GCMs [21,85,86].

5. Conclusions

This study quantifies the impact of climate change on maize production in tropical
environments of Ethiopia and the role of crop management practices as an adaptation
mechanism under future climate. The analysis of climate change scenarios of seven GCM
models and RCP 8.5 indicates compromised climatic conditions for maize growth. The
results indicate that both the average monthly maximum and minimum air temperature
will increase in the study areas by 2030. The GCMs ensemble show that the monthly
average maximum air temperature will increase during the Belg and the Bega seasons
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rather than the Kiremt season in 2030. The monthly average minimum air temperature
may increase during the Belg season at all sites.

Monthly total precipitation will remain almost the same as the baseline while the Belg
season monthly total precipitation will decrease at Ambo under the future climate. The
Kiremt season monthly total precipitation, on the other hand, may significantly increase
at Bako in 2030. However, future monthly total precipitation will reduce considerably for
the Belg and Kiremt seasons at Melkassa in 2030. These would result in a mean maize
yield reduction of 4 and 16% at Ambo and Melkassa respectively, and a mean maize yield
increase of 2% at Bako in 2030.

The projected climate change, with increasing air temperatures and changes in pre-
cipitation, will become a threat to Ethiopian food production unless adaptation strategies
are applied. In the higher altitude (Ambo), early planting of maize cultivars between
15 May and 01 June would result in improved relative yields in the future climate. Gener-
ally, combining early planting with an increase in fertilizer levels between 23 and 150 kg
ha−1 will result in improved yields for all maize cultivars in Ambo. For the mid-altitude
(Bako), planting after 15 May has either no or negative effect on maize yield. However,
early planting combined with a nitrogen fertilizer level of 23–100 kg ha−1 provided higher
relative yields under the future climate in Bako. Delayed planting has a negative influence
on maize production for Bako under the future climate (2030). For the lower altitude
(Melkassa), all planting dates considered resulted in a negative relative yield. However,
late planting would have lower relative yields compared to early planting. Higher fertilizer
levels (100–150 kg ha−1) seem to reduce yield reductions under the future climate, but this
varied among maize cultivars studied. Planting the Jibat cultivar between 15 and 30 June at
higher N levels may reduce severe yield reduction of maize at Melkassa. The output of this
study is important, since it can assist farmers to change their crop management practices
and agricultural policymakers at the regional level for sustainable maize production in the
study region.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos14030497/s1, Figure S1. Percentage changes in monthly
total precipitation of the projected climate by 2030s; Figure S2. Projected changes in monthly average
maximum air temperature (◦C) by 2030s; Figure S3. Projected changes in monthly average minimum
air temperature (◦C) by 2030s; Figure S4. Monthly total rainfall, average solar radiation, and the
number of rainy days for the crop growing season 2017/2018; Figure S5. Monthly average maximum
and minimum air temperature, and ETo for the crop growing season 2017/2018; Table S1. Main soil
properties for the study areas used in the model simulation.
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