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With the human population continuing to increase worldwide, there is pressure to
employ novel technologies to increase genetic gain in plant breeding programs
that contribute to nutrition and food security. Genomic selection (GS) has the
potential to increase genetic gain because it can accelerate the breeding cycle,
increase the accuracy of estimated breeding values, and improve selection
accuracy. However, with recent advances in high throughput phenotyping in
plant breeding programs, the opportunity to integrate genomic and phenotypic
data to increase prediction accuracy is present. In this paper, we applied GS to
winter wheat data integrating two types of inputs: genomic and phenotypic. We
observed the best accuracy of grain yield when combining both genomic and
phenotypic inputs, while only using genomic information fared poorly. In general,
the predictions with only phenotypic information were very competitive to using
both sources of information, and inmany cases using only phenotypic information
provided the best accuracy. Our results are encouraging because it is clear we can
enhance the prediction accuracy of GS by integrating high quality phenotypic
inputs in the models.
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Introduction

Agriculture needs to provide a significant increase in food, fuel, fiber, and fine chemicals
in the next century to meet the needs of the growing world population. Different challenges
exist in meeting these needs because of the effects of climate change, including an increased
risk of drought and high temperatures, torrential rains, degradation of arable land, and the
depletion of water resources (Atefi, et al., 2021). To mitigate these challenges, plant breeders
are working to develop high-yielding, stress-tolerant crop varieties adapted to future climatic
conditions and resistant to new pests and diseases (Fischer, 2009; Furbank and Tester, 2011;
Rahaman et al., 2015).

Marker technology has been used in plant breeding since the 1980s, but it was not until
2001 when genomic selection (GS) was proposed by Meuwissen et al. (2001) to estimate all
marker effects. Using this strategy, the full potential of markers was engaged, since GS is able
to predict the output variable using all markers simultaneously in the model. The
applications for GS continue growing, as it is employed by breeders in wheat (Triticum
aestivum L.), maize (Zea mays L.), cassava (Manihot esculenta L.), rice (Oryza sativa L.),
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chickpea (Cicer arietinum L.), groundnut (Arachis hypogaea L.), etc.
(Roorkiwal et al., 2016; Crossa et al., 2017; Wolfe et al., 2017; Huang
et al., 2019). However, implementing GS in many plant breeding
programs is challenging due to the many factors that affect its
accuracy. Some of these factors include 1) genotyping quality, 2) not
following the guidelines about where in the breeding program GS
can be efficiently applied (Crossa et al., 2017; Yoosefzadeh-
Najafabadi, et al., 2022), 3) insufficient number of lines in the
reference (training) population, 4) appropriate allocation of
samples and SNPs to training, testing, and validation using
difference methods such as cross validation (Montesinos-López
et al., 2022), 5) organization of field designs, 6) cross-validation
strategy, tested lines in tested environments, tested lines in untested
environments, etc., 7) heritability of the trait, 8) population
structure, and 9) prediction model, etc.

There is empirical evidence that integrating high throughput
phenotyping information collected by unmanned aerial systems
(UASs), handheld scanners, tractor-mounted systems, and low
orbiting satellite systems, in combination with genomic data, has the
potential to complement GS and increase crop productivity. One of the
advantages of recent phenotyping technology is that it can quickly and
accurately obtain data onmany agronomic traits (Atkinson et al., 2018).
While the availability of new classes of phenomic information has fueled
the development of a phenomic-based analog to GS, phenomic
selection (PS), it is more probable that the integration of high
throughput phenotypic information with other omics data is what
can significantly improve the accuracy of GS. For example, Wu et al.
(2022), using three omics datasets (transcriptomics, genomics, and
metabolomics) as predictors, found that the integration of the three
sources of information improves prediction accuracy in barley
(Hordeum vulgare L.). Also, Hu et al. (2021) found that integrating
multi-omics (transcriptomic, metabolomic, and genomics) data
improved prediction accuracies of oat (Avena sativa L.) agronomic
and seed nutritional traits in multi-environment trials and distantly
related populations in addition to single-environment predictions.

Because phenotypic variation observed across diverse environments
is a product of genetic and environmental variation, environmental
information acts as a central bottleneck for the application of modern
genomics-assisted prediction tools, especially for use across multiple
environments. Thus, it is of paramount importance to incorporate high
throughput environmental data into genomic prediction models to
improve predictions in new environments with the same environmental
characteristics (Rogers et al., 2021). Also, all environmental (historical
and non-historical) data should be included as predictors to model the
genotype by environment interaction more efficiently, which is key to
increasing the prediction performance and genetic gain in breeding
programs. The addition of environmental data in the modeling process
is fundamental for more accurately predicting cultivars across diverse
growing conditions (e.g., Jarquín et al., 2014; Messina et al., 2018; Millet
et al., 2019).

As referenced, there continues to be a growing amount of
empirical evidence that combining genomic, phenotypic, and
environmental data is key to improving prediction accuracy
(Montesinos-López et al., 2017; Cuevas et al., 2019; Krause et al.,
2019). It is important to note that many robotics systems have been
employed to measure plant orientation, plant height, leaf length, leaf
area, leaf angle, leaf and stem width, and stalk count of many species
such as sorghum (Sorghum bicolor L.), maize, cauliflower (Brassica

oleracea L.), sunflower (Helianthus annuus L.), brussels sprouts (B.
oleracea L.), and savoy cabbage (B. oleracea L.) (Jay et al., 2015;
Fernandez et al., 2017; Baweja et al., 2018; Vázquez-Arellano et al.,
2018; Vijayarangan et al., 2018; Bao et al., 2019; Breitzman et al.,
2019; Qiu et al., 2019; Young et al., 2019; Zhang et al., 2020),
architectural traits and density of the peanut canopy (Yuan et al.,
2018), the number of cotton (Gossypium sp.) bolls (Xu et al., 2018),
berry size and color of grapes (Vitis sp.) (Kicherer et al., 2015), and
volume, shape, and yield estimation of vineyards (Lopes et al., 2016;
Vidoni et al., 2017). Even the promising results of high throughput
phenotyping face many technical challenges that need to be
addressed regarding sensing, path planning, localization, obstacle
avoidance, and object detection. More research is required to
overcome these limitations of phenotyping robots and improve
their accuracy, speed, and safety (Atefi, et al., 2021). Some
publications that combine genomics and environmental
information are Basnet et al. (2019), Monteverde et al. (2019),
Washburn et al. (2021), Jarquin et al. (2021), Rogers and
Holland (2022), Costa-Neto, et al. (2021a), Costa-Neto, et al.
(2021b), among others. Few publications are available that
integrate genomics, phenomics, and environmental information
(Crossa et al., 2021).

In this study, using data from soft white winter wheat collected
from 2019 to 2022 byWashington State University, we evaluated the
prediction performance of integrating genomics and high
throughput phenotypic information to predict grain yield under
two scenarios of cross validation (CV), prediction of partially tested
lines in tested environments using 7-fold cross validation (7FCV)
and prediction of partially untested lines in untested environments
using leave one environment out (LOEO) cross validation. These
two strategies of CV were implemented using the Bayesian genomic
best linear unbiased predictor (GBLUP) and the partial least squares
(PLS) method.

Materials and methods

Datasets 1 to 4 (wheat data)

Wheat lines used in this study are from the breeding program of
Washington State University (WSU) and were grown at various
locations in the state of Washington on grower-cooperator fields
using common agricultural practices for the region. Grain yield (GY)
was collected using a Zürn 150 Combine (Zürn Harvesting GmbH&
Co.) and was used for each of the four data sets.

• Dataset 1, Wheat_1 (Year 2019) contains 1,397 unique lines
and three environments (Kincaid, Lind, Pullman) and
contains 1,869 total observations since some lines are
repeated in various environments.

• Dataset 2, Wheat_2 (Year 2020) contains 758 unique lines and
six environments (Farmington, Harrington, Kincaid, Lind,
Ritzville, and Walla Walla) and contains 952 total
observations since some lines are repeated in various
environments.

• Dataset 3, Wheat_3 (Year 2021) contains 452 unique lines and
eight environments (Davenport, Harrington, Kahlotus,
Kincaid, Lind, Pullman, Ritzville and Walla Walla) and
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contains 780 total observations since some lines are repeated
in various environments.

• Dataset 4, Wheat_4 (Year 2022) contains 363 unique lines and
six environments (Davenport, Farmington, Harrington,
Prescott, Pullman and Ritzville) and contains 483 total
observations since some lines are repeated in various
environments.

Phenotypic data was collected using the Sentera Quad
Multispectral Sensor (Sentera, St Paul, MN), which covered target
bands of interest for winter wheat evaluation. The camera has four
sensors that cover eight broad spectral bands between 450 and
970 nm. An unmanned aircraft system (UAS) mounted with the
Sentera camera flew a programmed route at an elevation of 45 m
capturing overlapping georeferenced images. Collected UAS images
were stitched and prepped for data extraction in Pix4Dmapper
(Pix4D Inc., Denver, CO), creating a single orthomosaic image
for each sensor per location. Orthomosaic images were
transferred to Geographic Information System (QGIS) for plot
identification and then further processed with a custom R code
for calibration, index calculation, and single plot mean data
extraction. In 2019, a single reflectance panel (85% reflectance)
was used for radiometric calibration on red, blue, green, (RBG) and
red edge bands (RE1 and RE2). Quantum efficiency coefficients were
used to calculate near infrared (NIR) using:

NIR � 2.921 × Blue( ) − 0.754 × Red( )
The NIR band was then normalized with a coefficient of

3.07 during the calculation of SRIs. In 2020 through 2022, a set
of calibration panels were used (five panels ranging from 2%–85%
reflectance, MosaicMill Oy, Vantaa, Finland). All raw band layers
were adjusted based on the relationship:

SR � DN × Slope ± intercept

Where the slope and intercept are based on the regression of the
observed reflectance in calibration panels, digital numbers (DN) are
the raw observed pixel values, and surface reflectance (SR) is the true
reflectance value (Iqbal et al., 2018). All datasets used adjusted
multispectral band values to calculate indices for further model
analysis.

All the lines were genotyped using genotyping-by-sequencing
(GBS; Poland et al., 2012). The original SNPs totaled 6,075,743,
but after filtering for SNPs with homozygosity >80%, for less than
50% missing data, greater than a 0.05 minor allele frequency, and
less than 5% heterozygosity, we end up with 19,645 SNPs.
Markers with missing data were imputed using the
“expectation-maximization” algorithm in the “R” package
rrBLUP (Endelman, 2011). In each data set, the best linear
unbiased estimates (BLUEs) were computed under two
experimental designs:

For trials under an alpha lattice design

The BLUEs for GY within each environment were calculated
using the lmer function of the lme4 package (Bates et al., 2015) of the
R statistical software with the following mixed linear model:

yijkl � μ + gi + checki + tj + rk j( ) + bl jk( ) + εijkl

where yijkl is the GY of the ith genotype in the jth trial, kth replicate
and lth block, μ is the general mean, gi is the fixed effect of the
genotype i, checki is the fixed effect of the check-genotype i, tj is the
random effect of the trial, tj ~ NIID(0, σ2t ); where NIID stands for
normal, independent and identically distributed, rk(j) is the random
effect of the replicate within the trial, rk(j) ~ NIID(0, σ2r); bl(jk) is
the random effect of the incomplete block within the trial and the
replicate, bl(jk) ~ NIID(0, σ2b); and εijkl is the residual
εijkl ~ NIID(0, σ2).

For trials under an augmented randomized
complete block design

In this experimental design, the BLUEs for GY within each
environment were calculated using the lmer function of the
lme4 package of the R statistical software with the following
mixed linear model:

yij � μ + gi + checki + bj + εij

where yij is the GY of the ith genotype in the jth block, μ is the
general mean, gi is the fixed effect of the genotype i, checki is the
fixed effect of the check-genotype i, bj is the random effect of the jth
block, bj ~ NIID(0, σ2b); and εij is the residual εij ~ NIID(0, σ2).

Bayesian genomic best linear unbiased
predictor model

The Bayesian models implemented only differ in the predictor
they used. For this reason, the general model is given:

Yij � μ + ETAijk + ϵij (1)

Where Yij denotes the response variable in the jth line in the ith
environment, μ denotes the general mean (intercept), and ϵij are
random error components assumed to be independent normal
random variables with mean 0 and variance σ2.ETAijk is the
predictor for the jth line in the ith environment. The different
ETAijk´s (ETA) used are provided in Supplementary Table SA1.

The vector of length eleven [Hij1, . . . , Hij11] of the information
include both the raw multispectral data and calculated indices
denoted as: Blue, Green, Red, NIR, RE1, RE2, 900, 975 nm,
NDRE1, NDVI, and Canopy Cover. While when the vector of
length three (Iij1,Iij2, Iij3) was used as independent variables
including only the indices: Can_Cover, NDRE1, and NDVI were
used. The implementation of these models was carried out in the R
statistical software (R Core Team, 2022) using the BGLR library of
Pérez and de los Campos (2014). Equations used in the calculation of
indices can be found in Table 1.

Partial least squares model

This study utilized the univariate PLS model, a statistical
machine learning method introduced by Wold (2001) in
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econometrics and chemometrics for regression analysis. PLS is very
useful for prediction problems where the number of independent
variables (p) is larger than the number of observations (n) and when
predictors are highly correlated. Under the univariate PLS
framework, the response variable (Y) is a vector instead of a
matrix of order n × 1 that is linked to a set of explanatory
variables (X) of order n × p (Wold, 2001; Boulesteix and
Strimmer 2006). In PLS, instead of regressing Y on X, we
regressed Y on T, where T are the latent variables (LVs), also
called X-scores or latent vectors; these LVs are related to the
original X and Y matrices. The goal of PLS regression is to
maximize the covariance between Y and T; however, an iterative
procedure is implemented for its computation. The main steps to
compute the LVs under a univariate framework using the kernel
algorithm for PLS are:

Step 1. Initialization of E = X and F = Y. Center each column of E
and F; scaling is optional.

Step 2. Compute S � XTY (Cross product matrix) and then SST �
XTYYTX and STS � YTXXTY.

Step 3. Compute the singular value decomposition (SVD) of SST

and STS.

Step 4.Obtainw and q, the eigenvectors to the largest eigenvalue of
SST and STS, respectively.

Step 5. Compute scores t and u as t � Xw � Ew and u � Yq � Fq.

Step 6.Normalize the t and u scores as t � t/
���
tTt

√
and u � u/

����
uTu

√
.

Step 7. Next, compute X and Y loadings as p � ETt and q � FTt.

Step 8. Deflate matrices E and F as En+1 � En − tpT

and Fn+1 � Fn − tqT .

Step 9. Use as input En+1 and Fn+1, of Step 8, in Step 2, and repeat
steps 2 to 9 until the deflated matrices are empty or the necessary
number of components have been extracted.

With the outputs of w, t, p and q vectors, the matrices W, T, P,
andQ, respectively, are built. Finally, after having all the columns of
W, we compute R as:

R � W PTW( )−1

Next, with R we can compute the LVs, which are related to the
original X matrix as:

T � XR

Next, since we regressed Y on T, the resulting beta coefficients
are b � (TTT)−1TTY. However, to convert these back to the realm of
the original variables (X), we pre-multiplied with matrix R the beta
coefficients (b); since T � XR,

B � Rb

To reach optimal performance of the PLS method, only the first
a components are used. Since regression and dimension reduction
are performed simultaneously, all B, T, W, P and Q are part of the
output. Both X and Y are considered when calculating the LVs in T.
Thereafter, predictions for new data (Xnew) should be done with:

Ŷnew � XnewB � XnewRb � Tnewb

where Tnew � XnewR. In this study, the optimal number of
components was determined by cross-validation. We used the
NRMSE, with an inner 10-fold cross-validation for selecting the
optimal number of hyperparameters.

In this application, we used the concatenation of the different sources
of information for each predictor (ETA1 to ETA9 given in Table 1) as the
matrix of independent variablesX. For this reason, we first computed the
design matrices of environments (XE), the design matrix of genotypes
(Xg) and the designmatrix of the Genotype × Environments term (XgE).
But, since the PLS method does not allow direct inclusion, like the
Bayesian GBLUP model, the genomic relationship matrix of lines
(G � MMT

r ), where M denotes the matrix of markers (coded as 0,
1 and 2) of order J × r; J denotes the number of lines; r the total
number of markers. The design matrices of lines and genotype ×
environments were post-multiplied by their corresponding square root
matrices of their corresponding relationship matrices to incorporate into
the design matrix this relationship information. That is, instead of
using only Xg; XgE as input, we used XgLg (with Lg �
G0.5) andXgELgE (with LgE � G0.5

GE). For this reason, the final
input matrix used for ETA1 to ETA9 under the PLS model was;
X � [XE, XgLg]; X � [XE, XgLg, H]; X � [XE, XgLg, H, XgELgE];
X � [XE, XgLg, H, XgELgE, XgLg: H]; X � [XE, XgLg, I]; X �
[XE, XgLg, I, XgELgE]; X � [XE, XgLg, I, XgELgE, XgLg: I];
X � [XE, H]; X � [XE, I] respectively, where
H � [H11, . . . , H1J, . . . , HIJ]T; I � [I11, . . . , I1J, . . . , IIJ]T;
XgLg: H represents the interaction term between the genomic

TABLE 1 Spectral reflectance indices implemented. The first column provides the name of the spectral indices, the second one its abbreviation, the third shows the
equation used for computing each index, and the last one indicates the reference for each index.

Spectral reflectance indices Abbreviation Equation Reference

Normalized Difference NDVI R800 − R680
R800 + R680

Rouse et al. (1973)

Vegetation Index

Normalized Difference NDRE1 R800 − R700
R800 + R700

Gitelson and Merzlyak (1996)

Red Edge 1

Percent Canopy Coverage Canopy Cover
1
N∑

N

i�1
GNDVIi

Sankaran et al. (2015)
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information and the multispectral information; XgLg: I represents
the interaction term between the genomic information and three
indices built from the multispectral information. We did not post-
multiply the design matrix of environments (XE) since we did not
compute an environmental relationship matrix with environmental
covariates, only with the dummy values of the position of
environments. For this reason, under the PLS model were used as
input the vector of response variables (Y) and the input matrix X,
just defined above. The implementation of the PLS models was
performed with the R statistical software (R Core Team 2022) using
the PLS library (Mevik and Wehrens, 2007).

Metrics for evaluation of prediction
accuracy

In each of the four datasets (corresponding to years 2019–2022),
for implementing the type of cross-validation partially tested lines in
tested environments, we used seven-fold cross validation (7FCV)
(Montesinos-López et al., 2022). For this reason, 7 − 1 folds (85.71%
of the data) were assigned to the outer-training set and the remaining
fold (14.29% of the data) was assigned to the outer-testing set, until each
of the 7 folds were tested once. Under the PLS model for tuning the
number of principal components required ten nested cross-validations,
that is, the outer-training was divided into ten groups where nine were
used for inner training set (90% of the training) and one for the validation
(inner-testing) set (10% of the outer training). This means that under the
PLS model, the data set was divided in outer-testing (14.29% of data),
inner-training (77.14% of data), and validation (8.57% of data). Using the
validation set, the optimal number of principal components was selected.
Also, it is important to point out that the sum of the inner-training plus
the validation equals the outer-training. Next, the average of the ten
validation folds was reported as themetric of prediction accuracy to select
the optimal hyperparameter (number of principal components). Then,
using this optimal hyperparameter, the PLS model was refitted with the
whole outer-training set (the 7 − 1 folds), and finally, the prediction of
each outer-testing set was obtained. For the selection of the
hyperparameters under the inner-training, the average mean square
error was computed and used as the metric of accuracy, but for the
outer-training to evaluate the prediction accuracy under the partially
tested lines in the test environments cross-validation, the average
Pearson´s correlation was computed. It is important to note that
under the GBLUP, not tuning was required and only the outer 7FCV
was implemented and the average of the 7 folds was reported as
prediction accuracy for each environment using the Pearson´s
correlation. But the computation of Pearson´s correlation across
environments (Global) under the outer 7FCV was done between
averages of true and predicted phenotypes of lines over environments
per year (data set). On the other hand, to implement the cross-validation
partially tested lines in untested environments we used a leave one
environment out (LOEO) approach where the training set was composed
of the total number of environments (nE ) minus one, and the remaining
environment was used as testing set, meaning that each environment was
used as testing set exactly one time. For this reason, only the average
prediction accuracy for each environment was reported since only one-
fold (testing set) was obtained for each environment. However, across
environments, in addition to the average Pearson correlation, it was also
possible to estimate the standard error. The Pearson´s correlation across

environments (Global) in LOEO cross-validation was computed
averaging the predictions resulting in each of the environments under
study in each year. Under this approach the tuning process for the PLS
was done exactly as was done under the 7FCV strategy.

Results

The results are provided in three sections. The first section
provides, for each data set (each year), the variance component
estimates of G, GE, residuals, and heritability. The second section
outlines the results under tested lines in tested environments (7FCV)
for each data set. The final section highlights the results under tested
lines in untested environments for each data set. Supplementary
Tables SA2, SA9 contain the results displayed in Figures 1–8.

Variance components and heritability

We note in Table 2 that the heritabilities of years 2019, 2020 and
2021 are larger than 0.70; however, the heritability for year 2022 is
low (0.099). Also, we can see in Table 2 that the GE interaction term
is not relevant in years 2019, 2020 and 2022.We note that each of the
four data sets is unbalanced since each wheat line was evaluated on
average in 1.462, 1.252, 1.711, and 1.309 environments in 2019,
2020, 2021 and 2022, respectively. It is important to note that the
environments evaluated in each year were 3, 6, 8, and 6, respectively.
It can also be observed in Table 2 that the replications of each line in
each environment were less than two since some lines were
evaluated in replicated experiments while the remainder were
examined in unreplicated experiments.

Partially tested lines in tested environments

The results under 7FCV for each year are provided. It is
important to note that for each model (GBLUP and PLS), nine
predictors were evaluated to see how much each part
contributes to improve the prediction accuracy and the
results are reported for each environment and across
environments (Global) for each year.

Data set 1 (year 2019)

In Figure 1 and Supplementary Table SA2 we observe that under
the GBLUP model, the best prediction performance was observed in
environment Kincaid and the worst in Lind, while under the PLS
model, the best predictions were also observed in the Kincaid
environment, and the worst in Pullman. In Figure 1 and
Supplementary Table SA2, the worst predictions were observed
under the predictor (E + g). We observed when both types of
information are integrated (genomic + multispectral information
under its H or I versions) the best prediction performances were
obtained and the predictions across environments and for some
environments with Pearson’s correlation values close to one.
However, Figure 1 shows that adding the interaction terms gE,
gH, and gI to the predictors does not significantly increase
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prediction performance. Also, it is observed that simple predictors
that contain only multispectral information, like E + H and E + I,
produce similar performance to predictors that incorporate the

genotypic information and interaction terms. However, the
predictors that integrate both sources of information were more
stable and consistent. Regarding the predictions using H or I, we
observe that using I information is better since more consistent
results than the H information and larger Pearson’s correlation are
observed. In the models, we observe that both models are effective in
this prediction problem and with this data, yet the predictions using
GBLUP were better in most cases (Supplementary Table SA2).

Data set 2 (year 2020)

Under the GBLUP and PLS models, the best predictions were
observed in environment Ritzville and the worst in Kincaid;
however, very competitive predictions were observed in most
environments except for Kincaid (Figure 2; Supplementary Table
SA3). Also, the worst predictions were observed under the predictor
E + g (see Figure 2; Supplementary Table SA3). The best prediction
performances were observed when both types of information are
integrated (genomic + multispectral l information under its H or I
versions) with Pearson’s correlation values close to one in some
environments and across environments (Figure 2). Again, we
observe in Figure 2; Supplementary Table SA3 that adding
interaction terms gE, gH, and gI in the predictors does not
provide a relevant increase in performance. In the 2020 data, we
observed simple predictors with only multispectral information like
E + H and E + I produce a similar performance to more complex
predictors that incorporate the genotypic information and some

FIGURE 1
Dataset 1 (year 2019). Pearson´s correlation (Cor) and their corresponding Standard Error (SE) for each location and across location (Global) under
tested lines in tested environments (7FCV) for nine evaluated predictors under a GBLUP and PLS models.

TABLE 2 Heritability estimates (H2) of grain yield (GY) in each of the 4 years
and variance components (Vcomp) for the genotypes (G), genotype by
environment interaction (GE) and Residual, n_e denotes the average number
of locations, n_r denotes the average number of replications of each genotype.
Year is the column to differentiate each data set.

Name Vcomp Trait Year H2 n_r n_e

GE 0.001 GY 2019 0.867 1.626 1.462

G 1139.850 GY 2019 1.626 1.462

Residual 194.356 GY 2019 1.626 1.462

GE 0.187 GY 2020 0.743 1.569 1.256

G 129.871 GY 2020 1.569 1.256

Residual 56.022 GY 2020 1.569 1.256

GE 42.588 GY 2021 0.706 1.522 1.711

G 136.440 GY 2021 1.522 1.711

Residual 28.475 GY 2021 1.522 1.711

GE 0.002 GY 2022 0.099 1.390 1.309

G 12.080 GY 2022 1.390 1.309

Residual 116.106 GY 2022 1.390 1.309
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interaction terms, but predictors with both sources of information
are more stable and consistent. Regarding the predictions using E +
H and E + I, we observed the predictor E +H produced results closer
to one for Pearson’s correlation values. Both models were effective in
this prediction scenario and with this data, but the predictions using
GBLUP were better (Supplementary Table SA3).

Data set 3 (year 2021)

In Figure 3 and Supplementary Table SA4, we can note that
under both models (GBLUP and PLS), the worst predictions were
observed in Pullman. In the remaining environments, the
predictions were effective since they were close to one in terms
of Pearson’s correlation. The worst predictions were observed under
the predictor E + g and the best when both types of information were
integrated (genomic + multispectral information under its H or I
versions) with Pearson’s correlation values also close to one. Again,
it was observed in Figure 3; Supplementary Table SA4 that adding
interaction terms gE, gH, and gI in the predictors did not improve
the prediction performance. It was observed that simple predictors
with only multispectral information like E + H and E + I, provided
similar accuracies to predictors with both types of information
(genotypic + multispectral information) and interaction terms.
However, we observed more stable and consistent predictions in
predictors that integrated both sources of information. The
predictions using H or I did not produce relevant differences
since, in some cases, using I information provided slightly better

results than using H or vice versa. In the models, we observed both
models were effective in this prediction scenario, and with this data,
the predictions using GBLUP were slightly better (Supplementary
Table SA4).

Data set 4 (year 2022)

In Figure 4 and Supplementary Table SA5, we note that in the
GBLUP model, the best and worst predictions were observed in
Prescott and Farmington, respectively, while under the PLS model,
the environment’s performance showed no difference. However, in
both models, the predictions were not as high as those observed in
the previous years. Also, the worst predictions were observed with
the predictor E + g (see Figure 4; Supplementary Table SA5) and the
best joining of the two types of information (genomic +
multispectral information under its H or I versions). Again, we
observed that adding interaction terms gE, gH, and gI, in the
predictors did not improve the prediction performance regarding
the additive integration of both types of information. Also, we
observed that simple predictors with only multispectral
information, like E + H and E + I, provided more competitive
accuracies than predictors with both types of information (genotypic
+ multispectral information) and interaction terms. Yet we did not
observe using the predictor E + H to give the best predictions. More
stable and consistent predictions were observed in predictors that
integrated both sources of information. Also, regarding the
predictions using H or I, we observed non-relevant differences

FIGURE 2
Dataset 2 (year 2020). Pearson´s correlation (Cor) and their corresponding Standard Error (SE) for each location and across location (Global) under
tested lines in tested environments (7FCV) for nine evaluated predictors under a GBLUP and PLS models.
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between them since sometimes using I information provides slightly
better results than using H or vice versa. We observed that both
models faced difficulties in predicting some environments but that
the GBLUP model outperformed the PLS model (Supplementary
Table SA5).

Partially tested lines in untested
environments

In this section, the results under LOEO for each year are
reported. For each model (GBLUP and PLS), five predictors were
evaluated to see how much each input contributed to the
improvement of prediction accuracy in a complete environment.
For each year, the results are reported for each environment and
across environments (Global).

Data set 1 (year 2019)

Under the LOEO cross-validation, in both types of models
(GBLUP and PLS), we observed the best predictions under
Kincaid (Cor>0.75) and the worst under the Lind and Pullman
environment with Cor values less than 0.5 (Figure 5; Supplementary
Table SA6). The worst predictions were observed only when the
genomic information was used (g) and the best when both types of
information were integrated (Figure 5; Supplementary Table SA6). It

was observed that the predictors with only multispectral
information (H or I) provided similar accuracies to predictors
with both types of information. Of note, in most environments,
the best predictions were observed with the predictors with only
multispectral information (H and I) and within those observations,
the best predictions were observed using only the H information.
The observed models displayed respectable predictions, albeit with
considerably lower accuracy than those observed under the 7FCV
strategy.

Data set 2 (year 2020)

Under both types of models (GBLUP and PLS), again under the
LOEO cross-validation, we observed the best predictions found
under the Farmington, Harrington, Ritzville and Walla Walla
(with Cor>0.75 most times) and the worst under the Kincaid and
Lind environments, with Cor values less than 0.3 (Figure 6;
Supplementary Table SA7). In addition, the worst predictions
were observed using only the genomic information (g) and the
best when only the multispectral information was used, with better
performance using H in place of I, but with no large difference
between the two sources of multispectral information. However,
very competitive predictions were observed when both types of
information were used. We noted good predictions with both
models (Cor>0.75) for some environments but modest for others
(Cor<0.3).

FIGURE 3
Dataset 3 (year 2021). Pearson´s correlation (Cor) and their corresponding Standard Error (SE) for each location and across location (Global) under
tested lines in tested environments (7FCV) for nine evaluated predictors under a GBLUP and PLS models.
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FIGURE 4
Dataset 4 (year 2022). Pearson´s correlation (Cor) and their corresponding Standard Error (SE) for each location and across location (Global) under
tested lines in tested environments (7FCV) for nine evaluated predictors under a GBLUP and PLS models.

FIGURE 5
Dataset 1 (year 2019). Pearson´s correlation (Cor) and their corresponding Standard Error (SE) for each location and across location (Global) under
tested lines in untested environments (LOEO) for nine evaluated predictors under a GBLUP and PLS models.
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Data set 3 (2021)

Under the LOEO cross-validation and both models in this data
set, for all environments, it was possible to obtain strong predictions
(Cor>0.75 in most cases), with the exception of Pullman, where the
predictions in terms of Pearson´s correlation were around 0. Using
only the genomic information (g) provided the worst predictions
and the best predictions were obtained when only the multispectral
information was used (Figure 7; Supplementary Table SA8), with
better performance using I than H, but with similar performance
between the two sources of multispectral information. However,
joining both types of information provided competitive predictions.
We observed that both models had strong predictions (Cor>0.75)
for many environments, with only one poor result (Cor ≈ 0.0).

Data set 4 (year 2022)

Under both models and the LOEO cross-validation for all
environments, it was not possible to obtain good predictions
since, in many environments and some predictors, the
predictions in terms of Pearson´s correlation were less than 0.2.
But even in this year with lower predictions, the worst performance
was obtained using only the genomic information (g) and the best
when only the multispectral information was used (Figure 8;
Supplementary Table SA9), with better performance using I than
H, but with similar performance between the two types of
multispectral information. However, joining both types of

information provided very competitive predictions. With both
models, it was not possible to obtain good predictions (with
Cor<0.5) with some predictions lower than 0.2.

Discussion

As a predictive methodology, GS cannot always guarantee high
prediction accuracies since many factors influence its success. For
this reason, continuing research to optimize this methodology to
lower uncertainty is worthwhile. Adding extra predictors as inputs
in the modeling process has been one of the many explored
approaches. This approach is very promising since it is becoming
more cost-effective to collect extra inputs like omics data
(phenomics, proteomics, transcriptomics, etc.) and environmental
covariates. Under the assumption that these extra inputs capture
complementary information to the available inputs (like genomics
information), it can be expected that adding this extra information
to the prediction models will improve the prediction accuracy of GS.

We started collecting genomic information in the wheat
breeding program in 2016 with the goal of implementing GS
within the program. In 2018, we began routinely collecting
phenotypic data using UAS technology to provide additional
inputs into selection. From our results, it is clear that adding the
phenotypic information as inputs enhances the prediction accuracy
of GS. However, as expected, the increase in prediction accuracy is
larger under the scheme of cross-validation partially tested lines in
tested environments and lower for the partially tested lines in

FIGURE 6
Dataset 2 (year 2020). Pearson´s correlation (Cor) and their corresponding Standard Error (SE) for each location and across location (Global) under
tested lines in untested environments (LOEO) for nine evaluated predictors under a GBLUP and PLS models.
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FIGURE 7
Dataset 3 (year 2021). Pearson´s correlation (Cor) and their corresponding Standard Error (SE) for each location and across location (Global) under
tested lines in untested environments (LOEO) for nine evaluated predictors under a GBLUP and PLS models.

FIGURE 8
Dataset 4 (year 2022). Pearson´s correlation (Cor) and their corresponding Standard Error (SE) for each location and across location (Global) under
tested lines in untested environments (LOEO) for nine evaluated predictors under a GBLUP and PLS models.
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untested environments. We found that using only the phenotypic
information in this study is much more effective than using only the
genomics information. However, combining both sources of
information produced the highest prediction accuracies most
times. We found that adding the interaction terms of gE, gH,
and gI did not improve the prediction accuracies when both
sources of information were used. Also, we observed that, in
many environments, using only the multispectral information
produced the best prediction accuracies.

Under the partially tested lines in tested environments, the
prediction accuracies were very high (Cor>0.75), demonstrating
that this cross validation is quite safe to use with GS. However, this
was not true for all environments, so a deeper understanding of why
low prediction accuracies were obtained under these environments
is required. However, we know that the time to measure
multispectral information is a key factor in enhancing prediction
performance, and it is of paramount importance to properly
preprocess this multispectral information. More refinements are
required under the modeling process and data preprocessing
methods to guarantee with a high probability a successful
implementation of GS.

Under the partially tested lines in untested environments, the
prediction accuracies were lower, with only a few environments
having a prediction value greater than 0.75. For example, in
2020 and 2021, most of the environments showed good
predictions (Cor>0.75), but in 2019, only one environment
reached a strong prediction level (Cor>0.75). These results were
not unexpected since this method of cross-validation is complex, but
even in this scenario, it was possible to reach good predictions for
some environments. Again, the key source of information was the
multispectral information.

Our results show that the multispectral information allowed for
enhancements to the prediction performance of GS, and most times,
even the multispectral information alone produced high prediction
accuracies. However, combining multispectral and genomic
information, in addition to producing accurate predictions, also
helped reduce the variance (which adds stability), which leads us to
conclude that integrating other sources of information can help
improve the prediction accuracy of GS. Each source of information
is discrete but complementary and provides information that is key to
capturing all the inputs related to the trait of interest. However, we are
aware that adding these extra inputs to the modeling process imposes
challenges in the modeling process to avoid the problem of overfitting.

Our results are in agreement with those reported by Rutkoski
et al. (2016), Montesinos-López et al. (2017), and Krause et al. (2019)
that reported increase in prediction accuracy for grain yield in wheat
by using spectral reflectance indices. Also, our findings agree with
the study by Royo et al. (2007) that reported reflectance
measurements in wheat were the most important predictors for
grain yield. Also, our findings are similar to those of Guo et al. (2020)
that found an increase in prediction accuracy by integrating
secondary traits in the prediction models, concluding that
integrating high throughput phenotyping in the modelling
process could potentially accelerate selection in wheat.

As noted by Atefi et al. (2021) and supported by our results,
autonomous robotic technologies have the potential to substantially
increase the capacity, speed, accuracy, and repeatability of data
collection in plant phenotyping activities. Many robotic systems

have been successfully developed and deployed in greenhouse and
field settings and tested on various plant species (corn, wheat,
specialty crops, and vineyards). These systems can accurately
measure many plant-related characteristics like morphology,
structure, development, and physiology (Atefi et al., 2021).
Adding these additional phenotypic data into genomic selection
models improves prediction accuracy and enhances the selection of
new lines in plant breeding programs.

Also, it is important to point out that in general the best
predictions were observed under the GBLUP model, even though
the PLS model is very useful for prediction problems where the
number of independent variables (p) is larger than the number of
observations (n) and when predictors are highly correlated. In the
context of genomic prediction there is evidence that the GBLUP
model performs well in most applications and has the advantage of
not requiring a time-consuming tuning process. However, the
prediction performance observed with the PLS model was very
competitive and its tuning process is not difficult since it was
only tuned by the number of principals components.

Our results also confirm that there is the potential to increase
genetic gain in grain yield by incorporating additional inputs in the
prediction models. However, these inputs should be of high quality and
related to the predicted trait. Still, there are many problems to
implement GS methodology in many applied breeding programs
since many factors affect its performance, all of them needing
optimization using as many data science tools as possible. Global
optimization of all factors that impact prediction accuracy using GS
methodology is complex and for the moment each factor is being
optimized as a separate problem. However, global optimization is
expected to be more efficient. Also, the collection of other ‘omics’
data that integrate in optimal ways can increase the probability that GS
can be used as a practical tool in plant breeding programs.
Unfortunately, the use of more input data increases the complexity
of analysis since more computational resources and sophisticated
statistical analyses are required (Lopez-Cruz et al., 2020), but with
the advance in computing power and state-of-the-art statisticalmachine
learning algorithms, these difficulties can typically be solved.

Conclusion

Using wheat data from the Washington State University soft white
winter wheat breeding program, we found that integrating high
throughput phenotypic and genomic information into prediction
models significantly enhances prediction performance, as opposed to
using only genomic information. We also observed that using only the
phenotypic data, in many cases, produced the best prediction
accuracies; however, this finding was not consistently observed. As
expected, under the partially tested lines in tested environments, we
obtained, in most cases, strong prediction accuracies with both models
(GBLUP and PLS), with better performance using GBLUP. Less
accurate predictions were observed under the partially tested lines in
untested environments, with robust predictions in most 2020 and
2021 environments but low or moderate predictions in 2019 and
2022. Our findings corroborate the importance of phenotypic
information to enhance prediction accuracy in GS and emphasize
that phenotypic information has significant promise to improve GS
by providing better predictions than genomic information alone. We
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see great potential for improving high throughput phenotypic data
collection and processing as well as the overall modeling process in the
optimal integration of genomic, phenomic, and other sources of
information.
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