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Given the challenges brought about by the increasing frequency of climatic

stressors (droughts) and other biotic challenges (pests and diseases), breeding

for tolerance to these traits is now seen as an indispensable adjunct to the

enhancement of yield potential. Drought tolerant (DT) maize varieties that

do well under moderate drought and outperform (or do not underperform)

commercial checks under normal rainfall are becoming available. This study

examines the role of these maize varieties in mitigating the e�ects of drought

on maize yields in drought-prone areas of eastern Uganda. We estimate the

causal impact of these new generations of maize varieties using a multinomial

endogenous switching regression treatment e�ect framework. The average

treatment e�ects of adopting DT maize show that farmers who actually

cultivated DT maize achieve 30% more yield than what they would have

obtained with non-DT hybrids. Similarly, average treatment e�ects on the

untreated, revealed that farmers who grew non-DT modern and local maize

would have 32 and 54% more yield, respectively, if they instead had adopted

DT maize. While being superior to all other maize seeds, the magnitudes

of the benefits of DT maize varieties were more pronounced in areas with

comparatively less rainfall amount providing strong evidence that the yield

potential of these varieties is stable across space and a wide range of rainfall

conditions. If the genetic gains of these varieties can be secured over the long

term, their impacts in improving the resilience of maize farming systems are

likely to be considerably large and favorable.
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Introduction

Achieving food security and related goals cannot happen

without considerable enhancement of agricultural productivity

through high yielding crop cultivars. The enhancement of yield

potential has been the cornerstone of maize breeding programs

for decades and justifiably so (Bänziger et al., 2006; Cairns

et al., 2013). Yet, given the challenges brought about by the

increasing frequency of climatic stressors (droughts) and other

biotic challenges (pests and diseases), breeding for tolerance

to these traits is now seen as an indispensable adjunct to the

enhancement of yield potential. High-yielding varieties that are

susceptible to droughts, pests, or diseases are not likely to impart

the needed resilience to the millions of African families who

depend on staple crop production under precarious economic

and climatic conditions.

Ongoing climatic changes have exceeded farmers’ existing

adaptive capacities and experiences (Fisher and Carr, 2015).

Traditional low-cost practices, such as shifting planting dates,

changing crop species, or switching between existing crop

varieties, used by African farmers may no longer be adequate to

mitigate the negative impacts of weather variability (see Fisher

et al., 2015). Projections on the impact of climate change in

SSA suggest that in the absence of more climate-resilient crops,

drought-induced constraints will not only decrease yield but also

amplify the rate at which yield loss will happen (Li et al., 2009;

Cairns et al., 2013). Conceivably, drought-related challenges

will continue to threaten the region’s prospect of achieving

food security.

About 40% of the maize area in Africa faces occasional

drought stress that may lead to yield losses of about 10–25%.

Nearly, a quarter of the maize crop suffers from frequent

drought which involves losses extending up to half of the

potential harvest (Fisher et al., 2015). Likewise, in Uganda, maize

production is predominantly rain fed and, therefore, vulnerable

to weather and climatic risks such as extreme temperature and

drought [Hartmann et al., 2013; Intergovernmental Panel on

Climate Change (IPCC), 2014]. Improving maize production

and productivity thus requires dealing with these challenges,

not least the threats of drought-induced yield losses or even

crop failure (Twinomugisha, 2005; Ekiyar et al., 2010; Nabikolo

et al., 2012). Such risk is notable; particularly, because maize is

most susceptible to drought stress occurring at the flowering and

grain-filling stage which can cause barrenness and serious yield

degradation (Magorokosho et al., 2009).

Maize is an important crop among Uganda’s staple crop

system. It is cultivated by at least 86% of smallholder farmers

across all agro-ecologies [United States Agency for International

Development (USAID), 2010; Uganda Bureau of Statistics

(UBOS), 2013], shared 63% of the area planted to cereals,

ranked third after plantain and cassava in average daily calories

intake, and a major source of income for most farmers in

eastern, northern, and north-western Uganda [Ferris et al.,

2008; United States Agency for International Development

(USAID), 2010]. Maize productivity in Uganda is three to

four times less than the potential [Ministry of Agriculture

Animal Industry and Fishery (MAAIF), 2011; Ahmed, 2012].

The overall trend of production, area, and yield shows that

yield has either stagnated or declined, and the growth in maize

production has primarily been due to area expansion [Uganda

Bureau of Statistics (UBOS), 2013]. Efforts at developing and

mainstreaming new drought-tolerant varieties are important

to ensure resilient maize production systems in the decades

to come.

New maize varieties that can withstand drought and

achieve yield parity with legacy varieties under normal rainfall

conditions offer farmers greater flexibility in adapting to

these changes (Lobell et al., 2008; Lybbert and Sumner,

2012). In the last decade or so, the International Maize and

Wheat Improvement Center (CIMMYT) has facilitated the

development of over 200 such maize varieties. The Drought

Tolerant Maize for Africa (DTMA) was such a project.1

Multi-location on-farm trials conducted in eastern and

southern Africa by CIMMYT scientists in conjunction with

those from the International Institute of Tropical Agriculture

(IITA) and national research institutes in 13 SSA countries

have demonstrated the strong agronomic performance of these

new drought tolerant (DT) maize seeds. The evidence from

these trials suggests that these new generations of DT maize

varieties can out-yield commercial hybrid checks by 83–137%

(controlled drought), 26–47% (random drought), and 25–

56% (under optimal rainfall conditions) (Fisher et al., 2015).

Additionally, an ex-ante impact assessment suggested that wider

adoption of DT maize varieties developed through DTMA can

generate US$ 532 million of increased maize grain value under

conservative yield improvement. These maize seeds are expected

to reduce not only the chances of drought-related harvest failure

but also harmful post-failure coping strategies like reducing

food consumption, selling assets, or withdrawing children from

school (La Rovere et al., 2014).

While researcher-managed trials have largely confirmed that

the DT varieties have superior yield advantage, especially, when

“all states of nature” (normal rainfall and moderate drought

conditions) are considered, the realization of these benefits

on farmers’ fields under their own management and resource

conditions is another matter. It is only when farmers can

observe these benefits for themselves under their own growing

conditions will they sustainably adopt these varieties. Although

the ex-ante assessments based on simulated yields predicted

positive impacts of using these varieties on yield potential, food

security, and household income, these results remain to be

1 The DTMA project was implemented by the International Maize and

Wheat Improvement Center (CIMMYT) in conjunction with International

Institute of Tropical Agriculture (IITA) and national research institutes in 13

African countries including Uganda.
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replicated by data retrieved from farmers’ fields. Themost recent

adoption studies (such as those by Tambo and Abdoulaye, 2013;

Fisher and Carr, 2015; Fisher et al., 2015) that looked into the

level and determinants of DTmaize seed adoption, generally did

not address the incremental yield or economic impacts of these

seeds under farmers’ conditions.

This study is designed to offer evidence of the impact of the

new DT varieties in reducing susceptibility (potential harm) due

to drought in the form of yield penalty based on farmers’ own

production data to determine if the promise of these varieties

is being realized on-farm, i.e., under growing conditions as

set by farmers. An important contribution to this study is

that our analysis uses plot-level survey data collected from 34

villages in Uganda to examine, for the first time to the best of

our knowledge, the causal effect of cultivating DT maize seed

on the productivity of maize farmers operating in drought-

prone areas of eastern Uganda. The study further evaluates if

the cultivation of DT maize had meaningfully larger per unit

production of maize when compared to other commercial maize

varieties developed for other traits than drought. Finally, using

locally observed rainfall data, we spatially correlate the impacts

of DT with observed rainfall conditions. This was important

to determine the impacts of DT varieties both under adequate

and less adequate rainfall. The yield stabilization effect of DT

varieties is their key advantage. This study helps to confirm this

using farmer survey data as an important check on on-station or

researcher managed trials.

Materials and methods

Data and description of study area

Data for the present study came from a household survey

conducted in Uganda between June and August 2014. The

geographical focus was eastern Uganda, where the DT maize

seed dissemination activities have been concentrated. The region

constitutes 32 districts lying over an area of 39,478.8 hectares

covering about 16% of the total area of Uganda. The elevation

of the area ranges between 1,075 and 1,524m above sea level.

The region’s population is estimated at 9,154,960 of which about

90% lives in rural area. The average household size for the

region is about 4.9 vs. 4.7 for the country as a whole [Uganda

Bureau of Statistics (UBOS), 2014]. The mean annual rainfall

varies from 1,374 to 2,058mm with a range between 895 and

3,001mm. The rainfall exhibits significant annual and seasonal

variation in the amount and distributional pattern (Kansiime

et al., 2013). The region has three distinct agroecological zones

(AEZs) viz., Lake Victoria Crescent; Southern and Eastern Lake

Kyoga basin; andMount Elgon high farmlands. These AEZs also

capture variability in altitude, soil productivity, cropping system,

livestock systems, and land use intensity. Agriculture is the main

source of livelihood in the region. Crop production is dominant.

The major crops produced in the region are finger millet, maize,

rice, sweet potato, and cassava. The region accounted for about

38% of the total maize area and half of the total maize produced

in Uganda in 2008/09 [Uganda Bureau of Statistics (UBOS),

2012]. Important livestock includes cattle, small ruminants

(goats and sheep), pigs, and poultry (chicken, ducks, turkey).

While about 57% of agricultural households face food shortages

in certain periods of the year, the Eastern region was reported

to have the highest percentage (30%) and the least was for the

central region (17%). Households with access to credit are low

both at the national (10%) and in the Eastern region (9%).

From 31% of the agricultural households using improved seed,

the region has the highest share (43.7%) vs. the lowest in the

Western region (16.6%) [Uganda Bureau of Statistics (UBOS),

2010]. The Eastern region is subject to the vagaries of climate

variability. The effect of climate variability is assumed to be

complicated by poorly developed economic and social services

and infrastructures, and severe poverty status in the region.

Generally, the region is characterized by a combination of acute

poverty, vulnerability to drought, floods, landslides, and natural

resource degradation (Kansiime et al., 2013).

Unlike many cross-sectional data sets, the current data has

information on the spatial heterogeneity of selected districts

which we use as a proxy for the temporal dimension of rainfall

variability.Multistage sampling was employed to identify sample

households for the study. In the first stage, three districts were

purposively selected from Lake Victoria Crescent agroecological

zones (LVC AEZs) of the eastern region where drought risk is

more likely and where the DTmaize seeds are disseminated. The

LVC AEZ is one of the three distinct AEZs in the eastern region

of Uganda which includes the southern and eastern Lake Kyoga

basin and Mount Elegon high farmlands (Figure 1). These AEZs

are mainly differentiated by the amount of rainfall. According to

40-year (1971–2010) observational rainfall data for the region,

there is significant inter-annual rainfall variation within and

across AEZs. Particularly, the long-term data show that the LVC

exhibits significant intra- and inter-seasonal rainfall variations

(Kansiime et al., 2013). The sample districts (Iganga, Tororo, and

Bulambuli) are geographically well spread across the LVC AEZ

(see Figure 1). Accordingly, they are assumed to account for the

spatial heterogeneity as well as the temporal rainfall variability

within this AEZ. In the second stage, we used probability

proportional to size sampling to select a total of 34 out of

3,119 villages from the study districts. Details of the number

of households in each village were acquired from the 2012

Uganda population and housing census of enumeration areas

by the Uganda Bureau of Statistics (UBOS). Finally, from each

sampled village, 12 households were selected for interview using

a simple random sampling technique. The interview involved

696 individuals (householders and their spouses) drawn from a

total of 408 sampled households.

Both household and plot-level data were collected through

face-to-face interviews using two structured questionnaires,
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FIGURE 1

Agro-ecological zones of Uganda, and location of sampled districts. Source: Wasige (2009).

viz., a household and an individual questionnaire. A village

questionnaire was also used to interview key informants

[including extension workers, local council chairpersons (an

elected head of the village- the lowest administrative level),

progressive farmers, and local opinion leaders] regarding village-

level variables such as input/output prices, distance to markets,

and subjective assessments of rainfall patterns.

The survey covered plot-level information where for each

plot, the respondent recounted the names and details of maize

varieties cultivated during the 2013/2014 production year.

Other plot-level data collected included slope, soil fertility,

plot size, irrigation access, plot tenure, erosion incidence, crop

production estimates, and input use. Important socioeconomic

and demographic variables collected were age (number of

the year lived), gender, education (number of school years),

family size (number of household members), access to extension

service (dummy variable for the source of information), the

likelihood of getting credit (dummy variable), and social capital

(an index calculated based on the number of groups the

respondent is a member out of a list of selected group related to

agricultural activity). Moreover, maize network size was defined

as the number of other farmers the respondent regularly talks

to get information regarding maize farming, the number of

progressive farmers in the respondent’s village, the number

of DT maize seeds known to the respondent, and sources of

information on new maize seed were also retrieved from the

respondents.2

We collected data on drought shocks based on the number of

times the farmer could remember having encountered drought

and drought-induced maize harvest loss in the previous 5 years

prior to the date of the interview (i.e., 2010–2014). Experiencing

frequent episodes of drought may influence farmers’ decisions

to cultivate DT or other types of maize that withstand droughts

and help minimize yield losses.

Data related to rainfall patterns were collected from village

key informants based on their subjective assessment of the

timeliness, amount, and distribution in the major growing

season immediately prior to the date of the survey. We

considered farmers’ perception of the timeliness (onset and

cession), adequacy (whether the amount received is enough to

2 Progressive farmers are those who achieve higher agricultural yields

and earn higher agricultural profits than other farmers. These farmers are

also usually the first in the village to adopt new technologies.
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support maize production), and distribution [based on rainfall

availability at critical growth stages and extent of dry-spell

(based on farmers’ estimate of the time interval between any

rainy day and the next rainy day) experienced] of rainfall to

construct an index variable for the adequacy of rainfall or

lack thereof. Perceived responses to each of these items (as

“yes” or “no”) were coded as favorable and unfavorable rainfall

outcomes and averaged over the number of questions. The index

values range from zero to one where one stands for a favorable

outcome and zero for the worst. While farmers’ decision to

cultivate a particular maize seed (i.e., DT or non-DTmaize seed)

may depend on their expectations regarding rainfall pattern,

their perception of the actual rainfall3 pattern may help to

explain the performance of a particular type of maize cultivated

(Teklewold et al., 2013).

Also, the survey involved the administration of a risk

elicitation experiment to measure farmers’ risk preferences

(risk-taking behavior) using Gneezy and Potters (1997) risk

elicitation mechanism. The experiment provided a hypothetical

situation that elicits the risk preference of farmers based on

actual pay-offs made following: (1) respondents’ choice from

the combination of high and no-risk maize seeds and (2)

probabilistic determination of weather conditions (favorable

or unfavorable outcomes) which is based on the toss of a

coin. Farmers’ risk-taking behavior is important in explaining

decisions regarding the cultivation of new maize varieties as

a potential adaptation strategy. Although DT maize seeds are

developed to deal with drought risk, a decision to switch to new

unfamiliar varieties may involve some risk, the potential benefits

notwithstanding. Farmers who are more vulnerable to extreme

weather events are less likely to use improved varieties as an

effective means to cope with drought; instead, they tend to delay

it (Cavatassi et al., 2011; Liu, 2013). In this study, we expect that

farmers who are averse to risk could decide to cultivate DTmaize

if their belief in drought tolerance of the variety outweighs the

potential risk associated with its being new.

Given that the DT maize seeds are developed for drought

tolerance and yield, farmers who have a preference for these

two traits are expected to cultivate these varieties. Farmers’

preferences for these traits are captured based on whether he/she

mentioned them among his/her most preferred traits of maize

variety. Social capital may exert behavioral influences in various

ways (that is, information sharing, positive externality, resource

sharing, and relaxing liquidity constraints through informal

credit). The possible roles of farmers’ social capital in the

decision to grow DT maize are captured using the social capital

index constructed based on groupmembership, roles assumed in

each group, the nature of the group composition (homogeneous

or diverse), and its functionality.

3 Actual rainfall data are preferable for the purpose, but reliable data

that are villagespecific are scarce in most developing countries, including

Uganda.

Conceptual framework

The adoption of new technology is oftenmodeled as a utility-

maximizing choice between two or more alternatives. It can

be influenced by the characteristic features embodied in the

technology and many other factors. Observed adoption choice

of agricultural technology (for example, modern crop varieties)

is hypothesized to be the end result of a process of preference

comparisons by farmers.

In this study, adoption is defined as the reported use of

DT maize variety (that is when the farmer exactly mentions

the variety by name) on a specific plot managed by the head

or spouse of a household during the 2013/14 growing season.

Adopting the utility maximization concept, a maize farmer

(also referred to as plot manager4)—who has to make decisions

regarding what type of maize to grow- has three possible

alternatives, which are DT modern maize, non-DT modern

maize, and “unimproved” or local maize seed.5 Each one of these

categories of choice includes a distinct list of maize varieties.

Plots are identified with the type of maize varieties cultivated

by matching the name of the varieties reported by farmers with

the list under each category. The DT maize seeds are mainly

developed for drought tolerance and yield whereas the non-

DT modern maize seeds are developed for traits other than

drought (mostly higher yields under optimal conditions). The

actual choice is assumed to be made based on farmers’ utility

derived from the adoption of one of these maize varieties.

Farmers’ decisions to adopt a particular maize seed are

assumed to be driven by maximization of the utility derived

from the alternative types of maize seeds. For farmer i

to choose any maize type, j, from available alternatives,

m, it is required that Uij > Uim, m 6= j;

the expected benefit, Uij, that a farmer derives from the

adoption of maize type j (that is, DT, non-DT modern,

or local maize) is a latent variable determined by observed

household, individual, plot, and location characteristics (Xi),

and unobserved characteristics (eij):

U∗
ij = Xiβj + eij (1)

Where Xi is a vector of observed exogenous variables; βj is a

vector of parameters to be estimated for each type of maize; and

4 Plot manager, also referred to as farmer, refers to the head or spouse

in a household who made decision (had management access) regarding

what type of maize variety to cultivate on a given household plot.

5 In this study unless specified, modern maize refers to all improved

maize seed- DT or non-DT modern maize. In addition, the terms “DT

maize” and “non-DTmaize” are used in subsequent sections to denote DT

modern maize and non-DT modern maize, respectively. While modern

maize seeds are products of formal breeding process, the local ones are

results of farmers own long years of selection.

Frontiers in Sustainable FoodSystems 05 frontiersin.org

https://doi.org/10.3389/fsufs.2022.854856
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Habte et al. 10.3389/fsufs.2022.854856

eij are unobserved characteristics. Let the choice from among

the alternative maize types by a farmer is denoted by an index

variable, I, such that:

I =



























1 if U∗
i1 > max

(

U∗
im

)

, m 6= 1

. . .

. . .

. . .

J if U∗
ij > max (U∗

im), m 6= j .

for all m 6= j, (2)

Equation (2) implies that ith farmer will adopt modern

maize type j to maximize his/her expected gain (ηij) if j provides

greater benefit than any other alternative type of maize m; that

is, if ηij= max
(

U∗
ij − U∗

im

)

> 0, m 6= j (Bourguignon et al.,

2007).

Assuming that eij are independently and identically Gumbel

distributed, the probability that farmer i with characteristics X

will choose maize type j can be specified by a multinomial logit

(MNL) model (McFadden, 1973):

pij = pr
(

ηij > 0
∣

∣Xi
)

=
exp(βjXi)

∑J
m=1 exp(βmXi)

(3)

Since MNL is a model where regressors do not vary over

choices, coefficients are estimated for any choice. MNL requires

identification, thus one of the choices of m maize types (the

local maize seed in our case) is treated as the base category

(correspondent βm is constrained to equal 0).

Based on the adoption literature, farmers’ decisions to

adopt a new agricultural technology depend, among others, on

socioeconomic, demographic, and institutional factors. Hence,

the choice of explanatory variables in this study is made based

on a review of past studies on technology adoption and impact in

developing countries (these include Feder et al., 1985; Bandiera,

2006; Deressa et al., 2009; Matuschke and Qaim, 2009; Kafle,

2010; Kassie et al., 2011; Asfaw et al., 2012; Teklewold et al.,

2013; Fisher and Carr, 2015; Jain et al., 2015). This body of

literature indicates that many factors influence adoption and

thus affect our outcome variable. The factors are categorized

as demographic and farmer characteristics (family size, gender,

age, education, risk attitude, preference to drought tolerance,

preference to yield, drought risk perception, experience of maize

loss due to drought), social and institutional characteristics

(social capital, number of progressive farmers in the village,

main sources of information, credit access, distance to input

market, distance to extension office), maize plot characteristics

(plot size, tenure, extent of erosion, soil fertility, slope,

irrigation), and geographic characteristics (captured through

district dummies).

A fundamental problem when comparing adoption

outcomes between individuals is that adoption is not randomly

assigned- farmers endogenously select themselves into adopters

or non-adopters of particular technologies. So decisions are

likely to be influenced by both observed and unobserved

characteristics. Unobserved factors that can influence adoption

include aptitude, motivation, experience, or other factors,

which are not readily observed in the present data. These

“other” factors may be correlated with the adoption outcome.

As adopters and non-adopters can be systematically different,

estimating the effect of adoption without accounting for

this implied endogeneity problem would lead to inaccurate

results where outcomes are attributed to adoption when

in fact significant aspects of the outcome are the result of

other factors not accounted for. We apply an endogenous

switching regression treatment effects approach to correct for

self-selection bias (Dubin and McFadden, 1984) and provide

treatment effects that take both observed and unobserved

factors into account.

Econometric estimation strategy

The endogenous switching regression (ESR) framework we

used to estimate the impact of adoption while accounting for

selection biases involves two stages. In the first stage, farmers’

choices of maize types are modeled using the MNL selection

model as specified above; and in the second stage of the

estimation, the impact of adoption on the outcome variable is

evaluated using ordinary least squares (OLS) which includes a

selectivity correction term from the first stage.6

The relationship between the outcome variable and the set

of exogenous variables Z is estimated for the maize type chosen.

The outcome equation for each possible regime j is given as



























Regime 1 :Yi1 = Ziα1 + ui1 if I = 1

. . .

. . .

. . .

Regime J : YiJ = ZiαJ + uiJ if I = J

(4)

Where Yij are the outcome variables of the ith farmer in

regime j, Z is as defined above, and the error terms (u) are

distributed with E(uij|X,Z) = 0 and var
(

uij
∣

∣X,Z
)

= σ 2
j . For

consistent estimation, Equation (4) will be augmented with plot-

specific unobservable characteristics such as land quality that

can help in controlling for unobserved heterogeneity among

plots. Yij is observed if and only if alternative j is adopted which

6 Bourguignon et al. (2007) using Monte-Carlo experiments, show

that selection bias correction based on multinomial logit model can

provide consistent and e�cient estimates of the selection process

and a reasonable correction for the outcome equations, even when

the assumption of the independence of irrelevant alternatives (IIA) is

not achieved.
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occurs based on the utility maximization indicated earlier. If

the error terms of the selection equation (e) and that of the

outcome equations (u) are correlated, unbiased estimation of

Equation (4) requires the inclusion of the selection correction

terms of the alternative choices as recovered from the MNL

models. Bourguignon et al. (2007) show that consistent estimates

of the parameter in the above equation can be obtained by

estimating the following multinomial endogenous switching

regression models:



























Regime 1 :Yi1 = Ziα1 + θ1λ́1 + ωi1 if I = 1

. . . .

. . . .

. . . .

Regime J : YiJ = ZiαJ + θJ λ́J + ωiJ if I = J

(5)

Where θj is the covariance between e’s and u’s; and

λj is the inverse Mills ratio (IMR) computed from the

estimated probabilities in Equation (3) as follows: λj =

∑J
m6=j ρj[

Ṕim ln
(

Ṕim
)

1−Ṕim
+ ln

(

Ṕij

)

]; ρ is the correlation coefficient

of e’s of the selection equation and u’s of the outcome equations,

and ω represents error terms with an expected value of zero. In

the multinomial choice setting, there are J-1 selection correction

terms, one for each alternative maize type. The standard

errors in Equation (5) are bootstrapped to account for the

heteroscedasticity arising from the generated regressor (λj).

For Equation (5) to be identified, it is good practice in

empirical analysis to use variables that affect the choice decision

but not the outcome variable (as exclusion restrictions) in

addition to those automatically generated by the non-linearity

of the selection regression. The specification chosen for the

outcome equations in Equation (5) follows the common practice

in the agricultural economics literature (see, e.g., Solis et al.,

2007; Di Falco et al., 2011; Teklewold et al., 2013), allows us to

use variables related to information sources, farmer and farm

household’s characteristics as well as including the number of

DT maize varieties known to the farmer as exclusion restriction.

The validity of the exclusion restriction is tested based on the

significance of these variables in the selection model but not in

the outcome equation.

Using the above framework, the average treatment effect

on the treated (ATT) which is the average effect of adoption

for adopters (DT maize growers), and on the untreated (ATU)

which is the average effect of adoption for non-adopters, are both

examined by comparing the expected actual and counterfactual

outcomes. The computation of the counterfactual and average

treatment effects using endogenous switching regression is

implemented in the same manner as in Di Falco et al. (2011),

Teklewold et al. (2013), and Kassie et al. (2014).

Actual outcomes for

Adopters: E
[

Yij
∣

∣I = j
)

= Zijαj + θjeλ́ji (6)

Non-adopters: E
[

Yij
∣

∣I = 1
)

= Zi1α1 + θ1eλ́1i (7)

Counterfactual outcomes for

Adopters: E
[

Yij
∣

∣I = j
)

= Zijα1 + θ1eλ́ji (8)

Non-adopters: E
[

Yij
∣

∣I = 1
)

= Zi1αj + θjeλ́j1 (9)

While Equations (6) and (7) represent the actual outcome

observed in the sample for adopters and non-adopters,

respectively, Equations (8) and (9) are the respective

counterfactual outcomes. These conditional expectations

are used to compute ATT and ATU. The average adoption

effect for adopters (ATT) is calculated as the difference between

Equations (6) and (8). The difference between Equations (7)

and (9) provides the average adoption effect for non-adopters

(ATU). ATT, for example, is shown as follows:

E
[

Yij
∣

∣I = j
]

− E
[

Yi1
∣

∣I = j
]

= Zi
(

αj − α1
)

+ λj(θj − θ1) (10)

The first term on the right-hand side (RHS) of Equation

(10) represents the expected change in adopters’ average

outcome if adopters’ characteristics had the same return

(coefficient) as the characteristics of non-adopters. In the

second term (on the RHS), λj, is the selection correction

TABLE 1 Conditional expectations and treatment e�ects.

Type of maize

cultivated

Decision to cultivate

(Actual/counterfactual)

Treatment

effect (A-B)

DTmaize Non-

DT/Local

maize

(A) (B)

DT maize (a) E(Y1i |Ai = 1) (c) E(Y2i|Ai = 1) ATT

Non-DT/Local maize (d) E(Y1i|Ai = 0) (b) E(Y2i|Ai = 0) ATU

(a) and (b) represent observed expected yield; (c) and (d) represent counterfactual

expected yield.

Ai = 1 if plot manager cultivated DT on a given plot; Ai = 0 if the plot manager did not

cultivate DT on his/her plot.

Y1i, yield of a given household plot cultivated in DT maize; Y2i, yield of a household plot

cultivated in non-DT/Local maize; ATT, Average effect of the treatment on the treated;

ATU, Average effect of the treatment on the untreated.

FIGURE 2

Percentage of maize plots planted in di�erent types of maize.
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TABLE 2 Descriptive summary of selected variables used in estimations.

Variable description DTmaize Non-DTmaize Local maize

Mean or Prop. Std. Dev. Mean or Prop. Std. Dev. Mean or Prop. Std. Dev.

Average yield of maize plot (kg/ha) 2,270 2,666 1,891 2,285 1,460 1,675

Plot manager’s educational level (school years) 7.10 3.46 6.34 3.56 5.00 3.74

Plot manager’s age (years) 40.95 14.45 42.67 13.77 45.64 12.77

Plot manager is female head (ref. category) 0.05 0.21 0.11 0.32 0.24 0.43

Plot manager is male head 0.91 0.29 0.77 0.42 0.53 0.50

Plot manager is wife in male head household 0.05 0.21 0.11 0.32 0.23 0.42

Family size (number of household members) 6.93 2.91 7.50 3.55 7.64 3.19

Number of perceived droughts in the last 5 years 2.08 1.10 1.93 1.25 2.21 1.53

Number of times farmer faced maize harvest loss

due to drought in the last 5 years

1.55 1.01 1.33 1.09 1.79 1.49

Plot manager mentioned yield as one of preferred

traits (yes= 1, 0 otherwise)

0.39 0.49 0.55 0.50 0.31 0.46

Plot manager mentioned drought tolerance as one

of preferred traits (yes= 1, 0 otherwise)

0.51 0.50 0.43 0.50 0.40 0.49

Plot manager’s social capital index (0–1) 0.04 0.08 0.03 0.08 0.02 0.06

Plot manager’s risk attitude [ranges from risk

averse (0) to risk lover (10)]

4.81 3.24 4.59 3.30 3.98 3.23

Plot acquired through market based tenure (ref.

category)

0.51 0.50 0.39 0.49 0.45 0.50

Plot acquired through customary tenure 0.46 0.50 0.58 0.49 0.49 0.50

Plot acquired through other tenure 0.04 0.18 0.03 0.17 0.07 0.25

Plot soil fertility rated as good (vs. poor) 0.44 0.50 0.43 0.50 0.40 0.49

Extent of erosion on plot rated as none (ref.

category)

0.46 0.50 0.36 0.48 0.37 0.48

Extent of erosion on plot rated as moderate 0.34 0.48 0.42 0.49 0.45 0.50

Extent of erosion on plot rated as high 0.20 0.40 0.22 0.42 0.18 0.38

Plot slope rated as steep (ref. category) 0.10 0.30 0.19 0.39 0.13 0.33

Plot slope rated as moderate 0.40 0.49 0.53 0.50 0.45 0.50

Plot slope rated as flat 0.50 0.50 0.28 0.45 0.42 0.50

Plot is irrigated (yes= 1, 0 otherwise) 0.06 0.24 0.06 0.24 0.06 0.23

Maize plot size (ha) 0.45 0.28 0.39 0.28 0.37 0.25

Maize network size of the respondent 3.41 1.57 3.17 1.59 2.65 1.56

Number of progressive. farmers in the village 9.00 2.58 8.86 2.32 9.35 3.30

Number of DT maize varieties known to the

respondent

2.33 1.84 1.50 1.77 1.07 1.67

Extension is main info source (yes= 1, 0

otherwise)

0.05 0.21 0.05 0.21 0.02 0.16

Research is main info. source (yes= 1, 0

otherwise)

0.05 0.21 0.00 0.07 0.00 0.00

Input shop is main info. source (yes= 1, 0

otherwise)

0.03 0.17 0.04 0.21 0.01 0.09

Other farmers are main info. source (yes= 1, 0

otherwise)

0.25 0.43 0.19 0.39 0.24 0.43

Elec. Media is main info source (yes= 1, 0

otherwise)

0.20 0.40 0.22 0.42 0.13 0.33

(Continued)
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TABLE 2 (Continued)

Variable description DTmaize Non-DTmaize Local maize

Mean or Prop. Std. Dev. Mean or Prop. Std. Dev. Mean or Prop. Std. Dev.

Likely to get credit (yes= 1, 0 otherwise) 0.59 0.49 0.46 0.50 0.41 0.49

Distance (km) to input market 7.83 8.06 9.15 8.39 7.52 5.63

Distance (km) to the nearest extension office 4.88 4.51 5.74 5.67 5.29 4.05

Iganga district (ref. category) 0.29 0.46 0.33 0.47 0.57 0.50

Tororo district 0.31 0.46 0.39 0.49 0.34 0.47

Bulambuli district 0.40 0.49 0.28 0.45 0.09 0.29

Rainfall index (0–1) 0.43 0.24 0.44 0.24 0.37 0.24

Quantity of fertilizer use (kg/ha) 19.44 48.36 20.18 72.27 3.98 20.89

Cost of hired labor (USD/ha) 86.62 121.00 52.62 92.63 25.49 61.76

Other input costs (Seed+ Chemicals) (USD/ha) 54.07 87.34 86.97 466.60 17.70 170.04

term that captures all potential effects of difference in

unobserved variables.

The average treatment effect (ATE) can be calculated

by taking the difference between the two actual outcomes

(Equations 6, 7). In observational studies, ATE gives the

treatment effect without accounting for selection bias. The

computation of the conditional expectations and treatment

effect are summarized in Table 1.

Results and discussions

Descriptive summary

About 77% of the sampled respondents grew modern maize

varieties of which 24% used DT maize. The average size of all

maize plots was 0.40 hectares; the corresponding figure for plots

allocated to all modern and only to DT maize seed was 0.41 and

0.45 hectares, respectively. DT growers tend to cultivate maize

on relatively larger plots. The share of maize plots planted to DT

maize was about 19%. Comparatively, non-DT modern maize

seeds were widely cultivated covering 60% of the maize plots

of the sample households. These maize seeds have been part of

the seed systems in Uganda since the 1960s (Balirwa, 1992) and

their spread might imply that over time the DT maize would

also follow similar diffusion trends. At the time of this study,

the uptake level of DT maize suggests that it is still at the early

diffusion stages (Figure 2).

Table 2 presents descriptive statistics of variables that

are used in the empirical models (selection and outcome

equation) applied to make casual attribution of adoption of

DT maize.

Results from the adoption models

Table 3 presents the estimation results of the first stage (the

MNL selection model) of the endogenous switching regression.

From the three types of maize used as the categorical dependent

variable, local maize is used as the base category. The tests of

goodness-of-fit reported at the bottom of the table show the

model fits the data reasonably well. The Wald χ2 test statistics

(672.26) rejects the hypothesis that the regression coefficients of

the explanatory variables are jointly equal to zero (p = 0.00).

Accordingly, the result showed that the gender of plot managers,

size of the maize plot, preference for the drought tolerance trait,

number of DT varieties known to the plot manager, source

of information on new maize seed and location dummies,

as expected, influenced the probability of adopting DT maize

varieties. Male-headed plot managers have a higher adoption

probability than their female counterparts.

Also, plot managers who receive information about

new maize seed varieties from research centers and other

farmers, are more likely to cultivate DT maize. Research

can provide reliable technical information, but it may

not be accessible to many farmers mainly due to limited

presence in terms of geographical spread. As expected

proximity to the nearest extension service increases the chances

of adoption.

Farmers who have a preference for DT traits are expected to

cultivate DT maize. The results indicate that compared to the

base category, preference for drought tolerance is an important

driver for the adoption of DT varieties. This suggests that

those who grow DT seeds are well-informed about this unique

trait. Moreover, these DT varieties maintain (to a large degree)

yield parity with extant hybrids. It stands to reason then that

preference for DT trait would be the main differentiation for

many farmers in evaluating DT varieties compared to non-

DT ones.

Finally, the positive correlation of some location dummies

with adoption could be a reflection of agro-ecological factors

(like rainfall) as well as other underlying unobserved spatial

differences. The reference district (Iganga) received relatively

better rainfall (in amount and distribution) over the main

growing season (March–June; see Table A1). Comparatively, low
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TABLE 3 Parameter estimates of the determinants of DT and non-DT

maize adoption-multinomial logit selection model (Local maize as

base category).

Variables DTmaize Non-DT

maize

Coeff. (Rob

se)

Coeff. (Rob

se)

Plot manager’s (PM) characteristics

PM’s educational level (school years) 0.00 (0.06) 0.00 (0.05)

PM’s age (years) 0.00 (0.01) −0.01 (0.01)

PM is male head 2.52*** (0.70) 0.69** (0.45)

PM is wife in male head household 0.86 (0.87) 0.16 (0.54)

Family size (number of household

members)

−0.13*** (0.07) 0.01 (0.05)

Perception and preference

PMmentioned drought tolerance as one

of preferred traits (yes= 1, 0 otherwise)

0.69*** (0.42) 0.47** (0.30)

PM mentioned yield as preferred traits

(yes= 1, 0 else)

−0.48* (0.40) 0.63*** (0.30)

PM’s risk attitude (0–10) 0.04 (0.07) 0.03 (0.05)

No. of times PM faced maize harvest loss

due to drought in the last 5 years

−0.07 (0.25) −0.20 (0.19)

No. of perceived droughts (by PM) in the

last 5 years

0.02 (0.22) −0.01 (0.17)

Plot characteristics

Maize plot size (ha) 0.62*** (0.27) 0.22 (0.21)

Plot acquired through customary tenure

(vs. market tenure)

−0.06 (0.34) 0.50*** (0.27)

Plot acquired through other tenure (vs.

market tenure)

−0.88 (0.87) −0.86* (0.65)

Plot soil fertility rated as good (vs. poor) −0.13 (0.37) −0.08 (0.28)

Extent of erosion on plot rated as

moderate (vs. no erosion)

−0.49 (0.45) −0.56** (0.40)

Extent of erosion on plot rated as high (vs.

no erosion)

−0.04 (0.50) −0.28 (0.43)

Plot slope rated as moderate (vs. steep

slope)

0.55 (0.55) 0.19 (0.40)

Plot slope rated as flat (vs. steep slope) 0.60 (0.55) −0.61* (0.43)

Plot is irrigated (yes= 1, 0 otherwise) 0.33 (0.71) 0.09 (0.48)

Social capital and access to services

PM’s social capital index (0–1) 1.87 (2.95) 1.89 (2.28)

Maize network size of the PM 0.01 (0.13) 0.08 (0.10)

Number of progressive. farmers in the

resp.’s village

−0.00 (0.07) −0.04 (0.06)

Number of DT maize varieties known to

the PM

0.29*** (0.14) 0.03 (0.11)

Extension is main info source to PM (yes

= 1, 0 otherwise)

0.80 (1.10) 1.44*** (0.89)

Research is main info. source to PM (yes

= 1, 0 otherwise)

13.42*** (1.05) 12.49*** (1.04)

(Continued)

TABLE 3 (Continued)

Variables DTmaize Non-DT

maize

Coeff. (Rob

se)

Coeff. (Rob

se)

Input shop is main info. source to PM (yes

= 1, 0 otherwise)

0.86 (1.54) 2.04** (1.36)

Other farmers are main info. source to PM

(yes= 1, 0 otherwise)

0.67* (0.55) 0.11 (0.39)

Elec. Media is main info source to PM (yes

= 1, 0 otherwise)

0.11 (0.59) 0.37 (0.44)

PM is likely to get credit (yes= 1, 0

otherwise)

0.36 (0.41) −0.18 (0.33)

Distance (km) to input market 0.01 (0.03) 0.03** (0.02)

Distance (km) to the nearest extension

office

−0.07** (0.06) −0.04 (0.05)

Agro-ecology (Location and season)

Planted maize in 2014 major season (yes

= 1, 0 otherwise)

0.20 (0.16) 0.13 (0.13)

Tororo district 0.89*** (0.47) 0.62*** (0.33)

Bulambuli district 2.99*** (0.82) 1.84*** (0.78)

Observations (plots) 1,026

Wald chi-squared (68) 672.26

Pseudo R2 0.21

Log Likelihood −771.6

*, **, ***Statistical significance at 10%, 5% and 1% level, respectively. Coeff., Coefficient;

Rob se, Robust standard errors.

In parentheses are standard errors. Since the unit of analysis is plot, the standard error is

adjusted for within-cluster correlation using the household identifier variable.

rainfall signal at planting time (March) might have prompted a

higher likelihood of growing DT maize seeds in Bulambuli and

Tororo than in Iganga.

Plot level impacts of DT maize

The results presented in this section are based on the

conditional and unconditional average effects of DT maize

adoption on expected maize yield. The ATT and ATU are

computed using the predicted value of yield following the

schema presented in Table 1.

The coefficient estimates from the second stage regression

(OLS) are presented in Table A2. It is to be noted that

the coefficients on selection correction terms are almost not

significant suggesting that our results are unlikely to be driven by

selection bias. The regression estimates without the correction

terms remain similar but in the interests of brevity, we have not

reported the results.

The figures reported in Table 4 are expected values of yield.

A simple pairwise comparison of means (ATE) indicates that

cultivation of DT maize, on average, gives higher maize yield to
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TABLE 4 Average e�ect of DT maize adoption on maize yield, multinomial ESR.

Outcome variable Adoption status Decision DT Adoption effect

DTmaize Non-DT

Maize yield in kg per ha (DT vs. NDT) DT maize 1693.99 (a) (62.58) 1294.21 (c) (46.70) 399.78*** (78.08) ATT=[(a)-(c)]

(Yd|A= d)-E(Ynd|A= d)

Non-DT maize 1678.87 (d) (43.83) 1268.85 (b) (33.07) 410.03*** (54.91) ATU=[(d)-(b)]

E(Yd|A= nd)-E(Ynd|A= nd)

E(Yd|A= d)-E(Ynd|A= nd) 425.14*** (68.56) ATE=[(a)-(b)]

Adoption status DTmaize Local maize DT Adoption effect

Maize yield in kg per ha (DT vs. LOC) DT maize 1693.99 (a) (62.58) 335.50(c) (10.80) 1358.49*** (63.50) ATT=[(a)-(c)]

E(Yd|A= d)-E(Yloc|A= d)

Local maize 1339.96 (d) (58.86) 871.63 (b) (28.42) 468.34*** (65.36) ATU=[(d)-(b)]

E(Yd|A= loc)-E(Yloc|A= loc)

E(Yd|A= d)-E(Yloc|A= loc) 822.36*** (66.49) ATE=[(a)-(b)]

Numbers in parenthesis are standard errors; ***Statistical significance at 1% level.

ATT, average treatment effect on the treated; ATU, average treatment effect on the untreated; ATE, average treatment effect (unconditional); A, adoption; d, DT maize; nd, non-DT maize;

loc, local maize. (a) and (b) represent observed expected yield; (c) and (d) represent counterfactual expected yield.

adopters than non-adopters who grew either non-DT or local

maize. Such comparisons, however, could be misleading as it

does not control for observed and unobserved factors that may

influence the outcome variable.

We used Equation (10) to estimate the true average adoption

effect and compare the expected yield of farmers cultivating DT

maize with their counterfactual outcome- if the same farmers

had instead cultivated local or non-DT maize seed. The results

indicated that both adopters and non-adopters would benefit

from adoption. The magnitude of the adoption effect, however,

differs when the comparison is between DT vs. non-DT and

DT vs. local maize growers. The ATT showed that farmers who

actually cultivated DT maize get 30% more yield than what they

would have obtained had they instead adopted non-DT maize

seed. The corresponding yield effects of adopting DT instead of

local maize were four times high. Similarly, ATU revealed that

farmers who grew non-DT modern and local maize received

32% and 54% more yield, respectively, if they instead had

adopted DT maize. That is, non-adopters would have realized

higher productivity if they decide to switch to DT maize.

Spatial variation of the impacts of DT
maize

We examined the treatment effect both by location (districts)

and rainfall status, the latter was determined using the rainfall

index (as described in the data section). Table 5 presents the

ATT and ATU of DT adoption against non-DT and local

maize by the district. In all the districts, the average yield of

DT outperformed that of non-DT and local maize. As would

be expected, the magnitude of the ATT was relatively higher

against local varieties than non-DT maize varieties. The ATT

against local maize indicates a yield advantage ranging from 2.6

times at Tororo to six times at Iganga. The corresponding yield

advantage for ATU ranged from 0.5 to 1.5 times more at Tororo

and Bulambuli, respectively. The ATT against non-DT growers

shows a yield advantage of 52% at Iganga, 18% at Tororo, and

17% at Bulambuli. The ATU (for DT vs. non-DT) had a relatively

better yield advantage than the ATT in all the districts suggesting

that the adoption of DT would have been even more beneficial

to those who grew non-DT (had they grownDT) than those who

already adopted DT.

According to the rainfall records from proximate weather

stations (Table A1), the amount of rainfall received by each

of the study districts during the 2014 main season covered

by the survey (that is, March–June 2014) was well below the

long-term average (that is, 659mm) reported by Kansiime

et al. (2013). In relative terms, the Iganga district received

a higher amount with better distribution during the main

season of 2014. Theoretically, the treatment effect should

have been pronounced more in the Bulambuli district where

the amount and distribution of rainfall received during the

surveyed season was relatively less favorable. But this might

be an indication that district-level rainfall data adopted from

the meteorological stations are less representative of the

rainfall distribution under more granular scale conditions at

the micro level, given the low density of weather stations

in Uganda.

To mitigate this, we tracked rainfall conditions/patterns at a

lower level using the rainfall index constructed for each village.

The index is then used to categorize the villages into those
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TABLE 5 Average e�ect of DT adoption by districts.

(i) Outcome variable (Comparison): Maize yield in kg per ha (DT vs. NDT)

Location Average

seasonal

rainfalla (mm)

Adotion status Decision DT adoption effect

DTmaize Non-DT

Iganga 612.90 DT maize 1672.84 (a) (95.21) 1099.01 (c) 50.35) 573.83*** (107.70) ATT

E(Yd|A= d)-E(Ynd|A= d)

Non-DT maize 2139.16 (d) (83.24) 1074.97 (b) (33.89) 1064.20*** (89.87) ATU

E(Yd|A= nd)-E(Ynd|A= nd)

Tororo 561.10 DT maize 1056.66 (a) (67.05) 898.19 (c) (44.94) 158.46** (80.72) ATT

E(Yd|A= d)-E(Ynd|A= d)

Non-DT maize 1198.42 (d) (42.07) 850.62 (b) (24.50) 347.80*** (48.68) ATU

E(Yd|A= nd)-E(Ynd|A= nd)

Bulambuli 457.00 DT maize 2305.11 (a) (115.43) 1970.68 (c) 334.43*** (141.53) ATT

E(Yd|A= d)-E(Ynd|A= d)

Non-DT maize 2821.05 (d) (123.02) 2189.48 (b) (82.54) 631.57*** (148.15) ATU

E(Yd|A= nd)-E(Ynd|A= nd)

(ii) Outcome variable (Comparison): maize yield in kg per ha (DT vs. LOC)

Location Average

seasonal

rainfalla (mm)

DTmaize Local maize DT Adoption effect

Iganga 612.90 DT maize 1672.84 (a) (95.21) 236.47 (c) (10.59) 1436.37*** (95.79) ATT

E(Yd|A= d)-E(Yloc|A= d)

Local maize 1844.20 (d) (87.51) 785.89 (d) (29.42) 1058.31*** (92.32) ATU

E(Yd|A= loc)-E(Yloc|A= loc)

Tororo 561.10 DT maize 1056.66 (a) (67.05) 287.68 (c) (12.28) 768.98*** (68.17) ATT

E(Yd|A= d)-E(Yloc|A= d)

Local maize 1264.07 (d) (83.55) 831.57 (b) (36.01) 432.50*** (90.98) ATU

E(Yd|A= loc)-E(Yloc|A= loc)

Bulambuli 457.00 DT maize 2305.11 (a) (115.43) 385.35 (c) (12.26) 1919.76*** (116.07) ATT

E(Yd|A= d)-E(Yloc|A= d)

Local maize 3061.33(d) (583.27) 1205.36 (b) (158.70) 1855.97*** (604.48) ATU

E(Yd|A= loc)-E(Yloc|A= loc)

aAmount of rainfall for main growing season (March–June) from the proximate weather station (see Table A1).

Numbers in parentheses are standard errors.

*, ***Statistical significance at 5% and 1% level, respectively.

As shown in Table 1, (a) and (b) represent observed expected yield; (c) and (d) represent counterfactual expected yield; ATT=[(a)-(c)]; ATU=[(d)-(b)].

which had potentially poor rainfall status (with a rainfall index

value equal to or <0.5) and those which had potentially good

rainfall status (with an index value greater than 0.5) in the 2014

main season.

Table 6 shows the treatment effect by rainfall status of sample

villages. In all cases, be it under poor or good rainfall conditions,

DT adoption makes the productivity of adopters (ATT) and

non-adopters (ATU) better off. Leaving the substantial yield

advantage of DT maize adoption over local maize under the

two states of rainfall aside, the treatment effect over non-

DT reveals an interesting result. The average treatment effect

(ATT) over non-DT maize under poor rainfall conditions

was about 417 kg ha−1, that is, cultivation of DT maize

offers a yield advantage of 44% over what would have been

obtained if the plot was instead planted to non-DT maize.

The corresponding ATT under good rainfall conditions has

an additional yield advantage of about 21%. This supports

the claim that DT maize outperforms other commercial maize

(non-DT) more in seasons when the rainfall condition is less

favorable.

Despite its inability to account for confounding effects, we

further ran ANOVA of the linear prediction of DT yield as
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TABLE 6 The average e�ect of DT adoption by rainfall status of sample villages.

(i) Outcome variable (Comparison): Maize yield in kg per ha (DT vs. NDT)

Village rainfall status Adoption status Decision DT adoption effect

DTmaize Non-DT

Poor DT maize 1359.08 (a) (97.54) 941.92 (c) (49.86) 417.17*** (109.55) ATT

E(Yd|A= d)-E(Ynd|A= d)

Non-DT maize 1542.00 (d) (70.02) 956.96 (b) (33.17) 585.05*** (77.48) ATU

E(Yd|A= nd)-E(Ynd|A= nd)

Good DT maize 1882.38 (a) (83.59) 1545.74 (c) (62.67) 336.64*** (104.47) ATT

E(Yd|A= d)-E(Ynd|A= d)

Non-DT maize 2129.35 (d) (68.55) 1432.10 (b) (46.13) 697.24*** (82.62) ATU

E(Yd|A= nd)-E(Ynd|A= nd)

(ii) Outcome variable (Comparison): Maize yield in kg per ha (DT vs. LOC)

Village rainfall status Adoption status DTmaize Local maize DT Adoption effect

Poor DT maize 1359.08 (a) (97.54) 260.22 (c) (16.99) 1098.86*** (99.01) ATT

E(Yd|A= d)-E(Yloc|A= d)

Local maize 1700.02(d) 807.74 (b) (32.80) 892.28*** (110.97) ATU

E(Yd|A= loc)-E(Yloc|A= loc)

Good DT maize 1882.38 (a) (83.59) 328.91 (c) (9.12) 1553.46*** (84.09) ATT

E(Yd|A= d)-E(Yloc|A= d)

Local maize 1770.79 (d) (113.88) 852.09 (b) (36.60) 918.70*** (119.62) ATU

E(Yd|A= loc)-E(Yloc|A= loc)

***Statistical significance at 1% level.

As shown in Table 1, (a) and (b) represent observed expected yield; (c) and (d) represent counterfactual expected yield; ATT=[(a)-(c)]; ATU=[(d)-(b)].

a partial metric to compare its performance difference across

the three districts. The result suggests a significant (p = 0.00)

productivity difference in mean DT maize yield across the three

districts. Pairwise yield comparisons between these districts

further revealed statistically meaningful differences (Table 7).

Bulambuli district- where the highest share (40%) of plots was

planted to DT maize varieties- had the highest mean DT yield,

and Tororo district had the least.

To help in visualizing the results described above, we

summarized these spatial variations in the impact of DT in

Figure 3 based on the ATT comparing DT with local maize

varieties (Figure 3A) and DT with non-DT maize varieties

(Figure 3B). Although the mean ATT is positive and significant

across all districts, there are pockets where the impact as

measured by ATT was below the sample average. This can be

seen in the Tororo district where both the magnitude of the

impact is relatively lower (see Tables 5, 6), and the DT coefficient

on the district dummy is comparatively smaller (see Table A2).

Further examination of the particularities of the Tororo district

might be worth looking at to bring out and learn about the

underlying causes.

Discussion

This study evaluates the potential impact of maize varieties

developed for drought tolerance. These varieties are said

to stabilize maize yield under drought conditions thereby

offering maize farmers living in drought-prone areas a greater

possibility to adapt to climate change. The study utilizes cross-

sectional household and plot-level data collected from 696

plot managers of randomly selected 408 sample households.

The finding of this study revealed that compared to plots

planted to non-DT/local maize varieties, those planted to DT

maize had superior yield performance both across locations

and under varying rainfall conditions. Particularly, putting

the superior yield performance of DT over non-DT maize

varieties in favorable rainfall conditions aside, the more

pronounced yield performance observed when the rainfall

conditions were less favorable provides evidence that the

yield potential of these varieties is stable across space and

a wide range of rainfall conditions. Irrespective of locations

and rainfall conditions, the magnitude of the yield impact of

cultivating DT maize over non-DT maize, which is about 30%
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larger, is consistent with the previously reported experimental

results which showed that DTs offer a yield advantage of 26–

47% (random drought), and 25–56% (under optimal rainfall

conditions) over commercial (non-DT modern) maize seeds

(Fisher et al., 2015). As expected, the corresponding ATT (yield

effect of adopting DT instead of local maize) was found many

times larger. Likewise, it is not only the farmers who already

started cultivating DT maize who reap the benefit but also

farmers who grew non-DT modern and local maize would

have potentially received 32 and 54% more yield benefits,

respectively, if they instead had adopted DT maize. That is,

non-adopters would have realized higher productivity if they

decide to switch to DT maize. The results generally confirm

the direct role and prospect of DT maize adoption in reducing

susceptibility to drought, thereby improving food security and

welfare status of maize farm households- as higher yields are

likely to translate to a greater household food supply, sellable

surplus, and better crop income, all else equal.

Farmers’ decision to cultivate DT maize tends to follow

rainfall signals. Spatial differences observed in technology

adoption across districts are partly the results of variable

rainfall on-set signals across sample districts. Teklewold et al.

(2013) and Kassie et al. (2014) also observed spatial differences

in technology adoption induced by various factors. The DT

impacts observed in each of the districts showed that the

adoption of DT would have been even more beneficial to

those who grew non-DT (had they grown DT) than those

who already adopted DT. This implies that those not currently

using DT maize would greatly benefit from them once

the factors preventing these farmers from adopting them

are removed.

The impact analysis based on the rainfall condition

indicated that cultivation of DT maize offers more yield

TABLE 7 Pairwise comparison of mean yield of DT maize by districts.

Districts Mean difference

(kg/ha)

t-value p > t

Tororo vs. Iganga −616.18 (152.45) −4.04 0.000

Bulambuli vs. Iganga 632.27 (140.44) 4.50 0.000

Bulambuli vs. Tororo 1248.45 (142.62) 8.75 0.000

Numbers in parenthesis are standard errors.

FIGURE 3

(A) Spatial distribution of ATT (average treatment e�ects) of DT maize compared to local varieties. (B) Spatial distribution of ATT (average

treatment e�ects) of DT maize compared to all non-DT varieties.
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advantage over non-DT maize during relatively poor

rainfall conditions than a favorable one (44 vs. 21%).

This supports the claim that DT maize outperforms other

commercial maize (non-DT) more in seasons when the

rainfall condition is less favorable. In fact, the DT maize

varieties are meant to ensure stable yield across variable

rainfall conditions.

The fact that DT maize seeds are cultivated by only about a

fifth of the sample households is suggestive of an initial diffusion

cycle. The relatively wider cultivation of other commercial

non-DT maize varieties which had long been in the seed

system suggests that over time the DT maize would follow a

similar trend as most of the barriers would be removed. In

addition, a higher potential benefit for non-adopters should

they cultivate DT maize suggest the barriers to adoption are

not occasioned by the low benefits of DT varieties, but by the

interplay of factors such as access to information and ready

availability of retail supplies of seed. For example, compared

to the female head plot managers, higher adoption probability

associated with plot managers who are male household heads

could be an indication of variable access to key resources

(land, capital, information, and so on) that can influence

adoption decisions. Such gender-linked resource constraints

which resulted in variable adoption status is also observed in

earlier studies (Doss and Morris, 2001; Smale, 2011; Fisher

and Kandiwa, 2014). Interventions to improve adoption might

require, among others, appreciating and accommodating such

gender-linked differences through affirmative actions in favor of

female farmers.

The implication is that public policy institutions involved

in agricultural development may need to provide necessary

supportive actions which can strengthen and leverage public

extension services to promote these new generations of varieties.

Government should underwrite programs for technology

promotion and dissemination at early stages to provide the

basis for the private sector (particularly input dealers) to

enter into retailing these varieties. Promising policy mix

to speed up adoption may include exposing farmers to

these technologies through networks of field demonstrations

and using farmers’ social networks as most of the sample

farmers relied on their fellow farmers for information.

Distribution of sample seeds for farmers to experience

the benefit and improving local availability of seed at

affordable prices can accelerate the uptake of the DT

maize varieties.

Although this study presents evidence that the benefits

of DT maize are commensurate or better than existing

non-DT maize seeds, the results are based on cross-

sectional analysis which offers a snapshot and associational

effects. In the future, panel data analysis will be needed to

truly capture the dynamics and account for unobserved

heterogeneities that underpin DT maize variety adoption and

its corresponding impact.
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Appendix

TABLE A1 Monthly rainfall totals (in mm) of 2014 for the study districts from the proximate weather station.

District Weather station Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

TORORO Tororo 83.3 18.6 57.8 113.9 242.6 146.8 50.3 108.0 182.3 291.1 116.6 88.6

IGANGA Jinja 15.3 9.9 120.8 152.7 219.5 119.9 35.2 127.6 154.2 266.1 151.5 43.9

BULAMBULI Soroti 14.6 6.0 73.8 145.8 162.3 75.1 93.6 231.7 77.9 161.8 126.0 8.8

Source: Uganda National Meteorological Authority (UNMA).

TABLE A2 Endogenous switching regression estimate for outcome indicator-maize yield.

Variables Non-DTmaize DTmaize Local maize

Coefficient t stat Coefficient t stat Coefficient t stat

Plot manager’s educational level (school years) 0.040*** (0.011) 3.702 −0.020 (0.018) −1.115 −0.012 (0.038) −0.328

Plot manager’s age (years) 0.001 (0.003) 0.161 −0.010 (0.007) −1.433 −0.000 (0.006) −0.014

Plot manager is male head 0.659*** (0.141) 4.688 1.077** (0.474) 2.271 0.322 (0.271) 1.191

Plot manager is the wife in a male head household 0.900*** (0.212) 4.246 0.352 (0.544) 0.647 0.179 (0.289) 0.621

Ln_ Maize plot size (ha) −0.488*** (0.064) −7.673 −0.337*** (0.123) −2.732 −0.246** (0.112) −2.191

Plot soil fertility rated as good (vs. poor) 0.168* (0.096) 1.754 0.471*** (0.133) 3.536 0.077 (0.170) 0.452

Rainfall index (0–1) −0.182 (0.163) −1.112 −0.668*** (0.236) −2.825 0.072 (0.419) 0.173

Ln_ Quantity of fertilizer use (kg/ha) 0.011 (0.040) 0.277 0.078* (0.041) 1.897 0.027 (0.108) 0.253

Ln_Labor cost 0.173 (0.106) 1.628 −0.020 (0.136) −0.145 −0.558** (0.234) −2.382

Ln_ Other input costs (Seed+ Chemicals) (USD/ha) 0.086** (0.036) 2.414 −0.052 (0.036) −1.446 −0.006 (0.122) −0.050

TORORO district −0.324*** (0.108) −2.995 −0.614*** (0.162) −3.780 0.196 (0.248) 0.792

BULAMBULI district 0.381* (0.212) 1.796 0.308* (0.222) 1.389 0.216 (0.437) 0.495

IMR (non-DT) −0.032 (0.038) −0.841

IMRa (DT) −0.060 (0.037) −1.595

IMR (Loc) 0.000 (0.058) 0.002

Constant 4.274*** (0.630) 6.787 6.537*** (1.100) 5.943 8.026*** (0.997) 8.053

Observations (plots) 606 191 206

R2 0.241 0.348 0.113

Model chi-square 567.1 154.2 31.04

Prob>F 0.0 0.0 0.0

In parentheses are bootstrapped standard error.
aIMR refers to Inverse Mills Ratio.

*, **, *** statistical significance at 10%, 5% and 1% level, respectively.
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