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Spot blotch (SB) caused by Bipolaris sorokiniana (teleomorphCochliobolus sativus)

is one of the devastating diseases of wheat in the warm and humid growing areas

around the world. B. sorokiniana can infect leaves, stem, roots, rachis and seeds,

and is able to produce toxins like helminthosporol and sorokinianin. No wheat

variety is immune to SB; hence, an integrated disease management strategy is

indispensable in disease prone areas. A range of fungicides, especially the triazole

group, have shown good effects in reducing the disease, and crop-rotation, tillage

and early sowing are among the favorable cultural management methods.

Resistance is mostly quantitative, being governed by QTLs with minor effects,

mapped on all the wheat chromosomes. Only four QTLs with major effects have

been designated as Sb1 through Sb4. Despite, marker assisted breeding for SB

resistance in wheat is scarce. Better understanding of wheat genome assemblies,

functional genomics and cloning of resistance genes will further accelerate

breeding for SB resistance in wheat.
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Introduction

Spot blotch (SB) caused by the hemibiotrophic fungus Bipolaris sorokiniana (teleomorph

Cochliobolus sativus) syn. Drechslera sorokiniana, syn. Helminthosporium sativum is the

most devastating disease of wheat grown in warm and humid areas. In Eastern Gangetic

Plains (EGP) of India, Bangladesh and Nepal, B. sorokiniana appears in a complex with

Pyrenophora tritici-repentis (Died.) Drechs. (anamorph Drechslera tritici-repentis (Died.)

Shoemaker) responsible for tan spot (TS) and is commonly known as Helminthosporium leaf

blight (HLB) (Duveiller et al., 2005). Occurrence of SB is more frequent in the humid and

warmer wheat growing areas of South Asia (SA), Latin America and Africa (He et al., 2022)

(Figure 1). Globally, the disease appears in approximately 25-million-hectare (mha) areas,

out of which 10 mha areas are present in EGP. Besides, wheat grown under subtropical

lowland of Bolivia, Brazil and Argentina in Latin America, Tanzania, rainfed areas of Zambia
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and Madagascar in Africa provides congenial environments for SB

(van Ginkel and Rajaram, 1998). Under favorable conditions, the

disease may cause yield loss of above 50% (Sharma and Duveiller,

2004), with an average yield loss of 15-20% in SA, and yield loss in the

farmer’s field reported up to 16% in Nepal and 15% in Bangladesh

(Villareal et al., 1995; Saari, 1998; Duveiller, 2002).

B. sorokiniana causes a typical symptom of light brown colored

lesions of oval or oblong to elliptical shape on leaves, sheath, nodes or

glume of its host plants. Size of the lesion gradually increases, then

partial to whole leaf may become chlorotic, turning brown and drying

up (Figure 2). The pathogen transmits through infected seeds,

stubbles and soil, and secondary infection may take place through

air. Other than SB, B. sorokiniana is also responsible for seedling

blight, common root rot, head blight and black point in wheat (Al-

Sadi, 2021). No positive association was found among spot blotch,

root rot and black point in wheat, indicating that different

mechanisms of host resistance exist in different plant parts

(Conner, 1990). Cross infection between different species is rarely

reported; one such example is isolates collected from wheat root were

able to infect barley (Valjavec-Gratian and Steffenson, 1997). A

number of articles have been published pertaining to pathogen

biology, disease management, breeding and molecular aspects,

including genome sequence of B. sorokiniana, gene/QTL mapping,

marker-assisted selection (MAS) and genomic selection. The present
Frontiers in Plant Science 02
work aims to summarize the most important findings, especially those

reported in recent years, in the area of SB management in wheat.
Pathogen biology

The pathogen produces olive brown mycelia and light grayish

colonies on potato dextrose agar (PDA) medium at early stage, which

turns into black at later stage. Conidia are brown colored, elliptical,

straight or curved multiple celled with 3-9 septa tapering at the ends,

measuring 10-28 × 40-120 µm (Acharya et al., 2011). Variability

under natural conditions among the B. sorokiniana isolates is

sufficiently high (Sultana et al., 2018). Bipolaris sorokiniana is the

asexual stage of the pathogen, which multiplies mostly through

conidia. Its sexual stage has not been reported in natural conditions

except in Zambia, due to a lack of sexual compatibility between the

opposite mating (A, a) types. Under controlled conditions, sexual

spores of B. sorokiniana were isolated from barley (Zhong and

Steffenson, 2001) and recently from wheat in Bangladesh (Sultana

et al., 2018).

The fungus can produce toxins like helminthosporol and hydrolytic

enzymes that trigger pathogenesis. Prehelminthosporium is the most

abundant and active compound produced by B. sorokiniana, which

damages membrane permeability and affects mitochondrial oxidative

phosphorylation and chloroplast photophosphorylation (Kumar et al.,

2002). A necrotrophic effector gene ToxA interacts with the

susceptibility gene Tsn1 in wheat to initiate disease development

(McDonald et al., 2017). ToxA was initially identified in P. tritici-

repentis and then in Parastagonospora nodorum, but molecular

evidence indicated that the gene in the former was acquired from the

latter through horizontal gene transfer (Friesen et al., 2006). ToxA was

found in B. sorokiniana populations from Australia (McDonald et al.,

2017), USA (Friesen et al., 2018), India (Navathe et al., 2019b) and

Mexico (Wu et al., 2020), with various occurrence frequencies, from

10.2% in Mexico to 86.7% in USA.

Molecular markers may be useful to detect the pathogen on wheat

plants before the appearance of visible symptoms, as well as on

alternative hosts and volunteer plants. A sequence characterized

amplified region (SCAR) marker SCARBS600 was developed to

diagnose B. sorokiniana (Aggarwal et al., 2011). Alternatively, DNA

sequence of ribosomal internal transcribe spacer (ITS), b-tubulin gene
and translational elongation factor 1-a (EF-1a) can also be used to

diagnose this pathogen, as did in a study to detect B. sorokiniana in

volunteer plants in China (Sun et al., 2015). Using universal rice

primers (URP), Aggarwal et al. (2010) successfully grouped 40 B.

sorokiniana isolates from different geographical origins of India. High

level of genetic diversity among the isolates from Brazil and Mexico

was reported using UPR markers (Mann et al., 2014).

Draft genome sequences of eight virulent accessions of B.

sorokiniana from India, Australia, USA and China are currently

available (https://www.ncbi.nlm.nih.gov/data-hub/genome/?taxon=

45130). A highly virulent isolate BS_112 (GenBank accession

number KU201275) from India has a genome size of 35.64 Mb and

10,460 genes were predicted with an average gene length of 435-545

bp and gene density of 250-300 genes/Mb (Aggarwal et al., 2019). A

phylogenetic analysis was carried out among 254 isolates of B.

sorokiniana with global origin using gene sequences of ITS, TEF-1
FIGURE 1

Worldwide distribution of spot blotch of wheat caused by Bipolaris
sorokiniana.
FIGURE 2

Lesions of spot blotch on infected leaves and plants.
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and GAPDH, and the results indicated the presence of a broad and

geographically undifferentiated global population (Sharma

et al., 2022).
Biochemical and molecular events
associated with SB infection

Bipolaris sorokiniana initially has a biotrophic phase represented

by the epidermal invasion and fungal hyphal growth, followed by the

necrotrophic phase in the mesophyll cells (Kumar et al., 2002). The

germinating conidia penetrates the cuticle and epidermis of wheat

plant with the help of an appressorium at its germinating tube, getting

entered mostly through the anticlinal cell walls. The levels of

sesquiterpene molecule ‘prehelminthosporol’ increases in the

extracellular matrix of the cell at the site of apposition, helping

pathogen to intrude further into the cell (Jansson and Akesson, 2003).

The first toxin compound known to confer virulence to B.

sorokiniana was named ‘Victoxinin’ and the second one was

‘sorokinianin’. Another toxin isolated and characterized was

‘bipolaroxin’, which was again structurally a sesquiterpene and had

a role in pathogenicity and host selectivity (Jahani, 2005).

Helminthosporol was found to enhance the susceptibility of

genotypes like Sonalika and CIANO T79. However, it is important

to note that helminthosporol and its derivatives are not solely

responsible for deciding the susceptibility of a genotype. A

multitude of other factors like cell wall apposition, cuticle thickness,

leaf anatomy, pathogen specificity, host defense responses etc., are

also involved in the pathosystem, making both resistance/

susceptibility of the host and virulence/avirulence of the pathogen

(Ibeagha et al., 2005; Jahani et al., 2014).

For initial invasion, B. sorokiniana produces various cell wall

degrading enzymes like glucosidase, cellulases, pectinases, xylanase.

Endopolygalacturonase (EPG) loosens the cell wall by cleaving a-
(1!4) linkages of the homogalacturonan, an important constituent of

the middle lamella of the cell wall (Ridley et al., 2001; Janni et al.,

2008). To protect the host cell from EPG, plant cell produces

polygalacturonase inhibiting protein (PGIP), which elicits the

defense response of a plant by accumulating oligogalacturonides

(Ridley et al., 2001). PGIPs have a proven role against the fungal

colonization in many dicot species as well as wheat plant against

Bipolaris (Kemp et al., 2003).
Epidemiology and host range

Generally, temperature between 16-32°C enables SB development

(Acharya et al., 2011), and in Indian subcontinent, the disease

predominantly spread when temperature exceeds 26°C as it favors

heavy sporulation (Chaurasia et al., 2000). Teleomorph develops in a

range of 16-24°C with the optimum temperature of 20°C and can

survive up to seven months under natural conditions in Zambia;

while the anamorph can survive sufficiently large range of

temperature from 4-36°C (Duveiller and Sharma, 2009). High

temperature and high relative humidity enhance disease severity, SB

outbreak in Brazil occurred when the leaves remain wet for >18 hrs in

a day with a mean temperature of >18°C (Reis, 1991). In EGP, leaf
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wetness period >12hrs due to rainfall or dew coinciding with high

temperature and humidity are believed to favor the onset of infection

(Duveiller et al., 2005). In addition, delayed sowing of wheat due to

the rice-wheat cropping system causes yield loss due to terminal heat

stress (Hasan et al., 2021; Narendra et al., 2021); besides, high residual

soil moisture and increased duration of leaf wetness due to foggy

weather can also increase the disease severity (Duveiller, 2004;

Duveiller et al., 2005). The waterlogged condition due to flooding

in the Ganges belt sharply declines the conidia viability, and B.

sorokiniana conidia isolated from soil after August, the monsoon

month with high rainfall, becomes non-pathogenic (Pandey et al.,

2005). This in turn implies that seeds might be the main source of

inoculum in EGP.

SB is a polycyclic disease with the initial sources of inoculum

being contaminated seeds, infected soil, straw, volunteer plants and

secondary hosts. B. sorokiniana has a large host range, and more than

65 graminaceous hosts have been identified in China (Chang andWu,

1998). Among the cereals, hexaploid wheat and barley are most

common hosts, along with durum and emmer wheat, triticale, oats,

rice, rye, maize, pearl millet, foxtail millet and several grass species

like Phalaris minor, Agropyron pectinatum, A. repens, Festuca spp.

(Gupta et al., 2017). A list of plant species that harbors B. sorokiniana

is given in Table 1. The three most common species, Setaria glauca,

Echinochloa colonum and Pennisetum typhoids act as a natural harbor

of B. sorokiniana in EGP (Pandey et al., 2005). In rice-wheat cropping

system, rice plants may serve as a host for the pathogen (Acharya

et al., 2011); but in eastern India the source of primary inoculum is

still debatable, with infected seeds and weeds being the most probable

inoculum sources (Neupane et al., 2010).
Disease management strategies

Management of SB through resistant varieties is the most

economical and environment-friendly approach, which, however, is

compromised by a lack of highly resistant varieties. Under this

circumstance, cultivation of resistant varieties may be supplemented

with other strategies like adjusting sowing time and fungicides

application to reduce the SB severity in disease prone areas. Details

of these strategies are described below.
Chemical control

Seed treatment is always useful to avoid the introduction of

additional inoculum. Seed treatment with carboxin or thiram can

effectively reduce the load of primary inoculum, especially for seeds

with more than 20% infection rate (Mehta et al., 1992). However, seed

treatment alone cannot guarantee low spot blotch infection in field

(Singh et al., 2014) and foliar fungicidal application is often

indispensable. Triazole fungicides like propiconazole, tebuconazole,

flutriafol, iprodione, prochloraz, and triadimenol are effective in SB

management, e.g., application of Opus (epoxiconazole) significantly

reduced the disease severity and maintained it below 10% (Sharma

and Duveiller, 2006). In addition, application of Carbendazim and

Azoxystrobin has also shown efficacy in controlling the disease

(Navathe et al., 2019a). Applying both seed treatment and foliar
frontiersin.org
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spray can further reduce the disease, especially when the latter is

conducted twice, e.g., upon the appearance of initial infection

symptom and 10-20 days later (Singh et al., 2014; Navathe et al.,

2019a). Systemic fungicides are more effective than contact

fungicides, but the recommended dose should be strictly followed

to avoid the emergence of resistant pathotypes against fungicides.

Despite its effectiveness in SB management, fungicidal application

increases the cost of cultivation and brings environmental

hazardousness. An estimated cost of 153.5 million AUD including

application cost is required for fungicides to control wheat diseases in

Australia (Murray and Brennan, 2009). Besides, excessive use of

systemic fungicides may lead to changes in pathogenic virulence

and development of resistance against fungicides. Fungicide

resistance has been reported for leaf blight related pathogens P.

tritici-repentis causing tan spot (Sautua and Carmona, 2021). This

is due to the directional selection on pathogen population for

resistant pathotypes.

Poor nutrient management is reported to be associated with higher

SB infection (Sharma and Duveiller, 2004). Appropriate nitrogen

application reduces SB infection, and balanced application of nitrogen

along with phosphorus and potassium can further reduce SB severity

(Sharma et al., 2006a). Exogenous use of silicon significantly reduces SB

severity by increasing the incubation period of the pathogen in wheat

(Domiciano et al., 2010). Similarly, application of silver nanoparticles

significantly reduced SB infection in wheat, with the induced lignin

deposition in vascular bundles (Mishra et al., 2014).
Cultural practices

Crop rotation is an effective practice for minimizing the primary

inoculum load of B. sorokiniana in wheat, and the rotation systems of

wheat-rice, wheat-oat, wheat-sunflower, and wheat-soybean may be

adopted instead of wheat monoculture. Crop rotation provides time

to decompose the infected stubble in the field, which helps in

improving soil health. Crop residue burning reduces inoculum load

up to 90%; but is associated with environmental hazardousness.

Alternatively, tillage can be adopted to minimize the load of
Frontiers in Plant Science 04
primary inoculum from the infected stubble. But this may delay the

sowing of wheat crop particularly in rice-wheat cropping system,

exposing wheat to SB conducive conditions. Zero tillage, minimum

tillage or use of happy seeder are alternatives to traditional tillage

practices in rice-wheat cropping system (Acharya et al., 2011). Zero

tillage facilitates the sowing 10-15 days earlier which helps in escaping

the terminal heat stress and results in yield gain by 10-25% in EGP

(Joshi et al., 2007c; McDonald et al., 2022). Early sowing is effective in

reducing SB, subjected to selection of suitable variety for early sowing

as 1) the genotypes must have capacity to tolerate high temperature at

early crop growth stage; 2) proper management of foliar blight

diseases; as sometimes higher leaf bight incidence was observed

upon early sowing due to high residual moisture and humidity

(Duveiller, 2004). Therefore, judicial selection of resistant variety is

required to minimize the trade off in yield gain by early sowing and

higher incidence of leaf blight. In a study, PBW 343, HUW 234 and

HUW 468 were found suitable for growing under zero tillage practices

(Joshi et al., 2007a).
Disease resistance

Growing resistant variety is the most effective method of managing

crop disease. It is noteworthy that commercial varieties are moderately

resistant to susceptible, and such varieties could be heavily infected

under SB conducive environment. An early study by Sharma and Dubin

(1996) showed increased resistance using multiline mixture resulted in

reduction of area under disease progress curve (AUDPC) up to 57% and

increased yield up to 8.6% than the component lines. Evaluation of

wheat germplasm under different agro-climatic conditions has led to the

identification of resistant genotypes. Genotypes SW 89-5193, SW 89-

3060 and SW 89-5422 were resistant with 3.9, 2.6 and 3.5% reduction in

grain weight, respectively, due to HLB, compared to 33% and 27.6% loss

in susceptible cultivars BL 1135 and Sonalika, respectively (Sharma et al.,

2004a). Sharma et al. (2004b) reported that SW 89-5422, Yangmai-6,

Ning 8201, Chirya 7, Chirya 1 and CIGM90.455 were HLB resistant.

These genotypes have been used in developing resistant lines.

Furthermore, increasing the level of resistance in new varieties will be
TABLE 1 Host species of B. sorokiniana (Modified from Manamgoda et al., 2014).

Family Species
group

Species

Poaceae Cultivated
species

Triticum aestivum, T. durum, Hordeum vulgare, Secale cereale, Tribulus terrestris, Zea mays, Oryza sativa, Eleusine coracana

Wild
species
and
grasses

Aegilops cylindrica, Agropyron buonapartis, A. ciliare, A. cristatum, A. distichum, A. repens, A. trachycaulum var. trachycaulum, A. trachycaulum var.
unilaterale, Agrostis capillaries, A. gigantea, A. palustris, Agrostis sp., A. stolonifera var. palustris, Alopecurus pratensis, Aneurolepidium chinense,
Arrhenatherum elatius, Avena byzantina, A. sativa, Brachiaria plantaginea, Bromus inermis, B. japonicus, B. marginatus, B. uniloides, B. willdenowii,
Buchloe dactyloides, Chloris virgata, Cynodon dactylon, C. transvaalensis, Dactylis glomerata, Dendrobium sp., Digitaria sanguinalis, Echinochloa crus-
galli, Ehrharta calycina, E. indica, Elymus breviaristatus, E. canadensis, E. riparius, E. sibiricus, E. trachycaulus, E. virginicus, Elytrigia intermedia, E.
repens, Eragrostis cilianensis, Festuca arundinacea, F. ovina, F. pratensis, F. rubra, Holcus lanatus, Hordeum brevisubulatum, H. jubatum, H.
leporinum, H. murinum, H. sativum, Hystrix patula, Leymus angustus, L. cinereus, Lolium multiflorum, L. perenne, Microlaena stipoides,
Microstegium vimineum, Miscanthus sinensis var. zebrinus, Panicum dichotomiflorum, P. lacromanianum, P. virgatum, Paspalum notatum,
Pennisetum clandestinum, Phalaris arundinacea, P. canariensis, Phleum pratense, Phleum sp., Poa annua, P. pratensis, P. sylvestris, P. trivialis,
Psathyrostachys juncea, Roegneria hirsuta, Saccharum sp., Secale montanum, Setaria viridis, Sporobolus vaginiflorus, Stenotaphrum secundatum,
Tribulus terrestris, T. secale, Triticum sp., T. sphaerococcum, T. vulgare, Zizania aquatica, Z. palustris

Non-
poaceae

- Allium sp., Helianthus annuus, Calluna vulgaris (Alliaceae), Taraxacumkok-saghyz (Compositae), (Ericaceae), Cicer arietinum, Lablab purpureus,
Medicago sativa, Phaseolus vulgaris (Fabaceae), Linum usitatissimum (Linaceae), Lythrum salicaria (Lythraceae) Broussonetia papyrifera (Moraceae),
Fagopyrum esculentum (Polygonaceae), Amaranthus viridis, Glycine max.
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TABLE 2 QTLs/MTAs (PVE of ≥10%) mapped on different chromosomes for spot blotch resistance using linkage mapping and GWAS.

Chromosome Flanking markers/MTAs QTL interval (cM)/Marker position (bp) PVE (%) References

Linkage mapping

4B 985312 - 1241652 39.5 – 41.5 13.7 (Gahtyari et al., 2021)

5D 1058378–1048778 38.5–51.5 15.0

4D BS00036421_51-1119387 70.49–90.31 12.2 (Roy et al., 2021a)

5A 1067537-2257572 331.49–332.06 10.3

5A 2341646-Vrn-A1 44.2-48.6 19.4 (He et al., 2020)

5A 987242-IWA4449 174.6-188.2 25.6

5B 996745-10592866 73.9-77.7 17.2

5A Vrn-A1-3064415 175.9–179.4 12.5 (Singh et al., 2018)

5A 1135154-2260918 147.5–148.4 25.1

7B wmc758-wmc335 8.6 11.4 (Singh et al., 2016)

Sb2/QSb.bhu-5B/5BL Xgwm639-Xgwm1043 0.62 42.4 (Kumar et al., 2015)

QSb.cim-3B 990937|F|0–1123330|F|0 2.7 17.6 (Zhu et al., 2014)

QSb.cim-5A 1086218|F|0–982608|F|0 12.1 12.3

QSb.bhu-2A/2AS Xgwm425-Xbarc159 8.5 15.2 (Kumar et al., 2010)

QSb.bhu-2B/2BS Xgwm148-Xbarc91 21.2 23.7

QSb.bhu-2D/2DS Xgwm455-Xgwm815 9.0 10.7

QSb.bhu-5B/5BL Xgwm067-Xgwm213 9.0 10.7

QSb.bhu-7B/7BS Xgwm263-Xgwm255 5.0 10.2

QSb.bhu-7D/7DS Xgwm111-Xgwm1168 3.0 39.2

QSb.bhu-2A/2AL Xbarc353-Xgwm445 37.4 14.8 (Kumar et al., 2009)

QSb.bhu-2B/2BS Xgwm148-Xgwm374 15.0 20.5

QSb.bhu-5B/5BL Xgwm067-Xgwm371 13.2 38.6

QSb.bhu-6D/6DL Xbarc175-Xgwm732 30.1 22.5

Genome wide Association studies (GWAS)

2A AX-94710084 764783606 31.3 Kumar et al., 2022

2A AX-94865722 765138703 32.0

2A AX-95135556 764819041 31.7

2B AX-95217784 800119910 30.1

2D AX-94901587 640297481 31.3

3B AX-94529408 719773163 31.8

4D AX-94560557 442164847 31.4

Q.Sb.bisa-1A S1A_497201550 & S1A_497201682 497200000 18.8 Tomar et al. (2021)

Q.Sb.bisa-1B S1B_636840957 636840000 16.3

Q.Sb.bisa-1D S1D_89835681 89840000 24.0

Q.Sb.bisa-2A S2A_703111105- S2A_704446408 703110000-704450000 22.8

Q.Sb.bisa-2B S2B_419320960-S2B_423836280 419320000-423840000 30.7

Q.Sb.bisa-4A S4A_725538462 & S4A_725660945 725540000-725660000 23.0

Q.Sb.bisa-5B S5B_682958475 & S5B_683240735 682960000-683240000 31.4

Q.Sb.bisa-6D S6D_6395796-S6D_7194112 640000-7190000 20.2

(Continued)
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effective in managing SB in disease prone areas. Near immune line has

been developed from the crosses between resistant genotypes (Kumar

et al., 2019); yet further field evaluations are needed to confirm the

stability of their resistance as well as their performance in other traits for

possible release as varieties.
Genetics of disease resistance

Quantitative nature of SB resistance is predominantly reported

in wheat (Singh et al., 2018; Bainsla et al., 2020; He et al., 2020), but

reports are also available for major gene(s) governing SB resistance.

Single dominant gene was postulated in the resistant genotypes

Chirya 3 and MS#7 when they were crossed with common

susceptible parent BL1473 (Neupane et al., 2007). Likewise, single

dominant gene was reported in the resistant genotype DT 188,

whereas digenic dominant resistance was reported in the lines

E5895, HD 1927 and Motia (Adlakha et al., 1984). More genes

were estimated in other resistant varieties, e.g., 2-3 genes in Gisuz,

Cugap, Chirya 1 and Sabuf (Velazquez-Cruz, 1994), and three genes
Frontiers in Plant Science 06
in Acc.8226, Mon/Ald and Suzhoe#8 (Joshi et al., 2004b).

Populations in these two studies have already began to show a

pattern similar to polygenic segregation, implying that most

resistant sources are governed by multiple genes with minor

effects, which increases the chances of deriving transgressive

segregants in the progenies (Singh et al., 2018; He et al., 2020).

The magnitude of heritability (h2) for SB resistance varied greatly in

different studies, e.g., from 0.21 to 0.64 in Sharma et al. (2006b) and

0.85 to 0.89 in He et al. (2020), whereas most studies exhibited

moderate to high heritability, providing a good opportunity to select

resistant genotypes in breeding programs.
Detection of quantitative trait loci (QTL)

Quantitative disease resistance slows down the disease

development by increasing the latency period, though, does not

always show a clear-cut difference from qualitative resistance

conferred by gene-for-gene interaction (Krattinger and Keller,

2016). Most of the QTLs for SB resistance were detected using bi-
TABLE 2 Continued

Chromosome Flanking markers/MTAs QTL interval (cM)/Marker position (bp) PVE (%) References

3A 1085203 595935042 17.7 (Bainsla et al., 2020)

3A 1220348 598916422 13.2

4A 991620 658343324 12.3

5A 100177527 3319047 17.6

5A 5411867 586600348 17.7

5A 998276 569660176 10.6

1A S1A_582293281 582293281 10.0 (Jamil et al., 2018)

1D S1D_479711997 479711997 11.0

2A S2A_16824871 16824871 10.0

2D S2D_389463371 389463371 10.0

3A S3A_180419285 180419285 13.0

3A S3A_741852990 741852990 10.0

4B S4B_554842477 554842477 13.0

5A S5A_50162259 50162259 11.0

5B S5B_501480761 501480761 10.0

5B S5B_502451973 502451973 10.0

5B S5B_503326206 503326206 10.0

5B S5B_504309131 504309131 12.0

5B S5B_508031185 508031185 10.0

5B S5B_513590441 513590441 11.0

5B S5B_528990456 528990456 12.0

6B S6B_9296088 9296088 12.0

7A S7A_483878120 483878120 10.0

7B S7B_749474154 749474154 14.0
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parental mapping population (Table 2), and four major QTLs have

been designated as Sb1 through Sb4. Sb1was mapped on chromosome

arm 7DS, being co-located with Lr34 (Lillemo et al., 2013) that has

been cloned and encodes an ABC (ATP binding cassette) transporter

(Krattinger et al., 2009). Sb2 was detected on chromosome arm 5BL

(Kumar et al., 2015), and proposed to be the same locus earlier

mapped as QSb.bhu-5B in Yangmai 6 (Kumar et al., 2009). Later, Sb3

was identified in a winter wheat resistant line 621-7-1, being located

on chromosome arm 3BS flanked by the markers Xbarc133 and

Xbarc147 (Lu et al., 2016). Recently, Sb4 was detected and fine

mapped on chromosome arm 4BL flanked by the markers YK12831

and YK12928 (Zhang et al., 2020). Besides, a necrosis insensitivity

gene tsn1 was mapped on 5BL associated with ToxA insensitivity, and

selection for genotypes with tsn1 may confer resistance against B.

sorokiniana isolates with ToxA (Navathe et al., 2019b).

Genome wide association studies (GWAS) have been widely

performed to detect SB resistance QTLs in wheat. In a study using

566 spring wheat landraces, Adhikari et al. (2012) reported four

genomic regions on 1A, 3B, 7B and 7D that were associated with SB

resistance. One of the markers, wPt-1159 on 3B, was also associated

with resistance to powdery mildew, yellow rust and grain yield

(Crossa et al., 2007), and thus could be more useful in breeding. A

GWAS on 528 spring wheat landraces with global origin reported 11

significant markers on chromosomes 1B, 5A, 5B, 6B and 7B with

phenotypic variation explained (PVE) ranging from 0.14 to 5.80%

(Gurung et al., 2014). Recently, 25 significant marker-trait

associations (MTA) were identified in a panel of 301 Afghan wheat

lines, being located on chromosomes 1A, 1B, 1D, 2B, 2D, 3A, 3B, 4A,

5A, 5B, 6A, 7A, and 7D with PVE ranging from 2.0-17.7% (Bainsla

et al., 2020). Major challenges are faced by wheat breeders due to most
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identified QTLs/MTAs are of minor effects and have no diagnostic

markers. Till date, diagnostic markers are available only for Sb1 (Lr34)

(Krattinger et al., 2009) and tsn1 (Faris et al., 2010). A list of QTLs/

MTAs for SB resistance is shown in Table 2, and an integrated map

indicating major genes, QTLs and MTAs on different wheat

chromosomes is shown in Figure 3.
Traits associated with SB resistance

Association of SB resistance with plant height and heading date

has been well established, with high stature and late maturity often

associated with low SB severity (Singh et al., 2015; He et al., 2020).

This is mostly due to disease escape mechanisms; though, the

possibility of tight linkage of Rht and Vrn genes with SB resistance

genes cannot be ruled out (Zhu et al., 2014; He et al., 2020).

Nevertheless, such linkages can be broken, as early and short lines

with good SB resistance have been identified in some studies (Joshi

et al., 2002; Sharma and Duveiller, 2004; Joshi et al., 2007d). Such

early lines are especially important for SA, where terminal heat stress

and SB are major yield constraints.

Leaf orientation influences the plant micro-climate, particularly

temperature and humidity, through regulating evapotranspiration,

and germplasm with erect to semi-erect leaves often showed good

SB resistance (Joshi and Chand, 2002). Leaf tip necrosis associated

with SB resistance serves as a good morphological marker (Joshi

et al., 2004a). Stay-green (SG) genotypes are photosynthetically

more active under biotic and abiotic stress conditions, and a

positive correlation of SG with SB resistance was reported (Joshi

et al., 2007b).
FIGURE 3

An integrated map showing genes and QTLs for SB resistance and their flanking markers (green color).
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Breeding for disease resistance

Sources of SB resistance

Green revolution has resulted in the development of cultivars of

semi-dwarf, fertilizer responsive and wider adaptability, enabling the

cultivation of wheat in non-traditional areas, including the humid and

hot regions with severe SB epidemics. Significant genetic variation for

SB resistance was observed among the genotypes evaluated in India,

Nepal and Bangladesh (Sharma et al., 2004a; Joshi et al., 2007d). Large-

scale SB screening programs were initiated in the late 1980s when the

disease became a major threat to wheat production in SA (Duveiller

and Sharma, 2012). Initially, resistant sources were identified from

Latin American particularly Brazilian germplasm like BH 1146, CNT 1,

Ocepar 7, as well as from China like Shanghai 1 to 8, Suzhoe 1 to 10,

Wuhan 1 to 3, Ning 8201, Longmai 10 and Yangmai #6 (van Ginkel

and Rajaram, 1998). Using such lines as resistant donors, promising

genotypes were developed at CIMMYT-Mexico, which exhibited good

resistance against SB when tested in Bolivia, Nepal, India and

Bangladesh (Sharma et al., 2004b; Sharma and Duveiller, 2007).

Recent large-scale germplasm screening activities involve a work on

screening 19,460 accessions from Indian national gene bank under field

conditions, and 868 accessions were found to be resistant to moderately

resistant (Kumar et al., 2016). Further screening of unexplored

germplasm from gene bank has identified near immune response in

the genotypes EC664204, IC534306 and IC535188 (Kumar et al., 2022).

Wild relatives are a rich source of SB resistance. The 2NS

chromosome segment transferred from Ae. ventricose has been

associated with resistance against wheat blast (Singh et al., 2021;

Roy et al., 2021b), rusts (Helguera et al., 2003), cereal cyst nematode

(Jahier et al., 2001) and lodging (Singh et al., 2019), and recently it was

also associated with SB resistance (Juliana et al., 2022b). Thinopyrum

curvifolium (Mujeeb-Kazi et al., 1996; van Ginkel and Rajaram, 1998)

and synthetic hexaploid wheat derived from crosses between T.

turgidum and Aegilops tauschii (Mujeeb-Kazi et al., 2007) serve as

additional resistant sources. Good examples are Chirya genotypes

derived from wide hybridization and exhibited good SB resistance,

like Chirya 1, Chirya 3 and Chirya 7 (Sharma et al., 2007; Joshi et al.,

2007b). High proportion of SB resistance was reported among the

synthetic hexaploids evaluated under controlled conditions (Lozano-

Ramirez et al., 2022). However, genotypes with high level of field SB

resistance are scarce, a major limitation in the progress of

breeding program.
Development of resistant genotypes

Breeding for resistant genotypes through crossing programs were

started in 1980s in CIMMYT, Mexico and still this center is playing an

important role in global SB resistance breeding. Ever since 2009, a

special nursery was formed as CSISA-SB (presently known as

Helminthosporium Leaf Blight Screening Nursery, HLBSN),

comprising high yielding SB resistant genotypes for testing over the

different countries in SA, Africa and Latin America (Singh et al.,

2015). Testing of the 4th CSISA-SB nursery at seven locations in
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Mexico, India and Bangladesh identified two stably resistant lines

(CHUKUI#1 and VAYI#1) consistent over the locations (Singh

et al., 2015).

The progress in achieving genetic gain for SB resistance is slow,

due to reasons like quantitative inheritance, moderate heritability,

strong genotype × environmental interaction, and high variability of

the pathogen over time. Phenotypic selection is often associated with

confounding traits, and molecular markers can be used to assist the

pyramiding of resistance QTLs and selection for SB resistant

genotypes (He et al., 2020). Superior genotypes have been

developed from a marker assisted backcross program via

transferring Qsb.bhu-2A and Qsb.bhu-5B from Chirya 3 and

Qsb.bhu-2A from Ning 8201 into the genetic background of HUW

234 (Vasistha et al., 2015). Increased resistance up to near immunity

could be obtained by stacking effective QTLs from multiple donors

(Kumar et al., 2019). However, such QTL stacking could be

compromised by QTL × QTL interaction, as demonstrated by

Kumar et al. (2019) in a cross between “Yangmai#6” and

“Chirya#3”, where QTLs on 6D and 7D have a masking effect on

each other. This highlights the importance of understanding the

mode of action (additive, dominant, or epistatic) of the QTLs to be

utilized in breeding.

Genomic selection can improve the efficiency of breeding

program by reducing phenotyping cost, time and increasing

selection intensity and genetic gain. Studies on genomic selection

for SB in wheat are limited, and a successful example was reported by

Juliana et al. (2022a), where genomic selection showed significantly

higher accuracy than the fixed effect model using few selected

markers. However, there is a long way to go for genomic selection

to completely replace phenotypic selection in wheat breeding.
Biotechnological approaches

Gene silencing through RNAi is a powerful tool for controlling

insects, nematodes, viruses, fungal diseases like powdery mildew, and

rusts (Qi et al., 2019). Utilization of RNAi in functional genomic analysis

in B. sorokinianawas reported by Leng et al. (2011), and it can be further

explored in SB pathogenesis and resistance breeding in wheat.

Liu et al. (2012) developed a new mapping strategy combining

bulk segregant analysis and RNA-Seq called ‘BSR-Seq’, where

transcripts are sequenced from extreme bulks, being a potential

technique for marker discovery in large polyploid genome like

wheat. Using BSR-Seq, five SB-resistance associated transcripts were

identified on 5B and 3B chromosomes and their potential role in SB

resistance were inferred (Saxesena et al., 2022).

Transgenic lines expressing foreign genes proved to be a potential

approach to control insect and diseases in several crop plants.

Examples include the heteroexpression of PvPGIP2 (Janni et al.,

2008) and overexpression of TaPIMP1 and TaPIMP2 (Zhang et al.,

2012; Wei et al., 2017) in transgenic wheat lines that enhanced the

resistance against B. sorokiniana. However, government regulations

on transgenic development are major concerns for researchers.

Additional techniques like genome editing (Zhang et al., 2017)

and Eco-Tilling (Ajaz et al., 2021) have been increasingly utilized in
frontiersin.org

https://doi.org/10.3389/fpls.2023.1098648
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Roy et al. 10.3389/fpls.2023.1098648
wheat, having great potential to contribute to SB resistance breeding

in near future.
Conclusion

Spot blotch is a disease of concern in warmer wheat growing areas of

South Asia, Latin America and Africa. Most of the commercially grown

cultivars are moderately resistant to susceptible and are subjected to

significant yield losses under conducive climatic conditions. An

integrated disease management strategy involving cultural practices,

chemical control, resistant cultivars, etc., is needed to combat the

disease. In addition, modern biotechnology brings new tools for the

rapid and efficient development of resistant cultivars in wheat.
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