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Abstract: Sen2-Agri is a software system that was developed to facilitate the use of multi-temporal
satellite data for crop classification with a random forest (RF) classifier in an operational setting.
It automatically ingests and processes Sentinel-2 and LandSat 8 images. Our goal was to provide
practitioners with recommendations for the best sample size and composition. The study area was
located in the Yaqui Valley in Mexico. Using polygons of more than 6000 labeled crop fields, we
prepared data sets for training, in which the nine crops had an equal or proportional representation,
called Equal or Ratio, respectively. Increasing the size of the training set improved the overall
accuracy (OA). Gains became marginal once the total number of fields approximated 500 or 40 to
45 fields per crop type. Equal achieved slightly higher OAs than Ratio for a given number of fields.
However, recall and F-scores of the individual crops tended to be higher for Ratio than for Equal.
The high number of wheat fields in the Ratio scenarios, ranging from 275 to 2128, produced a more
accurate classification of wheat than the maximal 80 fields of Equal. This resulted in a higher recall for
wheat in the Ratio than in the Equal scenarios, which in turn limited the errors of commission of the
non-wheat crops. Thus, a proportional representation of the crops in the training data is preferable
and yields better accuracies, even for the minority crops.

Keywords: crop classification; random forest; machine learning; sample size; agriculture; remote sensing

1. Introduction

The launch of the Sentinel-2 satellites in 2016 and 2017 has opened new avenues for
crop identification based on optical satellite data [1]. They acquire multi-spectral data
at a ground sampling distance of 10 m and have a revisit frequency of five days at the
equator [2]. The resulting time series of images should make it possible to identify crops
early in the season and to increase general classification accuracy [3]. Using a time series
of images poses a new challenge: the large number of images that need to be handled
calls for an automated pre-processing system. Sen2-Agri addresses this need [4]. It can
be used to create a cropland mask and, in a second step, identify crop types [5]. Another
software tool, called Sentinels for Common Agricultural Policy (Sen4CAP), uses the same
random forest (RF) classification engine [6]. The RF algorithm [7] is fast and relatively
insensitive to overfitting [8]. Unlike other machine-learning algorithms, RF does not need
much finetuning of hyperparameters and can handle simple and complex classification
functions [9,10].

Machine-learning algorithms are generally perceived to be data hungry, i.e., the more
training data that are available, the better the resulting classification accuracies [11]. Based
on expert knowledge, the developers of Sen2-Agri generally recommend that for a given
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stratum, the user provides 75–100 samples for each main and 20–30 samples for each minor
crop [5]. Considering the 75% split of the samples into training and validation pixels, this
rule of thumb is close to the 50 sample units (pixels, clusters of pixels, or polygons) per
class suggested in other studies [12,13]. However, Congalton [12] also pointed out that
conventional statistical approaches to calculate sample sizes based on an approximation of
a binominal distribution are only valid to estimate the OA of a single category. They are not
appropriate to calculate the error matrix because they do not account for the confusion of
specific categories or crop types, as in this study. He concluded that “because of the large
number of pixels in a remotely sensed image, traditional thinking about sampling does not
often apply” and that a balance between what is statistically sound and what is practically
attainable must be found. Another approach has been to define the number of samples
needed per class as a function of bands used for the analysis. The general recommendation
was to use 10 to 30 times as many samples per discriminating waveband [14]. However,
using a machine-learning algorithm in combination with a Monte Carlo analysis for a
multi-temporal crop classification, Van Niel et al. [15] established that for their case study,
approximately 2 to 4 samples per discriminating waveband were sufficient to attain 95% of
the accuracy achieved with 30 samples. They further cautioned that, ultimately, the number
of samples needs to be determined by considering the complexity of the discrimination
problem. Based on an analysis of a binary classification, Waldner et al. [16] demonstrated
that the class proportions of the training data were more important for achieving a high
classification accuracy than the sample size.

Apart from government agencies, which use the data to produce crop statistics [17],
many other types of organizations collect crop type information. Disaster and relief or-
ganizations rely on them for assessing crop production prospects [5]. Policy planners
and researchers use them for technology targeting [18] or yield gap analyses for specific
crops [19]. The food processing industry tends to be interested in specific crops to forecast
the supply of inputs as early as possible and plan the logistics after harvest. Focusing
on just one crop versus everything else may also reduce the error rate in the training
data. It can be challenging to accurately identify all the crops, especially when doing a
wind-shield survey.

Most farming landscapes are dominated by few crops. If the training data are collected
in a random manner, the predominant crops will also be strongly represented, whereas
fewer fields of the minority crops will be collected [20]. This may, in turn, decrease their
classification accuracy, and the training data will most likely be imbalanced as well. The
marginal return (in terms of classification accuracy) of adding fields of dominant crop types
may diminish rather quickly. It might be better to pay more attention to the less dominant
crops to improve their classification accuracy. But this could lead to an overestimation
of the crops belonging to a minor class. Millard and Richardson [21] showed how the
change in the proportion of training samples affected the classification output and thus
introduced errors. Accordingly, Mellor et al. [22] reported that balanced training data, in
which the crops have a proportional representation, resulted in the lowest overall error
rates. However, they also noted that a sensible correction of imbalance can improve the
classification performance for “difficult” classes.

Careful preparation of the in situ data is a prerequisite for successful crop classification.
The general rule of thumb for machine learning is that 80–90% of the time is spent preparing
the data, and the remainder is used for classification, analysis and interpretation of the
results [23]. Hence, guidelines, not only for practitioners but also for researchers, are
needed to help them optimize the use of limited resources. Our paper will address the
following questions:

• Does a proportional or equal representation of each crop type in the training data
generate better classification results?

• What is the optimal number of training fields?
• How does classification accuracy change with time across the season?
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• What kind of accuracies can be achieved with a binary classification, in which one
focuses just on one crop vs. “everything else”?

In this paper, we first present the overall workflow (Section 2.1) and then explain
how we created the in situ data (Section 2.2). Next, we describe the Sen2-Agri system
(Section 2.3) and how we created different scenarios (Section 2.4) and naming conventions
(Section 2.5) to answer the above questions. The four questions are then used to structure
the Result and Discussion sections.

2. Materials and Methods
2.1. Overall Workflow

The workflow consisted of three main tasks, as shown in Figure 1:

1. Creation of the in situ data set consisting of more than 6000 crop fields.
2. Running of the Sen2-Agri system to access and process the Sentinel-2 data from the

Copernicus Open Access Hub. The RF classifier of Sen2-Agri was then trained with
specific input data for the various scenarios described in Section 2.4.

3. Application of the RF classifier to the validation data set to calculate classification
accuracies.
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Figure 1. Overview of the workflow.

2.2. Characteristics of the Study Region and In Situ Data Preparation

Our study region is located in the Northwest of Mexico, in the Yaqui Valley, where
farmers grow crops under irrigated conditions during the winter months. Wheat, the
dominant crop, is usually sown between mid-November and mid-December (Table 1).
However, some fields are sown as late as early January. Among the other eight crops
that will be referred to as minority crops in this study, maize and chickpea were the most
important ones. Sen2-Agri was developed with the primary goal of identifying major
annual field crops, although we also included some permanent crops such as asparagus,
alfalfa and pasture (grassland), as well as tree fruit and nuts, categorized as orchard. Alfalfa
and pasture were categorized as forage crop. The fields near the coast showed more
variability in the normalized difference vegetation index (NDVI) than those at a further
distance, presumably due to elevated levels of soil salinity [24]. However, we did not create
an additional stratum for those fields.
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Table 1. Summary of the labeled in situ data generated for the crop classification study in the Yaqui
Valley (Mexico) for the 2016–2017 growing season. The table shows the average area in hectares (ha)
and standard deviation (Std) of the fields of each crop type, as well as the growing period.

Croptype Number of Fields
Area Season

Remarks
ha Std Start End

Wheat 4291 12.4 8.6 November April/May
Maize 366 13.8 9.7 October/January April/June Anytime (>120 day crop)
Potato 105 11.3 9.5 November March
Dry bean 151 11.1 9.0 October May Anytime (90 day crop)
Chickpea 338 11.9 8.9 January May
Forage crop 166 7.3 6.2 Perennial
Vegetable 343 4.6 2.8 October May Anytime (~90 day crop)
Asparagus 131 5.3 2.6 Perennial
Orchard 193 8.8 7.1 Perennial

Total 6084

The focus of this study is on the identification of crops within known field boundaries.
Therefore, we did not generate a crop mask because any error in the crop mask would have
led to the omission of crop or inclusion of non-crop pixels. The planners of the Yaqui Valley
irrigation scheme had divided the land into blocks measuring 2 by 2 km. The blocks were
further subdivided into 40 lots, each measuring 10 ha. The blocks and lots were numbered
consecutively. At the beginning of the winter growing season, the irrigation district, called
Distrito del Riego del Rio Yaqui, requires each farmer to declare the type of crop they plan
to grow on each irrigated lot. Most farmers do not follow the initial lot boundaries any
more. Some lots were split up, whereas most were merged. If farmers had merged several
lots, they would use the number of their first lot as an anchor and also report the area of
the entire field, i.e., the merged lots, that were planted with the same crop. Based on the
farmer’s declarations, which include the crop type, block, lot and field size, the crop types
were then assigned to the field boundaries, which had been manually drawn beforehand,
using a Sentinel-2 image from 13 March 2017 as a background. This resulted in 6048 labeled
fields (Figure 2). The average area of a field was 11.5 ha. Subsequently, they were randomly
split into two sets: 80% of the fields of each crop type were set aside for training, and the
remaining 20% were used for independent validation of the classifications (Table 2). Thus,
all accuracy assessments were conducted against the same set of validation data. To reduce
the effects of mixed border pixels, we applied a 1-pixel (10 m) inner buffer to all fields that
were used for training but not for validation.

Table 2. Number of fields per crop type used for validation and calibration, as well as for the six
ratios (Scenario 1).

Crop Total Number
of Fields

20% for
Validation

80% for
Calibration

Ratio

0.64 0.31 0.18 0.12 0.1 0.08

Wheat 4291 858 3433 2128 1064 618 412 343 275
Maize 366 73 293 182 91 53 35 29 23
Potato 105 21 84 52 26 15 10 8 7
Dry bean 151 30 121 75 37 22 14 12 10
Chickpea 338 68 270 168 84 49 32 27 22
Forage crop 166 33 133 82 41 24 16 13 11
Vegetable 343 69 274 170 85 49 33 27 22
Asparagus 131 26 105 65 32 19 13 10 8
Orchard 193 39 154 96 48 28 19 15 12

Total 6084 1217 4867 3018 1509 876 584 487 389
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Figure 2. Overview of the study area located in the Yaqui Valley, Sonora, Mexico. The background
imagery is a Sentinel-2 scene from 23 December 2016, displayed as red, green and blue. Within
the area of interest, the boundaries of 6084 crop fields have been manually digitized. On the left
side, the 876 fields are shown that were used to train the random forest classifier for the scenario
Ratio-0.18, with a random seed of 0. The right side offers a more detailed view of the training and
other crop fields.

All in all, 12 images, acquired by Sentinel-2A for tile 12RXR between 13 November
2016, and 22 April 2017, could be used for the analysis. The acquisition dates are shown
in Figure 3, together with the dynamics of the NDVI [25] of the labeled fields across the
growing season.

2.3. Sen2-Agri Crop Classification System

Sen-Agri had been designed to run crop classifications in an operational manner [5]. It
automatically downloads the images for a defined area of interest (AOI) or accesses them
when set up in a cloud infrastructure; it masks out clouds and shadows and applies an
atmospheric correction using the MACCS ATCOR Joint Algorithm (MAJA) [26]. Masked-
out pixels are gap filled, based on a linear interpolation between cloud-free pixels of the
previous and subsequent image(s). This results in a series of images with a 10-day interval
spanning the entire growing season. For the crop classification, Sen2-Agri uses the 10 m
bands (2, 3, 4 and 8) of Sentinel-2, the 20 m red-edge bands (5, 6 and 7) and the SWIR band
(11), resampled to 10 m. In addition to the surface reflectance of the different bands, Sen2-
Agri calculates NDVI, the normalized difference water index (NDWI) [27] and brightness,
defined as the Euclidean norm of the surface reflectance values in bands 3, 4, 8 and 11.
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indicate the acquisition dates of the cloud-free Sentinel-2A images during the study period.

For the cropland and crop-type identification, the user needs to supply a shapefile
with polygons of the in situ data. If needed, it is possible to stratify the target area to
accommodate differences in climate, soil, or management practices. Although Sen2-Agri
requires the user to prepare the training data as polygons, it does the crop classification at
the pixel level. The in situ data typically represent entire crop fields. Sen2-Agri splits them
into a training and a separate, independent validation data set. The default split is 75% of
the fields of each crop type for training and 25% for validation. The system then puts all
the training pixels into one bag and the validation pixels into another. When drawing the
pixels from the training bag, it does not consider the crop type. This implies that the more
pixels of a given crop type are provided, the higher its chances of being used for training.
Having been developed for practitioners, the Sen2-Agri system is optimized for predefined
sequences of operations, and only a few intermediary products are stored to reduce the
required storage capacity.

Sen2-Agri can also process 30 m Landsat-8 images. However, we did not include them
because the fields of the minority crops tended to be small (Table 1), which would have
resulted in many mixed pixels. Relying on a toolbox did not allow us to test the behavior
of other classification algorithms, nor could we fine-tune the algorithm by optimizing
various parameters.
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2.4. Scenarios

To assess the impact of the size and composition of the training data on the resulting
classification accuracies, we tested different scenarios:

Scenario 1, called “Ratio”: Different ratios were randomly drawn from the training
data set, maintaining the proportional representation of the crop types. Based on the 80%
of the fields set aside for training, we tested the following ratios: 0.08, 0.10, 0.12, 0.18, 0.31
and 0.64. Thus, the smallest ratio (0.08) corresponds to 6.4% of the fields and the highest
ratio (0.64) to 49.6% of the fields of the study area. Potato with 105, and asparagus with
131 labeled fields, constrained the boundary for the lowest ratio that could be realistically
tested. The number of fields available for each crop type and ratio level is listed in Table 2.

Scenario 2, called “Equal”: In this scenario, each crop type was represented by the
same number of fields for the training of the classifier. We increased the number of fields
by 10, from 10 to 80, resulting in eight levels. For each level, the random selection of the
fields was made separately.

Scenario 3, called “In-season”: To determine how early and accurately crops can
be identified in the season, we ran Ratio-0.31 over four different periods, at monthly
increments. We had picked this ratio for the analysis because the results from Scenario 1
indicated that its classification accuracies were relatively stable and did not fluctuate much.
All four periods started in November and ended in January, February, March or April.

Scenario 4, called “Binary in-season classification”: To test the feasibility of focusing
on just one crop, we created two classes: (1) crop of interest; in this analysis, this was
either maize or wheat, and (2) all other classes merged into a single class, non-maize or
non-wheat, respectively. In addition, we wanted to assess how early in the season it would
be possible to identify either.

2.5. Nomenclature and Statistical Analyses

We used the following naming convention: a crop classification conducted for a
proportional representation of fields is called “Ratio” followed by the fraction of fields
used; e.g., “Ratio-0.08” stands for a proportional use of 8% of the fields of each crop type.
Likewise, “Equal-10” uses ten fields of each crop type. To smooth out the random variability
of the performances of each classifier, the treatments for scenarios Ratio and Equal were
run six times. Each run was initiated with a different random seed number.

All classification results reported in this paper are based on the same 20% of fields of
each crop type set aside initially for an independent validation of the classifications. We
used the standard confusion matrix to summarize the classification accuracies at the pixel
level. The following statistical parameters were calculated: precision, recall, F-score and
OA [28].

3. Results
3.1. Evolution and Dispersion of Crop-Specific NDVI over Time

The dynamics of NDVI distribution per crop vs. time during the investigation period
are shown in Figure 3. The two main crops, wheat and maize, indicate considerable
heterogeneity in NDVI during the late December and January period, presumably resulting
from a wide range in sowing dates. These two crops had similar NDVI development
patterns, although the plateau was more prolonged for maize. Most wheat fields had
reached senescence by late April, whereas most maize fields were still green. Forage fields,
which are being cut several times during the winter growing season, exhibited a wide range
of NDVI throughout the monitoring period. Asparagus, another permanent crop, had low
vegetation cover during its main harvest period in November and December. For orchards,
the average NDVI remained stable. Most dry bean fields were sown in October and reached
maturity in January. However, the graph also shows a few fields that were sown as late as
January. Chickpea fields were sown last, in late January. There was considerable spread
during the planting and harvest periods among the potato fields. The majority was planted
in December and got harvested by March. The vegetable class, which was quite diverse
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and consisted of different types of tomato, broccoli, pumpkin, salads and others, had no
uniform development either.

3.2. Classification Results for Ratio and Equal

Our data set allowed us to investigate the limits of accuracy that can be obtained by
using a relatively large number of fields for the training of the RF classifier. As expected,
using more fields resulted in higher OAs for both Ratio and Equal (Figure 4). The three Ratio
treatments with the highest number of fields, Ratio-0.18 (876 fields), Ratio-0.31 (1509 fields)
and Ratio-0.64 (3018 fields), achieved a higher OA than the best Equal treatment, which was
based on 80 fields per crop or 720 in total. A relatively large range in OAs was observed
for the three Equal and Ratio treatments with the lowest number of training fields in their
respective categories, indicating unstable classifications. When the number of fields was in
a similar range, i.e., 360 to 630, Equal trended higher than Ratio. For Ratio, only a slight
improvement was observed when increasing the number of training fields above 876. For
Equal, the increase started to level off after 540 fields in total, or 60 fields per crop.
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To illustrate the classification challenges, we first compared the results from two
scenarios: Ratio-0.18 and Equal-80 (Table 3). They had identical OAs of 0.92. For Equal,
this was the highest OA that could be achieved. For Ratio-0.18, 618 wheat fields were used
for training, together with a combined total of 258 fields representing the other eight crop
types. Their numbers ranged from 15 potato to 52 maize fields (Table 2). This contrasts
with 80 fields of each crop type and a total of 720 fields used for Equal. Figure 5 shows
the classification results obtained for Ratio-0.18, using a random seed of zero. There were
few misclassified pixels within the wheat fields, whereas misclassified pixels were well
noticeable within the dry bean fields.

Table 3. Classification matrix resulting from using either 18% of the fields (Ratio-0.18) or 80 fields
(Equal-80) of each crop type to train the random forest classifier in Sen2-Agri. The data represent the
averages obtained from six classification runs initiated with different random seed numbers.

Use of 18% of Fields of Each Crop Type for Training (Ratio-0.18)

Classified
Reference

Total
Pixels Precision

Wheat Maize Potato Dry
Bean Chickpea Forage

Crop Vegetable Asparagus Orchard

Wheat 1,021,798 11,940 1108 302 1041 2422 1341 73 126 1,040,150 0.98
Maize 11,602 84,461 27 104 163 709 479 170 33 97,748 0.86
Potato 2708 104 12,139 961 1280 580 1694 136 47 19,647 0.62

Dry bean 743 694 2969 23,712 180 573 2295 459 418 32,043 0.74
Chickpea 6752 628 1206 733 77,545 1133 2787 446 942 92,171 0.84

Forage crop 5310 650 1374 1430 1172 11,908 1732 653 2965 27,193 0.44
Vegetable 4623 711 1499 1897 1855 1206 15,193 471 1605 29,060 0.52

Asparagus 3850 619 79 2016 1272 710 760 10,702 2208 22,215 0.48
Orchard 1757 251 55 1659 1971 1001 856 407 27,067 35,024 0.77

Total pixels 1,059,143 100,059 20,456 32,813 86,478 20,242 27,135 13,515 35,410 1,395,251
Recall 0.96 0.84 0.59 0.72 0.90 0.59 0.56 0.79 0.76

Overall Accuracy: 0.92

Use of 80 Fields of Each Crop Type for Training (Equal-80)

Classified
Reference

Total
Pixels Precision

Wheat Maize Potato Dry
Bean Chickpea Forage

Crop Vegetable Asparagus Orchard

Wheat 992,355 5212 512 77 479 808 688 0 100 1,000,229 0.99
Maize 27,556 91,312 4 40 39 720 244 0 1 119,915 0.76
Potato 2846 88 16,113 580 3082 287 1547 1 41 24,583 0.66

Dry bean 643 654 2923 27,746 192 231 2575 24 410 35,396 0.78
Chickpea 6631 371 228 216 76,386 124 2055 41 79 86,131 0.89

Forage crop 14,787 1120 425 1085 1360 16,052 2380 73 639 37,921 0.42
Vegetable 5848 295 93 291 1511 387 15,761 24 391 24,600 0.64

Asparagus 6424 857 125 1223 1431 736 1027 13,267 4391 29,480 0.45
Orchard 2055 152 34 1557 1999 897 860 85 29,359 36,996 0.79

Total pixels 1,059,143 100,059 20,456 32,813 86,478 20,242 27,135 13,515 35,410 1,395,251
Recall 0.94 0.91 0.79 0.85 0.88 0.79 0.58 0.98 0.83

Overall Accuracy: 0.92

For Ratio-0.18, wheat achieved the highest precision (0.98) and recall (0.96). The
high precision indicates that the error of commission was only 2%. Since wheat was the
predominant crop, the total of 37,345 pixels misclassified as wheat still caused relatively
large errors in the precision of the other crops. It accounted for 87% of the errors in
maize and 46% in chickpea, 36% in potato, 35% in forage crop, and 33% in vegetable and
asparagus. Pixels misclassified as potato and vegetable also contributed a combined 63% to
the classification errors in dry bean, causing a relatively low precision of 0.74. Chickpea
achieved the second highest recall (0.90), whereas its precision (0.84) ranked third, after
wheat and maize. Forage crop had the lowest precision (0.44) and second lowest recall
(0.59). Only vegetable had a lower recall (0.56). Precision of asparagus was also low (0.48),
but its recall ranked fourth (0.79). Confusion with wheat, orchard and dry bean was the
main cause for its low precision.
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Figure 5. Maps depicting the classification results obtained for the winter 2016–2017 growing season
in the Yaqui Valley, Sonora, Mexico. The results represent the scenario Ratio-0.18, with a random
seed of zero. The overview map on the left shows that the area of interest was dominated by wheat,
covering about 75%. The right side shows the detailed classification results at the pixel level.

For Equal-80, similar results as for Ratio-0.18 were observed. However, a larger number
of maize and forage crop pixels were misclassified as wheat, causing a drop in recall of
wheat to 0.94, as compared to 0.96 in Ratio. Wheat pixels that were not classified as such
were the predominant source of error in the precision of the other crops. They accounted
for 96% of the errors in the precision of maize and more than 60% in vegetable, forage crop
and chickpea. Another reason for the high percentage contribution of wheat to the error
of precision of the minority crops was that among them, fewer pixels got misclassified. In
Equal-80, 42,237 pixels got misclassified, whereas, in Ratio-0.18, the number was 55,030. The
opposite pattern was observed for the false positive pixels classified as wheat, although the
differences between Equal and Ratio were smaller. On average, precision for all minority
crops was 0.66 for Ratio and 0.67 for Equal, and recall was 0.72 for Ratio and 0.83 for
Equal. The largest improvements in recall of Equal over Ratio were observed for forage
crop, potato and chickpea. Chickpea was the only crop with a higher recall in Ratio than
in Equal.

Figure 6 shows that the differences between Equal and Ratio were persistent among
all treatment levels. For a given number of fields, the errors of omission (number of false
negative pixels) in wheat were larger for Equal than for Ratio. For Equal-10 to 30, the
average number was much higher and more variable than for the other scenario levels.
On the other hand, Ratio for wheat had a higher number of false positive pixels than
the Equal scenarios for a similar number of training fields. When considering only the
misclassifications among the minority crops, Equal clearly had fewer misclassifications
than Ratio for the range in which the number of training fields was similar.
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Figure 6. Effect of the number of fields used in the set of training data and scenario, Equal or Ratio,
on the number of false positive (A) and false negative (B) pixels in the validation data set classified as
wheat. The number of misclassified pixels among the non-wheat crops is shown in (C). Box plots
represent results from six random selections of training data for each classification scenario.

3.3. How Many Fields Are Needed for Training?

To determine the optimal number of fields required for training, we analyzed the
resulting F-score, recall and precision of each crop type (Figure 7) under the Ratio and
Equal scenarios. As a breakpoint at which it may not be worthwhile to add more fields
to the training data, we set a somewhat arbitrary threshold, at which the increase in the
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F-scores falls to less than 2.5% for an additional ten fields of a given crop type used for
training. A dotted vertical line marks this point in the F-score boxes of Figure 7, where the
slope of the first derivative of the Michaelis-Menten curve [29] had declined to 0.0025.
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Figure 7. F-score, recall and precision of nine crop types as a function of number of fields and
sampling strategy. Either a fixed or a proportionate number of fields of each crop type was selected
for the training set. The respective scenarios are called Equal or Ratio. The solid vertical bar marks 50
fields. The number of fields at which the threshold of an increase in F-score by 2.5% for an additional
ten fields was reached is also marked. All classification scenarios were run six times.

The F-scores indicate that for a given number of training fields per crop type, Ratio
tended to perform better than Equal for most crops. Overall, wheat, followed by chickpea,
was classified with the highest accuracy. For the Equal treatments of wheat with a low field
number, recall tended to range between 0.8 and 0.9. Since wheat represented about 75% of
the crop pixels in the study area, an omission error of 10–20% resulted in a large number
of misclassified pixels, which in turn decreased the other crops’ precision. For asparagus
and dry bean, Equal failed to identify these crops in a total of four instances. The resulting
data points with a value of zero were excluded from the fitted Michaelis-Menten curves.
Chickpea, forage crop, orchard and potato of the Equal scenario also had a few data points
that largely deviated from the fitted curves.

The fitted curves for recall followed similar patterns for Equal and Ratio. The largest
difference was observed for vegetables, where Equal did not perform as well as Ratio.



Remote Sens. 2023, 15, 608 13 of 18

Precision of Equal tended to be lower than of Ratio for most crops, except for chickpea,
vegetables and wheat.

The impact of adding more fields to the training sets on the F-score leveled off, i.e., the
rate of return or increase in accuracy gradually diminished. The threshold of an increase
in F-score by 2.5% for an additional ten fields was reached with fewer fields by the Ratio
treatment for asparagus, orchard and vegetables. For the other crops, Ratio required more
fields than Equal. On average, Equal reached the breakpoint with 40 fields (Std 15.7)
and Ratio with 46 fields (Std 9.1). However, the higher average of Ratio was mainly due
to wheat.

3.4. Change of Classification Accuracy across the Season

We investigated how the classification accuracies improve over the course of the
cropping season by comparing four periods based on the Ratio-0.31 treatment (Figure 8).
The results for the first period, November to January, were generally the least accurate in
terms of the F-score. The only exception was vegetable, which did not improve over time.
The F-scores for wheat (0.97) and forage crops (0.55) had reached a plateau by February,
and adding images acquired thereafter did not improve them any further. Maize steadily
improved from 0.73 in January to 0.88 in April, whereas orchard increased from 0.71 to
0.79 over the same periods. Potato and dry bean, both of which are harvested in March,
saw a drop in the November to March period, as compared to the previous period ending
in February.
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3.5. Binary In-Season Classification

We conducted a similar in-season analysis for the binary scenarios. For maize with 50
and 100 fields, precision remained low throughout the season, but it gradually increased
over time for the treatment with 200 fields (Figure 9). However, its recall was above 0.8
in all instances. For wheat, high precision and recall were achieved. Accuracies for the
period from November to January tended to be slightly lower than for the longer periods,
for which F-scores in the range of 0.91 to 0.97 were observed.
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Figure 9. Classification accuracy in terms of F-Score, precision and recall resulting from a binary
classification of either maize vs. all other crops or wheat vs. all other crops. The classifications were
based on 50, 100 or 200 fields representing each class (maize vs. non-maize; wheat vs. non-wheat).
Classifications spanned four different periods, ranging from November to January, February, March
or April.

4. Discussion
4.1. Validity of the Study

The large data set allowed us to test different scenarios to identify an optimal sampling
strategy for crop classification with an RF classifier. Our study area, located in the Sonora
desert, is surrounded by shrubland. Within the irrigation scheme, the land is cropped or
used for canals, roads and settlements. Therefore, we did not create a crop mask and limited
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the training and validation data to pixels located within hand-drawn field boundaries. This
omits errors created by a faulty crop mask but may also limit the validity of our study,
as Foody [30] recommended considering other land cover types as well when assessing
classification accuracies.

Nevertheless, a relatively wide range in sowing dates, elevated soil salinity close to the
sea, and inclusion of forage crops and vegetables resulted in diverse conditions (Figure 3).
Thus, the findings of this study should be applicable to other crop production regions.
Wheat was the predominant crop in our study area. This is the case for many irrigated
wheat production regions around the world, where wheat is the only crop widely grown
under irrigation during the dry and relatively cloud-free winter months, such as in Egypt,
the Indo-Gangetic Plain, or the North China Plain. During the two months of rapid canopy
growth between January and February, we had five cloud-free images available to generate
the ten-day composite images. This is different from, e.g., Europe or tropical regions during
the rainy season, where the creation of composite images based on optical satellites is
more challenging [10,31]. The relatively dense series of images may have helped achieve
relatively high classification accuracies, some of which were greater than 0.90. They are
comparable to results obtained by Sen2-Agri at the country level, with reported OAs in the
range of 0.81 to 0.90 [5].

The main source of errors was confusion between wheat and maize. It accounted for a
large fraction of the misclassified pixels. After wheat, maize was the second most important
crop. Both crops had a similar growth cycle, although maize sowing started earlier and it
stayed green for a longer time than wheat did (Figure 3). After wheat, the second highest
accuracies were obtained for chickpea, which is sown during a relatively short period in
February and has a very well defined NDVI development curve. Since Sen2-Agri had been
developed to identify field crops based on spectral time series, it is not surprising that
its multi-temporal classification approach works best for field crops with a well-defined
sowing window and growth cycle.

4.2. Does Equal or Proportional Representation Produce Better Classification Results?

One of the hypotheses we tested was that minor crops might benefit from a better
representation in the training class. Interestingly, in the two lowest Ratio scenarios (Ratio-
0.08 and Ratio-0.10), apart from wheat, all crop types were represented by less than 30 fields,
yet those two Ratio scenarios achieved higher OAs than Equal-10 to 30. This was due to the
fact that in Ratio-0.08 and Ratio-0.10, far fewer wheat pixels in the validation data set were
misclassified than in Equal-10 to 30. The F-scores for Equal at a given number of fields were
similar but mostly below those of Ratio (Figure 7), except for wheat. For most crops, recall
was similar for both scenarios, but precision of Equal was generally lower than for Ratio.
This means that in Equal, for the crops other than wheat, a higher percentage of pixels in
the validation data set was misclassified due to a higher rate of commission of misclassified
wheat pixels, as shown in Figure 6. More wheat pixels did not get classified as such,
presumably because fewer wheat fields were used for the training of the Equal than of the
Ratio classifier. Thus, the poorer performance of the classifier for the dominant crop caused
commission errors for the minor crops. A similar pattern was observed by Jin et al. [32],
who reported that proportionally allocated training samples, which corresponds to Ratio
in our case, reduced the commission error of the under-represented classes. They further
noticed that equally allocated training data helped reduce the omission error of the minority
classes. We could observe such a slight reduction for forage crop and maize only.

A training set with proportional data will ensure that the dominant crops are accu-
rately classified and thus reduces the risk that minority crops are confused with them.
Mellor et al. [22] and Waldner et al. [16] also advocated that the training data should be
representative of their actual proportions in the landscape. If the focus of crop identification
is on the minority crops, other sampling approaches [33], and methods to create optimized
data sets exist [20]. They have been included in the object-based Sen4CAP open-source
system (Sen4CAP, 2021). With Sen2-Agri, a two-stage classification might be an option: In



Remote Sens. 2023, 15, 608 16 of 18

the first step, all crops would have a proportional representation in the training data set.
This results in the most accurate classification of the majority crops and reduces their risk
of being omitted, which in turn would lead to higher errors of commission in the minority
crops. After the fields of the dominant crop(s) have been masked out, the classification
could be run again, this time only with the minority crops.

4.3. How Many Fields Are Needed?

The OAs of Equal and Ratio gradually increased with the number of fields used for
training to about 0.9 when the impact of adding more training fields leveled off. The high
variability of OAs for Equal-10 to Equal-30 fields and for Ratio 0.08 to Ratio 0.12 indicates
that the few fields used for training were not fully representative, resulting in highly
variable classification accuracies. Our results suggest that a low number of training fields,
less than 30 in our study, causes not only low but also unstable classification accuracies.
Ultimately, the threshold at which classifications become relatively stable depends on the
number of crops and their intrinsic class heterogeneity.

On average, the breakpoint at which an increase in F-score becomes less than 2.5%
for an additional ten fields of each crop type was reached at around 40 to 45 fields. Only
vegetable required more than 50 fields for Equal and Ratio. That threshold was also
surpassed by forage crop and wheat in Ratio. However, the fitted threshold of 51 fields
for wheat is lower than the range that had been tested and thus needs to be seen with
caution. Our results are in close agreement with the rule of thumb of 50 sample units
(pixels, clusters of pixels, or polygons) per class suggested by Congalton [12] and Hay [13].
Their recommendations had been developed before the advent of machine learning but
seem to also hold true for the RF classifier. Our recommendation of at least 40 to 45 fields is
slightly higher than the 20 to 30 fields suggested for the minority crops by the developers
of Sen2-Agri. For the main crops, they suggest using 75 to 100 samples.

4.4. Change of Classification Accuracy across the Season

The test of how early in the season the crops can be identified showed that close to the
highest accuracies could be attained by covering the period from November to February,
i.e., up to mid-season. As shown in Figure 3, all crops, except for chickpea, had reached
their highest NDVI by then. Accordingly, late-season images seem to have a limited impact
on improving the classification accuracies of most crops, which is in line with Gilcher [34].

4.5. Binary In-Season Classification

The RF algorithm does not assume a multivariate normal probability distribution of
the features [8]. It should, therefore, be suitable for a binary classification, even if one of the
classes consists of a mix of all crop types studied. The two binary classification approaches
to either identify wheat or maize by grouping all the other crops into one group gave very
different results. For maize, the results were poor. But as few as 50 wheat and 50 non-wheat
fields resulted in an OA, precision and recall above 0.9. This is remarkable, as it cannot be
explained by the unbalanced validation data set alone, which consisted of 75% wheat pixels.
Indeed, had the classifier only generated wheat, the resulting map would still have an OA
of 0.75, but precision and F-score would be negatively impacted. As shown in Table 3,
maize, representing 7% of the cropland, was the crop that was most likely to get confused
with wheat. Hence, the signatures of wheat and maize were quite different from the other
crops but similar to each other. This explains the results from the maize vs. non-maize
classifications. A recall in the range of 0.8 to 0.9 indicates that the algorithm was capable of
correctly identifying 80–90% of the maize pixels in the validation data set. But precision
was low, in the range of 0.2 to 0.4. This means that many non-maize pixels were identified
as maize by mistake, causing an inflated number of pixels labeled as maize. The poor
performance of maize in the binary classification is consistent with the results from the
comparison between Equal and Ratio: a relatively poor representation of the dominant
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crop (wheat), as was the case with the Equal scenario in the training set, causes a poor
precision of the minority crop (maize).

5. Conclusions

We aimed to generate guidance for the practitioners who are using Sen2-Agri or
Sen4Cap in an operational manner. Sen2-Agri can achieve high classification accuracies
by the time the crops reach peak NDVI when F-scores higher than 0.95 were obtained
for wheat, which was the dominant crop. The test of whether Sen2-Agri is suitable for
a binary classification gave mixed results: It worked well for wheat, which dominated
the landscape. For maize, a recall above 0.8 could be obtained with only 50 fields, but
precision was low. Thus, binary classifications must be carefully examined before applying
them at large scales. A proportional representation of the crop types in the data set for
training results in better classification accuracies, not only for the dominant crop but also
for the minority crops. An accurate classification of the dominant crop reduces the errors of
commission for the minority crops. It seems that there is not only an optimal number but
also a minimal number of fields that need to be considered for training: Using less than
30 fields yielded unstable results. For the minority crops, the optimal is around 40–45 fields
for training, whereas the number for the dominant crops is higher, resulting in a total of
around 500 fields. However, additional testing should be done in regions with more than
one dominant crop or with frequent cloud cover. Sen2-Agri generates standardized data at
a 10-day interval. Hence, it might be possible to apply a classifier developed in one year
to images acquired in a different year over the same region. This would be a great step
forward toward fully automating crop identification.
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