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1 | INTRODUCTION

The use of prediction models is a key component for the
successful implementation of genomic selection (GS), which

Abstract

Deep learning (DL) is revolutionizing the development of artificial intelligence sys-
tems. For example, before 2015, humans were better than artificial machines at clas-
sifying images and solving many problems of computer vision (related to object
localization and detection using images), but nowadays, artificial machines have sur-
passed the ability of humans in this specific task. This is just one example of how
the application of these models has surpassed human abilities and the performance of
other machine-learning algorithms. For this reason, DL models have been adopted for
genomic selection (GS). In this article we provide insight about the power of DL in
solving complex prediction tasks and how combining GS and DL models can accel-
erate the revolution provoked by GS methodology in plant breeding. Furthermore, we
will mention some trends of DL methods, emphasizing some areas of opportunity to
really exploit the DL methodology in GS; however, we are aware that considerable
research is required to be able not only to use the existing DL in conjunction with GS,
but to adapt and develop DL methods that take the peculiarities of breeding inputs

and GS into consideration.

is considered a predictive methodology used to train mod-
els with a reference population containing known phenotypic
(output) and genotypic (input) data to perform predictions
for a testing data set that only contains genomic (input) data.
However, because a universal model is nonexistent (no-free-

Abbreviation: DL, deep learning; GAN, generative adversarial network;
GS, genomic selection; VAE, variational auto-encoder.

lunch theorem), it is necessary to evaluate many models for
a particular data set and subsequently choose the best option

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2021 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America

Plant Genome. 2021;14:¢20122.
https://doi.org/10.1002/tpg2.20122

wileyonlinelibrary.com/journal/tpg2 1of9


https://orcid.org/0000-0001-9429-5855
mailto:aml_uach2004@hotmail.com
mailto:j.crossa@cgiar.org
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/tpg2
https://doi.org/10.1002/tpg2.20122

20f9 The Plant Genome .0

MONTESINOS-LOPEZ ET AL.

for each particular situation. The no-free-lunch theorem more
or less states that there is no perfect statistical machine-
learning method that will perform well at any problem. For
every problem, a certain algorithm is suited and achieves
good results, while other methods fail heavily (Wolpert &
Macready, 1997, 2005). For this reason, a great variety of sta-
tistical (ridge regression, mixed-models, Bayesian regression,
generalized regression, etc.) and machine-learning (support
vector machine, random forest, etc.) models are used for pre-
diction in GS.

In the context of plant science, the most popular statistical
learning models are (a) the linear mixed model, which uses
Henderson’s equations (Henderson, 1950, 1975) to find the
best linear unbiased estimates for fixed effects, as well as
the best linear unbiased predictors for random effects and (b)
the Bayesian counterpart of this model, which has different
versions [Bayesian Ridge regression, BayesA, BayesB,
BayesC, Bayes Lasso, etc.] (Gianola, 2013; Kérkkdinen &
Sillanpéd, 2012; Meuwissen et al., 2001). The most popular
methods of machine learning are random forest and support
vector machines, which are very easy to implement since
they require few hyperparameters to be tuned and little
time to provide very competitive predictions. From here
onward, we will refer to those methods arising from statistical
and machine-learning fields as statistical machine-learning
methods.

Most of the above-mentioned statistical machine-learning
methods require highly preprocessed inputs (feature engi-
neering) in order to produce reasonable predictions. Feature
engineering is the action of using discipline knowledge
to extract features from raw data. These features can be
used to increase the performance of statistical machine-
learning algorithms. Feature engineering can be treated as
applied machine learning itself (Chollet & Allaire, 2017).
In other words, most statistical machine-learning methods
need more user intervention to preprocess inputs, which
must be done manually. However, those models under
the umbrella of deep learning (DL) are more robust; they
can perform automatic feature engineering and are more
powerful at capturing more complex patterns in the input
data since they are a generalization of artificial neural
networks where more than one hidden layer is included in the
model.

An artificial neural network is a system composed of many
simple elements of processing that operate in parallel and
whose function is determined by the structure of the deep net-
work and the weight of connections, where the processing is
done in each of the nodes or computing elements that has a
low processing capacity (Francisco-Caicedo & Lopez-Sotelo,
2009). For this reason, DL models perform so-called repre-
sentation learning (also called feature learning). This means
that a model learns new and improved representations with
regard to the raw data because the learning process is done

Core Ideas

* Use of deep learning (DL) in genomic selection
(GS)

* To capture patterns in the data by a nonlinear trans-
formation

* How to adapt DL to plant breeding and GS?

* Explore DL power and perspectives for genomic
selection

in multiple steps through multilevel transformations (apply-
ing many hidden layers) (LeCun et al., 2015). Additionally,
its power is attributed, in part, to the fact that nonlinear trans-
formations are performed between subsequent layers (Duda
et al., 2000) and the learning process is done via training
data (LeCun et al., 2015) like all machine-learning methods.
Because of this, DL models are very flexible and promise to
extract knowledge in data-driven fashion from large datasets
while requiring limited domain expertise (Eraslan et al.,
2019).

However, applications of DL models are still not gener-
alized, as exemplified by Emmert-Streib et al. (2020a), who
pointed out that most of these applications are in computer
science (52.1%) and engineering (41.5%) and less in the
fields of medical imaging (6.2%), robotics (2.6%), and
computational biology (2.5%). In biology, DL applications
are gaining increasing momentum in predicting the struc-
ture and function of genomic elements such as enhancers,
promoters, chromatin interaction prediction (Singh et al.,
2019; Whalen et al., 2016; Zeng et al., 2018), and gene
expression levels. However, DL continues to be infrequently
used in GS, in part because its superiority in predicting
performance over conventional statistical machine-learning
methods (Montesinos-Lopez et al., 2021) is unclear. In
addition, DL methods require larger data sets and consid-
erably more computational resources for their successful
implementation.

The limited number of applications of DL for GS shows
that there is huge potential for these models to improve the
selection of candidate genotypes at an early stage as well
as improving the understanding of the complex biological
process involved in the relationship between phenotypes and
genotypes. In part, this potential can be attributed to the way
these models are built, which gives them the power to capture
more complex patterns in data. For this reason, in this paper
we explore DL power and perspectives for GS in addition to
the obstacles for its successful implementation in plant breed-
ing programs.
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2 | DEEP LEARNING AS A SPECIAL
STATISTICAL MACHINE-LEARNING
METHOD

As mentioned before, DL is a statistical machine-learning
method that is considered one of the best, if not the best, algo-
rithms for dealing with perceptual problems such as image
classification. This mostly is due to the fact that DL mod-
els work with multiple hidden layers (for more details, see
Montesinos-Lopez et al., 2021) that increase their power to
capture better nonlinear patterns in the data. For this rea-
son, the ‘deep’ in DL models stands for the successive layers
of representations (Chollet & Allaire, 2017). Deep learning
models need to be understood not as a single method but as
a family of learning algorithms that is nowadays very pop-
ular for prediction and association tasks that use multilayer
neural networks with many hidden units in common (LeCun
et al., 2015). The first big moment of DL methods was in
2012 for classifying high resolution color images into 1000
different categories using a training set of 1.4 million images.
During this intervention, 83.6% of all images were correctly
classified, which outperformed the benchmark (74.3%) with
the same data set in 2011 using classic approaches (Chollet &
Allaire, 2017).

However, in 2015, while using this same data set, 96.4% of
all total images were correctly classified. For this reason, DL
is now used for complex tasks like (a) automated driving, as
it is able to detect objects such as pedestrians and stop signs;
(b) playing AlphaGo with Robots trained with DL methods
that outperform human champions; (c) using an algorithm to
classify people with skin cancer, that performs similarly to
dermatological experts (Brinker et al., 2019); (d) analyzing
particle data as the European Organization for Nuclear
research (CERN) did to replace a classic machine-learning
method (decision-tree based) with DL methods (Chollet &
Allaire, 2017); and (e) for predicting what shapes proteins
fold into, also known as the ‘protein folding problem’ that
has been a great challenge in biology for the past 50 yr. In
this particular problem, the results from the 14th critical
assessment of protein structure prediction show an overall
accuracy across all targets, reaching 92.4 in the global
distance test on a 0-to-100 scale (Kaplan & Haenlein, 2019).
Although this list of tasks is not comprehensive, it shows that
DL applications have the potential to changing many current
paradigms.

2.1 | Why use DL in GS?

The main reasons for using DL in GS included the follow-
ing: (a) DL is more powerful in capturing complex patterns
in the data because of the inclusion of many neurons com-
municated in complex ways and multiple nonlinear trans-

formations through hidden layers; (b) DL supports raw (not
preprocessed) inputs, which is impossible in most statisti-
cal machine-learning methods; (c) DL supports varied inputs
that can accommodate pedigree, genomic data, environmen-
tal data, and other omics data (metabolomics, microbiomics,
phenomics, proteomics, transcriptomics, etc.); (d) DL is more
efficient for large and complex data sets than most statis-
tical machine-learning methods (Montesinos-Lépez et al.,
2021); and (e) DL is very flexible and its network architec-
ture permits a “Lego-like” construction of new models while
an unlimited number of neural network models can be con-
structed by using elements of the core architectural build-
ing blocks of existing DL models (Montesinos-Lépez et al.,
2021).

22 |
GS?

Why can research in DL be applied to

As pointed out before, DL methods have been used for
the development of successful technological products like
autonomous vehicles as well as face and voice recognition
systems, where DL outperforms most machine-learning mod-
els. However, the training process for each particular tech-
nological product is very specific (tailored to suit) and large
amounts of resources are spent on its development. Since
thousands of inputs (images and other inputs) are collected,
DL looks for, by trial and error, the best architecture (topol-
ogy) and tuning parameters, thus making it valid only for one
particular problem. This means that the tuning process is quite
expensive and time consuming, as it requires huge computa-
tional resources.

Nevertheless, it is still unclear if DL methods outper-
form conventional statistical machine-learning methods for
GS (Montesinos-Lopez et al., 2021). This can be attributed
to the following issues: (a) most of the applications so far
have used small or moderate data sets; (b) the tuning pro-
cess is quite limited since only small grids of hyperparameter
combinations are evaluated because of the lack of computer
resources; (c) the applications use conventional architectures
(mostly fully connected networks and convolutional neural
networks) and activation functions of deep neural networks;
(d) most of the inputs are limited to markers and environmen-
tal information; (e) many times, the inputs must be prepro-
cessed using linear models that are unable to retain the com-
plex patterns; and (f) because of the lack of expertise in using
these methods and the fact that most breeders see the models
as a black box to which they provide inputs and obtain outputs,
there is little time dedicated to model calibration. This last
point is important because the training process in DL is most
time consuming; you must experiment extensively as opposed
to only evaluating the factors believed to improve the predic-
tion performance.
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As such, many other factors must be evaluated and
some examples are changing the architecture design, depth,
width, pathways, weight initialization, loss function, etc. This
implies that many of the hyperparameters must be evaluated
in order to learn the effect of their increase or decrease. It is
also necessary to evaluate a large range of learning rates and
other hyperparameters to learn the efficiency of the behavior
of the network over a large range of learning rates and hyper-
parameters. Many times, even after doing all this, the result is
insufficient, and data augmentation must be used in combina-
tion with regularization methods (dropout, Ridge and Lasso
regularization) to increase the training set. In this sense, the
generalization of the model can be improved.

Yet another reason why it is not possible to claim supe-
riority of DL models over conventional statistical machine-
learning methods is that the transfer learning approach of
DL has not been used in GS since it cannot be easily trans-
ferred to other domains (like GS) because of the very dif-
ferent type of inputs. This is because the information con-
tent of one data set does not have the same meaning for each
data type and for each application domain (Emmert-Streib
et al., 2020a, 2020b). Finally, the prediction performance of
statistical machine-learning methods depends on the genetic
architecture of the trait. Under purely additive actions, con-
ventional statistical learning methods outperformed machine-
learning approaches. However, when there was nonadditive
action, predictive ability depended on the number of loci con-
trolling the trait (Abdollahi-Arpanahi et al., 2020).

Nonetheless, DL methods offer a range of possibilities
(areas of opportunity) that can be successfully used in GS.
However, this requires additional research using a family of
models for the following:

1. Modifying, adapting, or inventing new DL architectures,
activation functions, and tuning strategies for the specific
context of GS.

2. Adapting, improving, and developing more user-friendly
software for DL applications in GS, aiming to ease data
acquisition and model evaluation in such a way that the
user only provides the inputs to obtain satisfactory predic-
tions. This is important since even though there has been a
great deal of improvement in the existing software for DL,
one must still possess considerable programing skills.

3. Performing greater benchmarking studies to compare the
prediction performance of existing DL methods with those
that are very popular in GS in such a way as to promote
the use of those algorithms with good results while being
able to improve those that are not quite as good. This is
very important since we cannot blindly adopt DL meth-
ods because if they are not tuned correctly, they may pro-
duce wrong recommendations. Furthermore, many times
DL is not the right method for the data set and should not
be hastily employed only because it seems sophisticated.

4. For exploring transfer learning for GS. The goal of transfer
learning is to use the knowledge learned from one specific
set of environments to ease the learning tasks in another
different but quite similar environment. That is, the key
idea behind transfer learning is that a data set from a dif-
ferent field can be the starting point for training a predic-
tive model. Usually the model trained with a large data set
(for example, with natural images) is transferred to a target
model, with a small data set, that will perform similar tasks
but in a different field, for example, in medical imaging
(Koumakis, 2020). This is very important since, unfortu-
nately, the assessment of DL models needs to be conducted
in a domain-specific manner, as the transfer of knowledge
between such models is not straightforward. The learn-
able parameters in the pretrained model are reused in the
new model as the feature extractor. The learnable param-
eters in the new model will be trained on a significantly
smaller data set. In this sense, transfer learning alleviates
the demand for larger data sets while still producing an
accurate model (Liu et al., 2020).

Transfer learning has been used successfully for image
classification problems and saves considerable resources in
labeling since the training data set is only moderate. How-
ever, to successfully use transfer learning, the two problems
to be solved should be closely related. The idea is to share
the available learnable parameters in the pretrained model
with the new model that we want to train with a small data
set. This method is very attractive because, if successful,
then DL methods can be used in small data sets. The pre-
trained model must be trained with large data sets in order
to solve the problem of deficient sample sizes. Additionally,
both problems should be similar to be able to use the learned
parameters in the pretrained model. For example, the learn-
able parameters used for maize (Zea mays L.) prediction with
some species using a large data set can be used as a pre-
training model for maize prediction with small data sets of
other species of maize. Transfer learning applications in plant
breeding are just starting. For example, Meng et al. (2021)
used it for predicting transcriptional responses to cold stress
across plant species; they found that models trained with data
from one species successfully predicted which genes would
respond to cold stress in other related species. Cross-species
predictions remained accurate when training was performed
in cold-sensitive species and predictions were performed in
cold-tolerant species and vice versa. Also, the applications
of transfer learning for cancer survival prediction using gene
expression data are just starting (Lopez-Garcia et al., 2020).

5 For exploring how to use reinforcement learning in the
context of GS. Reinforcement learning is a subfield of
machine learning that teaches an agent how to choose
an action from their action space, within a particular
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environment, in order to maximize rewards over time. For
instance, when playing the Atari game, the computer or
agent playing this game was positively rewarded when the
outcome of the game was positive based on the actions per-
formed. The algorithm was able to learn some of the games
to a level where it performed better than humans (Patterson
& Gibson, 2017). Reinforcement learning has four essen-
tial elements: (a) agent—the program you train with the
goal of doing the work you specify; b) environment—the
world, real or virtual, in which the agent performs actions;
(c) action—a movement made by the agent that causes a
change of state in the environment; and (d) reward—the
evaluation of an action, which can be positive or negative.
Under this method, the training system gives the agent input
from the environment and rewards the agent when the out-
come is positive. Many times, actions will affect not only
the immediate reward but also future rewards. The mechan-
ics of trial and error and delayed rewards are key fea-
tures of reinforcement learning. Nowadays, reinforcement
learning has found application in problems from robotics
to games and healthcare (Arulkumaran et al., 2017; Mnih
etal., 2015).

6 For exploring deep generative models (generative adversar-
ial networks [GANSs] and variational auto-encoder [VAE]
methods) to generate new inputs (fictitious markers or inde-
pendent variables) that are indistinguishable from the orig-
inal training set. These methods are very efficient at cre-
ating fake images (or text) that, for humans, are identical
to the real ones. In biology, these methods are being used
to generate artificial genomes; fake DNA, such as micro-
bial genomes (Nielsen & Voigt, 2018 ); sequences (Linder
et al., 2019; Liu et al., 2020; Yelmen et al., 2021 ); single-
cell RNA sequencing data (Grgnbech et al., 2020; Liu et al.,
2020; Marouf et al., 2020 ); protein sequences (Repecka
et al., 2021; Sinai et al., 2017 ); promoter sequences (Y,
Wang et al., 2020); high-resolution Hi-C data (Hong et al.,
2020; Liu et al., 2019b; Liu et al., 2020 ); among others.
Also, VAE in GS has been applied to visualize popula-
tion structure (Battey et al., 2021). Deep generative models
(GAN and VAE) belong to unsupervised methods that effi-
ciently learn complex data distributions. The use of these
models is very promising for crop improvement as a way
of creating new DNA elements, artificial genomes, or even
regulatory circuits with desirable functions (H. Wang et al.,
2020b). However, as a reviewer pointed out, there is still a
long way to go to be able to create a synthetic genome for
complex plants since some applications done until now are
for a single-celled organism.

7 For training or retraining breeders and people involved
in genomic prediction in these new frameworks for DL,
as exemplified by Keras (Chollet & Allaire, 2017). These
new frameworks allow you to train with conventional and
large data sets, univariate and multivariate linear regres-

sion models, generalized regression models (with fami-
lies: Poisson, multinomial, Binomial and Gaussian), con-
ventional artificial neural networks (with one hidden layer);
and state-of-the art DL models with as many hidden layers
as you want.

8 For exploring the deep compression methods in GS to
reduce the computation and storage required by neural
networks. These methods are very promising since nowa-
days DL methods are both computationally and memory
intensive. This is also very promising for GS since fre-
quently we have more independent variables (p) than sam-
ple sizes (n). For example, the ResNet-50 (residual neu-
ral network; He et al., 2015) with 50 convolutional lay-
ers needs over 95 MB of memory for storage and over
3.8 billion floating number multiplications when process-
ing an image. After discarding some redundant weights,
the network still works as usual but saves more than 75%
of parameters and 50% of computational time. However,
compression methods are challenging because a good com-
pression method is expected to achieve almost the same
prediction performance as the original input data, albeit
with much smaller learnable parameters and less compu-
tational resources (Cheng et al., 2017).

9 For increasing our efforts for data sharing in platforms to
create large data sets for each species containing not only
phenotypic and markers data but also environmental infor-
mation and other omics data. These data sets will be the key
to exploit the power of DL methods and to pretrain models
that can be used with small data sets.

We suggest addressing all these areas of opportunity for
GS research given that there is a practical difficulty in build-
ing end-to-end DL projects. Because of the inherent com-
plex tuning process, they entail large data sets and con-
siderable computational resources resembling research and
development (R&D) more than software development. Usu-
ally, this process involves people from multidisciplinary back-
grounds, and, therefore, expectations must be grounded. For
these reasons, more people need to be involved in these
areas of opportunity in addition to allocating more financial
resources.

2.3 | The downside of DL models

Deep-learning models do not have strong theoretical support
because this field is guided by empirical findings rather than
a strong theory. Moreover, the loss function only guaran-
tees a local minimum since it is not a convex loss function.
However, some authors say that this is not a big issue since
almost all local minimums have very similar function value
to the global optimum, and hence, finding a local minimum
is also good because in many instances recovering the global
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minimum becomes hard as the network size increases and that
in practice is insignificant as global minimum often leads to
overfitting (Choromanska et al., 2015). Some of their most fer-
vent adversaries say that DL methods are still alchemy. How-
ever, we cannot ignore DL methods” many successful appli-
cations (autonomous cars, home assistants, superhuman Atari
game play, AlphaGo, etc.) that are rapidly shaping and chang-
ing our world.

Another downside is that the expectations about what DL
models are able to achieve are higher than what they really
are; empirical evidence suggests that DL models are espe-
cially good (better than humans) in narrow tasks with specific
instructions trained with large and labeled data sets but are
still far from the main goals of artificial intelligence, which
Kaplan and Haenlein (2019) define as “a system’s ability
to correctly interpret external data, to learn from such data,
and to use those learnings to achieve specific goals and tasks
through flexible adaptation.” This is due to the fact that 99.9%
of the applications of DL methods can still be categorized as
weak artificial intelligence systems that are far from reach-
ing general intelligence (similar to whole human intelligence)
and even farther still from creating superintelligence systems
(those that surpass humans in all aspects).

Another unfavorable aspect of DL models is that they
come with slogans and straplines used for marketing just as
those used for regular commercial products. For this reason,
DL methods are overhyped at the moment and the expec-
tations exceed what can be accomplished with this technol-
ogy. Another downside of DL methods in that they are not
easily interpretable, and understanding the decision making
in highly sensitive areas such as healthcare, criminology,
finance, etc., is of paramount importance. For this reason, a
lot of research is needed to be able to help the explainabil-
ity of DL and many other machine-learning methods (Burkart
& Huber, 2021). There are by now numerous examples of
data leakage in DL leading to amazingly performing models
that focus on the wrong thing. For example, Wu and Zhang
(2016)’s paper purporting to say that they can identify crimi-
nals from photos, while it’s more likely that the DL algorithm
has learned to distinguish smiles from no smiles. Also, there
are many devices built using DL that discriminate against peo-
ple (by age, disability, national origin, race or color, religion,
sex, opportunities of employment, etc.) because, in part, train-
ing sets are biased.

3 | DISCUSSION

High-throughput sequencing technology has brought biolog-
ical science into a ‘big data’ era with an incomparable explo-
sion of genomic and omics data. For this reason, GS is also
entering a new era of petabyte-level sequencing data. Convert-
ing such big data to biological insights presents a huge chal-

lenge for computational analysis. Because the use of many
hidden layers and the way the neurons communicate (archi-
tecture), DL methods are closer to imitating the complex-
ity of biological systems. For this reason, Emmert-Streib
et al. (2020b) point out that these methods are more appro-
priate for answering complex questions than most statistical
machine-learning methods that can only answer simple ques-
tions. Therefore, some of these supervised learning methods
are being used in genomics to predict gene expression levels
and population structure (Krogel & Scheffer, 2004 ), among
others. However, the most sophisticated applications of DL
models in biology and other fields are capable of attacking
complex questions if they are dissected into smaller problems
rather than addressing them as a whole.

As pointed out in some parts of this paper, DL models
became popular quite rapidly because of (a) their ability to
perform better when solving a number of problems, (b) easier
problem solving because of the automated way in which
they perform feature engineering, c) they represent all layers
simultaneously rather than in many steps, (d) their ability
to capture complex nonlinear patterns in the data more effi-
ciently because of the inclusion of many hidden layers, and
(e) media hype, enhancing some remarkable achievements.

As was also pointed out, DL methods are not a panacea and
should not be blindly adopted. This is especially true if the
data set at hand is small and does not have complex nonlinear
patterns; under these circumstances, conventional statistical
machine-learning methods used in GS are the best option. For
this reason, in this paper we are only encouraging the adoption
of DL methods for specific applications in the context of large
data sets and complex nonlinear patterns. An advantage is that
they do not require extensive feature engineering (preprocess-
ing) of the inputs and are very promising for including many
different types of inputs as predictors, which can considerably
increase the prediction performance.

The nine areas of opportunities mentioned in this paper for
research in DL applied to GS can be justified in part because
of the many successful applications of DL in other fields. In
addition, most of these published methods have little flexi-
bility when being adapted to new data, like those abundant
in GS, and their adaptation requires considerable knowledge
and effort. In these nine areas of opportunity, we stress the
need for software frameworks that allow for a fast turnover
when it comes to addressing new hypotheses, integrating new
data sets, or experimenting with new neural-network archi-
tectures. Regarding the architecture, mostly multi-layer per-
ceptron (fully connected networks) and convolutional neural
networks have been used in GS; however, as pointed out in
some of the nine areas of opportunity, other DL. methods can
be explored in GS, such as the use of reinforcement learning,
VAE, GAN, and transfer learning, among others. For exam-
ple, GANs can save on the sequencing cost of a large number
of samples.
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Although DL methods are not yet the prevalent technique
in GS or genomics in general, it has automatic feature extrac-
tion ability and greater data representation capability for deal-
ing with high-dimensional data sets. For these reasons, they
are leading innovation and research in fields such as sequence
analysis, function prediction, expression prediction, interac-
tion identification, and plant and animal breeding. However,
these trends can be empowered in plant breeding by focusing
research on the nine areas of opportunity that DL models offer
for GS in such a way that we can take full advantage of DL
methods.

It must be emphasized that DL is only one of several
machine-learning methods, that is, it is complementary and
will not replace conventional statistical machine-learning
methods that are very efficient for small data sets with simple
patterns that require little computational resources because
the latter are easier to train, understand, and implement. This
argument is also supported by the no-free-lunch theorem men-
tioned above that, in summary, “state[s] that any two opti-
mization algorithms are equivalent when their performance is
averaged across all possible problems” (Wolpert & Macready,
1997; Wolpert & Macready, 2005). While DL methods are
extremely difficult to train, they imitate the structure in visual
neuroscience and are able to translate the data representation
in an increasingly abstract form by means of nonlinear chunks.
Deep-learning methods have also turned out to be exception-
ally successful in learning nonlinear input—output mapping
with both increased sagacity and invariance of the represen-
tation. That is, DL methods are extremely flexible in the rela-
tion assumed between the genomic (markers) information and
phenotypic data of traits and are able to efficiently capture
complex interaction between genes. Additionally, DL meth-
ods perform automatic feature extracting with high selectivity
that increases the power of these methods for the analysis of
large data sets.

4 | CONCLUSIONS

Deep-learning applications are shaping our world because
they are helping to increase scientific discovery and the devel-
opment of technological products to solve complex tasks that
can accelerate human progress. However, we perceive that not
all researchers working in GS understand what can really be
done with DL or have enough clarity on how to build suc-
cessful data science teams that bring real value to breeding
programs using these tools. For this reason, we highlight the
power of DL and point out many areas of opportunity that can
help its successful adoption for GS. We can see that in this
context, because of the availability of large amounts of omics
data, the application of DL methods can help to increase the
power of GS as well as answer complex questions. Also, there
are still DL method tools not used for GS that can help to

increase its efficiency; however, to use these tools we must be
open to explore these new methods and invest in the required
resources to be able to take advantage of this emerging tech-
nology that is reshaping and influencing not only our everyday
lives but also many other areas of science. For these reasons,
we believe breeders should take advantage of these new tools.
While we do not expect GS tools to replace breeders, breeders
who are more capable of utilizing GS tools will replace those
who cannot.

ACKNOWLEDGMENTS

We thank all scientists, field workers, and lab assistants from
the National Programs and CIMMYT who collected the data
used in this study.

AUTHOR CONTRIBUTIONS

Osval Antonio Montesinos-Lopez: Conceptualization; For-
mal analysis; Writing software, Carlos Moises Hernadez-
Suarez: Conceptualization; Abelardo Montesinos-Lopez:
Conceptualization, Formal analysis; José Alberto Barrén-
Lépez: Conceptualization; Formal analysis; Software, and
José Crossa: Conceptualization; Resources; Supervision

FUNDING

We are thankful for the financial support provided by the Bill
& Melinda Gates Foundation [INV-003439, BMGE/FCDO,
Accelerating Genetic Gains in Maize and Wheat for
Improved Livelihoods (AG2MW)], the USAID projects
[USAID Amend. No. 9 MTO 069033, USAID-CIMMYT
Wheat/ AGGMW, AGG-Maize Supplementary Project, AGG
(Stress Tolerant Maize for Africa], and the CIMMYT CRP
(maize and wheat). We acknowledge the financial support
provided by the Foundation for Research Levy on Agricultural
Products (FFL) and the Agricultural Agreement Research
Fund (JA) in Norway through NFR grant 267806.

CONFLICT OF INTEREST
The authors declare no conflicts of interest.

ORCID

José Crossa'© https://orcid.org/0000-0001-9429-5855

REFERENCES

Abdollahi-Arpanahi, R., Gianola, D., & Pefiagaricano, F. (2020). Deep
learning versus parametric and ensemble methods for genomic pre-
diction of complex phenotypes. Genetics, Selection, Evolution, 52, 12.
https://doi.org/10.1186/s12711-020-00531-z

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A.
(2017). Deep reinforcement learning: A brief survey. IEEE Signal
Processing Magazine, 34, 26-38. https://doi.org/10.1109/MSP.2017.
2743240

Battey, C. J., Coffing, G. C., & Kern, A. D. (2021). Visualiz-
ing population structure with variational autoencoders. G3


https://orcid.org/0000-0001-9429-5855
https://orcid.org/0000-0001-9429-5855
https://doi.org/10.1186/s12711-020-00531-z
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/MSP.2017.2743240

The Plant Genome :

8of 9

MONTESINOS-LOPEZ ET AL.

Genes|Genomes|\Genetics, 11, jkaa036.
g3journal/jkaa036

Brinker, T. J., Hekler, A., Enk, A. H., Klode, J., Hauschild, A., Berk-
ing, C., Schilling, B., Haferkamp, S., Schadendorf, D., Holland-
Letz, T., Utikal, J. S., Von Kalle, C., Ludwig-Peitsch, W., Sirokay,
J., Heinzerling, L., Albrecht, M., Baratella, K., Bischof, L., Chorti,
E., ... Schriifer, P. (2019). Deep learning outperformed 136 of
157 dermatologists in a head-to-head dermoscopic melanoma image
classification task. The European Journal of Cancer, 113, 47-54.
https://doi.org/10.1016/j.ejca.2019.04.001

Burkart, N., & Huber, M. F. (2021). A survey on the explainability
of supervised machine learning. Journal of Artificial Intelligence
Research, 70, 245-317. https://doi.org/10.1613/jair.1.12228

Cheng, P., Wang, D., Zhou, P, & Zhang, T. (2017). A survey of
model compression and acceleration for deep neural networks. arXiv
preprint arXiv:1710.09282.

Chollet, F., & Allaire, J.J. (2017). Deep learning with R. 1sted.. Manning
Publications.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., & LeCun,
Y. (2015). The loss surface of multilayer networks. arXiv:1412.0233,
2015.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification.
2nd ed. Wiley.

Emmert-Streib, F., Yang, Z., Feng, H., Tripathi, S., & Dehmer, M.
(2020a). An introductory review of deep learning for prediction mod-

https://doi.org/10.1093/

els with big data. Frontiers in Artificial Intelligence, 3, 4. https://doi.
org/10.3389/frai.2020.00004

Emmert-Streib, F., Yli-Harja, O., & Dehmer, M. (2020b). Artificial intel-
ligence: A clarification of misconceptions, myths and desired status.
Frontiers in Artificial Intelligence, 3, 524339. https://doi.org/10.3389/
frai.2020.524339

Eraslan, G., Avsec, Z, Gagneur, J., & Theis, F. J. (2019). Deep
learning: New computational modelling techniques for genomics.
Nature Reviews Genetics, 20, 1. https://doi.org/10.1038/s41576-019-
0122-6

Francisco-Caicedo, E. F., & Lopez-Sotelo, J. A. (2009). Una approxi-
macion prdctica a las redes neuronales artificiales. Universidad del
Valle.

Gianola, D. (2013). Priors in whole-genome regression: The Bayesian
alphabet returns. Genetics, 194, 573-596. https://doi.org/10.1534/
genetics.113.151753

Grgnbech, C. H., Vording, M. F., Timshel, P. N., Sgnderby, C. K.,
Pers, T. H., & Winther, O. (2020). scVAE: Variational auto-encoders
for single-cell gene expression data. Bioinformatics, 36, 4415-4422.
https://doi.org/10.1093/bioinformatics/btaa293

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for
image recognition. arXiv:1512.03385v1

Henderson, C. R. (1950). Estimation of genetic parameters. Annals of
Mathematical Statistics, 21, 309-310.

Henderson, C. R. (1975). Best linear unbiased estimation and predic-
tion under a selection model. Biometrics, 423-447. https://doi.org/10.
2307/2529430

Hong, H., Jiang, S., Li, H., Du, G., Sun, Y., Tao, H., Quan, C., Zhao,
C., Li, R., Li, W,, Yin, X., Huang, Y., Li, C., Chen, H., & Bo, X.
(2020). DeepHiC: A generative adversarial network for enhancing
Hi-C data resolution. PLoS Computational Biology, 16, €1007287
https://doi.org/10.1371/journal.pcbi. 1007287

Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: who’s
the fairest in the land? On the interpretations, illustrations, and

implications of artificial intelligence. Business Horizons, 62, 15-25.
https://doi.org/10.1016/j.bushor.2018.08.004

Kirkkdinen, H. P., & Sillanpéd, M. J. (2012). Back to basics for Bayesian
model building in genomic selection. Genetics, 191, 969-987.
https://doi.org/10.1534/genetics.112.139014

Krogel, M. A., & Scheffer, T. (2004). Multi-relational learning, text min-
ing, and semi-supervised learning for functional genomics. Machine
Learning, 57, 61-81. https://doi.org/10.1023/B:MACH.0000035472.
73496.0c

Koumakis, L. (2020). Deep learning models in genomics; are we there
yet? Computational and Structural Biotechnology Journal, 18, 1466—
1473. https://doi.org/10.1016/j.csbj.2020.06.017

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521,
436-444. https://doi.org/10.1038/nature 14539

Linder, J., Bogard, N., Rosenberg, A. B., & Seelig, G. (2019). Deep
exploration networks for rapid engineering of functional DNA
sequences. bioRxiv, 864363. https://doi.org/10.1101/864363

Liu, J., Li, J., Wang, H., & Yan, J. (2020). Application of deep learning
in genomics. Science China Life Sciences, 63, 1804—1805. https://doi.
org/10.1007/s11427-020-

Liu, Q., Lv, H., & Jiang, R. (2019). hicGAN infers super resolution Hi-
C data with generative adversarial networks. Bioinformatics, 35,199—
1107. https://doi.org/10.1093/bioinformatics/btz317

Lépez-Garcia, G., Jerez, J. M., Franco, L., & Veredas, F. J. (2020). Trans-
fer learning with convolutional neural networks for cancer survival
prediction using gene-expression data. PLoS ONE, 15, €0230536.
https://doi.org/10.1371/journal.pone.0230536

Marouf, M., Machart, P., Bansal, V., Kilian, C., Magruder, D. S., Krebs,
C. F, & Bonn, S. (2020). Realistic in silico generation and aug-
mentation of single-cell RNA-seq data using generative adversarial
networks. Nature Communications, 11, 166. https://doi.org/10.1038/
s41467-019-14018-z

Meng, X., Liang, Z., Dai, X., Zhang, Y., Mahboub, S., Ngu, D.
W., Roston, R. L., & Schnable, J. C. (2021). Predicting transcrip-
tional responses to cold stress across plant species. Proceedings
of the National Academy of Sciences of the United States, 118,
€2026330118. https://doi.org/10.1073/pnas.2026330118

Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E., (2001). Prediction
of total genetic value using genome-wide dense marker maps. Genet-
ics, 157, 1819-1829. https://doi.org/10.1093/genetics/157.4.1819

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-
mare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostro-
vski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, L., King, H.,
Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-
level control through deep reinforcement learning. Nature, 518, 529—
533. https://doi.org/10.1038/nature 14236

Montesinos-Lopez, O. A., Montesinos-Lopez, A., Pérez-Rodriguez, P.,
Barrén-Lépez, J. A., Martini, J. W. R., Fajardo-Flores, S. B., Gaytan-
Lugo, L. S., Santana-Mancilla, P. C., & Crossa, J. (2021). A Review of
Deep Learning Applications for Genomic Selection. BMC Genomics,
22, 19. https://doi.org/10.1186/s12864-020-07319-x

Nielsen, A. A. K., & Voigt, C. A. (2018). Deep learning to predict the
lab-of-origin of engineered DNA. Nature Communications, 9, 3135.
https://doi.org/10.1038/s41467-018-05378-z

Patterson, J., & Gibson, A. (2017). Deep learning: A practitioner’s
approach. O’Reilly Media.

Repecka, D., Jauniskis, V., Karpus, L., Rembeza, E., Zrimec,
J., Poviloniene, S., Rokaitis, 1., Laurynenas, A., Abuajwa, W.,
Savolainen, O., Meskys, R., Engqvist, M. K. M., Zelezniak, A. (2021).


https://doi.org/10.1093/g3journal/jkaa036
https://doi.org/10.1093/g3journal/jkaa036
https://doi.org/10.1016/j.ejca.2019.04.001
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.3389/frai.2020.00004
https://doi.org/10.3389/frai.2020.00004
https://doi.org/10.3389/frai.2020.524339
https://doi.org/10.3389/frai.2020.524339
https://doi.org/10.1038/s41576-019-0122-6
https://doi.org/10.1038/s41576-019-0122-6
https://doi.org/10.1534/genetics.113.151753
https://doi.org/10.1534/genetics.113.151753
https://doi.org/10.1093/bioinformatics/btaa293
https://doi.org/10.2307/2529430
https://doi.org/10.2307/2529430
https://doi.org/10.1371/journal.pcbi.1007287
https://doi.org/10.1016/j.bushor.2018.08.004
https://doi.org/10.1534/genetics.112.139014
https://doi.org/10.1023/B:MACH.0000035472.73496.0c
https://doi.org/10.1023/B:MACH.0000035472.73496.0c
https://doi.org/10.1016/j.csbj.2020.06.017
https://doi.org/10.1038/nature14539
https://doi.org/10.1101/864363
https://doi.org/10.1007/s11427-020-
https://doi.org/10.1007/s11427-020-
https://doi.org/10.1093/bioinformatics/btz317
https://doi.org/10.1371/journal.pone.0230536
https://doi.org/10.1038/s41467-019-14018-z
https://doi.org/10.1038/s41467-019-14018-z
https://doi.org/10.1073/pnas.2026330118
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1038/nature14236
https://doi.org/10.1186/s12864-020-07319-x
https://doi.org/10.1038/s41467-018-05378-z

MONTESINOS-LOPEZ ET AL.

The Plant Genome &

9of 9

Expanding functional protein sequence space using generative adver-
sarial networks. Nature Machine Intelligence, 3, 324-333. https://doi.
org/10.1038/s42256-021-00310-5

Sinai, S., Kelsic, E., Church, G. M., & Nowak, M. A. (2017). Variational
auto-encoding of protein sequences. arXiv:1712.03346.

Singh, S., Yang, Y., Péczos, B., & Ma, J. (2019). Predicting enhancer—
promoter interaction from genomic sequence with deep neural net-
works. Quantitative Biology, 7, 122-137. https://doi.org/10.1007/
s40484-019-0154-0

Wang, H., Cimen, E., Singh, N., & Buckler, E. (2020). Deep learning
for plant genomics and crop improvement. Current Opinion in Plant
Biology, 54, 34—41. https://doi.org/10.1016/j.pbi.2019.12.010

Wang, Y., Wang, H., Wei, L., Li, S., Liu, L., & Wang, X. (2020). Syn-
thetic promoter design in Escherichia coli based on a deep generative
network. Nucleic Acids Research, 48, 6403—-6412. https://doi.org/10.
1093/nar/gkaa325

Whalen, S., Truty, R. M., & Pollard, K. S. (2016). Enhancer—promoter
interactions are encoded by complex genomic signatures on looping
chromatin. Nature Genetics, 48, 488—496. https://doi.org/10.1038/ng.
3539

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems
for optimization. IEEE Transactions on Evolutionary Computation,
1, 67-82. https://doi.org/10.1109/4235.585893

Wolpert, D. H., & Macready, W. G. (2005). Coevolutionary free lunches.
IEEE Transactions on Evolutionary Computation, 9, 721-735.
https://doi.org/10.1109/TEVC.2005.856205

Wu, X., & Zhang, i. (2016). Automated inference on criminality using
face images. arXiv:1611.04135. https://arxiv.org/pdf/1611.04135v1.
pdf

Yelmen, B., Decelle, A., Ongaro, L., Marnetto, D., Tallec, C., Monti-
naro, F., Furtlehner, C., Pagani, L., & Jay, F. (2021). Creating arti-
ficial human genomes using generative models. PLoS Genetics, 17,
€1009303. https://doi.org/10.1371/journal.pgen.1009303

Zeng, W., Wu, M., & Jiang, R. (2018). Prediction of enhancer—promoter
interactions via natural language processing. BMC Genomics, 19, 84.
https://doi.org/10.1186/s12864-018-4459-6

How to cite this article: Montesinos-Lopez, O. A.,
Montesinos-Lopez, A., Hernadez-Suarez, C. M.,
Barrén-Lopez, J. A., & Crossa, J. Deep-learning
power and perspectives for genomic selection. Plant
Genome. 2021;14:€20122.
https://doi.org/10.1002/tpg2.20122


https://doi.org/10.1038/s42256-021-00310-5
https://doi.org/10.1038/s42256-021-00310-5
https://doi.org/10.1007/s40484-019-0154-0
https://doi.org/10.1007/s40484-019-0154-0
https://doi.org/10.1016/j.pbi.2019.12.010
https://doi.org/10.1093/nar/gkaa325
https://doi.org/10.1093/nar/gkaa325
https://doi.org/10.1038/ng.3539
https://doi.org/10.1038/ng.3539
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/TEVC.2005.856205
https://arxiv.org/pdf/1611.04135v1.pdf
https://arxiv.org/pdf/1611.04135v1.pdf
https://doi.org/10.1371/journal.pgen.1009303
https://doi.org/10.1186/s12864-018-4459-6
https://doi.org/10.1002/tpg2.20122

	Deep-learning power and perspectives for genomic selection
	Abstract
	1 | INTRODUCTION
	2 | DEEP LEARNING AS A SPECIAL STATISTICAL MACHINE-LEARNING METHOD
	2.1 | Why use DL in GS?
	2.2 | Why can research in DL be applied to GS?
	2.3 | The downside of DL models

	3 | DISCUSSION
	4 | CONCLUSIONS
	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTIONS
	FUNDING
	CONFLICT OF INTEREST
	ORCID
	REFERENCES


