The 2030 Agenda for Sustainable Development, adopted by all United Nations (UN) Member States in 2015, provides a shared blueprint for peace and prosperity, for people and the planet. At its heart are the 17 Sustainable Development Goals (SDGs), which are an urgent call for action by all countries to achieve a better and more sustainable future for all.

The SDGs set the pathway for agricultural, social, and economic development. They address the global challenges we face, including poverty, inequality, climate change, environmental degradation, peace and justice.

CGIAR transformed its approach to ensure that its work is aligned with the ambitious goals. CIMMYT, through its research-for-development activities, contributes to empower women, reduce greenhouse gas emissions, and improve the health and nutrition of the world’s poorest people.

CIMMYT’s work contributes to the following SDGs:

1. No poverty
2. Zero hunger
3. Good health and well-being
4. Quality education
5. Gender equality
6. Clean water and sanitation
7. Affordable and clean energy
8. Sustainable cities and communities
9. Industry, innovation and infrastructure
10. Reduced inequalities
11. Peace and justice
12. Responsible consumption and production
13. Climate action
14. Life below water
15. Life on land
16. Peace, justice and strong institutions
17. Partnerships for the goals

Front cover. Farmers carry clay pots on their heads as they walk back home in Bagan, Myanmar. A plant sprouts from the ground.

ABOUT CIMMYT

CIMMYT – the International Maize and Wheat Improvement Center – is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies.

CONTENTS

2 Message from the Chair of the Board of Trustees
3 Message from the Director General
4 2020 in numbers
6 Highlights from around the world
8 NUTRITION, HEALTH AND FOOD SECURITY
 Bright horizons for biofortification
11 POVERTY REDUCTION, LIVALIHOODS AND JOBS
 A call to reassess the value of cereals in food-systems and nutrition research
13 Women entrepreneurs lead their families through the COVID-19 crisis
15 Quantifying the impact of COVID-19 lockdowns
16 GENDER EQUALITY, YOUTH AND SOCIAL INCLUSION
 Water breaks barriers: Drip irrigation improves the lives of farmers with disabilities in Zimbabwe
18 Inclusion by design: Targeted outreach increases women participation in trainings
20 CLIMATE ADAPTATION AND MITIGATION
 Maize and wheat harvests keep pace despite the pandemic
22 Opportunity science and promotion boost climate-smart farming in India
24 ENVIRONMENTAL HEALTH AND BIODIVERSITY
 Plants, people and the next pandemic
26 Science wins a round in the fight against fall armyworm
28 CGIAR Research Programs and Platforms
29 Funders
30 Board of Trustees and Management Committee
31 Offices around the world
32 Acronyms
32 Credits
The year 2020 has been unprecedented, in terms of both the challenges from the COVID-19 pandemic and the initiative of a far-reaching transformation of CGIAR into a more aligned and stronger organization.

This was the fourth year in the execution of CIMMYT’s Strategic Plan 2017-22. Notwithstanding some pandemic-induced reduction in research activities, we witnessed the continued delivery of its research and partnerships outcomes for the benefit of millions of the poorest smallholder farmers. The wide-ranging adoption of CIMMYT varieties in farmers’ fields and continued progress in fighting pests and diseases by exploiting the rich diversity of CIMMYT’s genebanks are particular highlights. More generally, CIMMYT continues to pivot further towards a systems-based approach to addressing the pressing challenges of enhancing the livelihoods of smallholder farmers in a climate change crisis.

The pandemic required a significant risk management response which was successfully implemented and continued to strengthen CIMMYT’s ability to deliver high-quality research outcomes, while also ensuring the wellbeing of its staff. The Board acknowledges and applauds the tremendous efforts of staff at all levels in these difficult times.

CIMMYT was able to maintain its funding pipeline and achieved a break-even financial result for the year. CIMMYT has concluded the 2020 financial year with a $0.6 million deficit. The financial result, before taking into account actuarial losses as a consequence of declining discount rates globally, was kept at a $0.1 million surplus. Reduced indirect cost recovery was compensated by lower overhead costs, a result of cost-saving measures initiated by management. For 2021, CIMMYT is well-positioned – with the available budget, estimated carryover of 2020 funding, and pipeline aligned with the organization’s high-level resource mobilization goal – to maintain at least the same level of funding as in recent years.

In 2020, the One CGIAR transition gathered real momentum. With an ambitious aim to further synergize assets, partnerships, and operations to deliver greater impact, the reformulation of CGIAR will ensure that we can fully and effectively respond to new and emerging global challenges.

As part of this transformation, in January, a Transition Consultation Forum was formed to allow for multi-stakeholder input and advice on the transition, along with Thematic Transition Advisory Groups and a Transition Program Management Unit.

CIMMYT was a key participant in the gradual execution of the One CGIAR Recommendations adopted by the CGIAR System Council in November 2019. With full support from the Board, Center leadership was actively involved in this initiative across a range of Communities of Practice and played an important role in the development of key documents.

A major milestone in 2020 was the approval in December of the new CGIAR 2030 Research and Innovation Strategy and the CGIAR Performance and Results Management Framework, which constitute a bold and relevant blueprint for impactful research and transformative change.

Also, in 2020, welcome steps toward unified governance were made: The CGIAR System Board was reconstituted in September, at which time the three members of the Executive Management Team (EMT) began their tenure. The EMT will further steer the One CGIAR transition, under the oversight of the CGIAR System Board.

In October 2020, the Board endorsed significant amendments to CIMMYT’s Constitution to enable the Center to participate in the governance aspects of the One CGIAR reform. These changes enabled a reconfiguration of the Center’s Board, with CGIAR System Board members joining the CIMMYT Board and several existing Board members departing. The strong contributions of the latter are much appreciated.

Due to the pandemic, the Board was unable to meet in person. Nevertheless, it was able to follow closely the Center’s progress in meeting the year’s objectives. The Board acknowledges the tremendous efforts and achievements of CIMMYT staff and partners, and looks forward to another successful year.

Nicole L. Birrell
Chair, Board of Trustees

This has indeed been a year of resilience, renewal, and transformation.

We began 2020 with grim news of the COVID-19 pandemic spreading from country to country, wreaking havoc on national economies, causing countless personal tragedies, and putting additional pressure on the livelihoods of the poor and hungry. The global crisis exposed the enormous vulnerability of our food system. If we have learned anything from the crisis, it is the absolute necessity to deliver science for renewed food systems that deliver affordable, sufficient, and healthy diets produced within planetary boundaries.

The dedication and resilience of the CIMMYT community this year allowed us to make important advances toward that vision.

Our decades-long joint work with the International Institute of Tropical Agriculture (IITA) was validated this year in a comprehensive review. Between 1995-2015, nearly 60% of all maize varieties released in southern Africa.

Considered a game-changing partnership for smallholder Mexican farmers, the MasAgro project moved to a new level in 2020, with the support of the Mexican government. Today, more than 300,000 farmers grow maize, wheat and rotation crops with sustainable technologies on more than one million hectares across Mexico. Many collaborate with agri-food companies, providing fair wages to farmers and high-quality, sustainably produced maize and wheat products to customers.

The pandemic has seen many of us renew our working style. While we cannot replace our essential field and lab work, we will keep on meeting partners and colleagues partly online, a change that is certain to reduce our future ecological footprint.

Transformation is also occurring in our global research community. CIMMYT staff have been actively involved in working groups, task forces and communities of practice to support the One CGIAR transition. Personally, it has been an honor to co-lead the group of Directors General, funding partners, and science leaders to develop the foundation for the CGIAR 2030 Research and Innovation Strategy.

I want to close by expressing my deepest gratitude to the staff, partners, and community of CIMMYT who overcame unprecedented challenges this year. Thank you to CIMMYT staff and research partners, especially those working in the field and labs, who went above and beyond their usual activities and work schedules to keep CIMMYT’s core business going. Thank you to our funding partners for believing in our mission. To those juggling care for children and ill family members with the challenges of working remotely.

To those managing CIMMYT’s crisis response across the countries where we work. To those who have remained committed – both in their work and in their minds – to CIMMYT’s mission. And I wish to express my sincere condolences for the CIMMYT family members who lost their lives to this dreadful pandemic.

I invite you to read this report and join me in continuing to actively work towards resilience, renewal, and transition in our work and in our agri-food systems, to ensure that they are strong in the face of current and future crises.

Martin Kropff
Director General
135K followers on social media and 175K video views on YouTube.

1,241 media mentions, including Bloomberg, Forbes Mexico and Vice.

1.7M pageviews on the CIMMYT website.

405 peer-reviewed journal articles published by CIMMYT researchers. More than 2.3M downloads from the publications repository.

48 unique CGIAR-derived maize varieties released by national partners in Africa, Asia and Latin America.

63 unique CGIAR-derived wheat varieties released by national partners in Africa, Asia and Latin America.

1,253 staff of 50 nationalities working at CIMMYT.

CIMMYT distributes more than 1,500 maize and wheat seed shipments annually, to as many as 800 recipients in over 100 countries. Shipments contain over 500,000 individual seed packets.

48 unique CGIAR-derived maize varieties released by national partners in Africa, Asia and Latin America.

28 webinars with CIMMYT researchers sharing in-depth knowledge.

11 special speakers, including Jeffrey Sachs, talking to the CIMMYT community on climate change, food security and the role that cereals play in feeding the world sustainably.
HIGHLIGHTS FROM AROUND THE WORLD

AFRICA

Ethiopia
A study of plant DNA showed that farmers in Ethiopia have widely adopted improved rust-resistant bread wheat varieties since 2014. Ten varieties accounted for over 8% of the wheat area sampled; of these, four were rust-resistant varieties released after 2010, corresponding to an estimated additional 225,000 tons of production in 2016-17, valued at $50 million.

One of the initiatives contributing to this impact was the Wheat Seed Scaling project, CIMMYT and its partners identified and developed new rust-resistant wheat varieties, championed the speedy multiplication of these varieties, and used field demonstrations and strategic marketing to teach thousands of farmers in 54 districts of Ethiopia's major wheat growing regions.

The project points up the need to identify new resistance genes, develop wheat varieties with durable, polygenic resistance, promote farmers’ use of rust-resistant wheat varieties, and seed new varieties on a regular basis.

Zimbabwe
As part of a rural resilience project, CIMMYT published a guide to stress-tolerant crop varieties for smallholder farmers in Zimbabwe.

The guide is a critical output of a project led by CIMMYT and the international agricultural research response agency CGIAR, in collaboration with the United Nations World Food Programme (WFP), the World Government of Zimbabwe and other partners.

Among the project components is the promotion of stress-tolerant seed and climate-smart agriculture practices to smallholders.

Kenya
CIMMYT announced the successful development of five CIMMYT-derived fall armyworm-resistant maize hybrids in Kenya.

By leveraging tropical insect-resistant maize germplasm developed in Mexico, coupled with elite stress-resilient maize germplasm developed in sub-Saharan Africa, CIMMYT worked intensively over the past three years to identify and validate sources of native genetic resistance to fall armyworm in Africa.

Together with national agricultural research system (NARS) partners, CIMMYT will nominate these hybrids for varietal release in target countries in sub-Saharan Africa, especially in eastern and southern Africa. After national performance trials and varietal release and registration, the hybrids will be sublicensed to seed company partners on a non-exclusive, royalty-free basis. This will allow accelerated seed scaling and deployment, for the benefit of farming communities.

AMERICAS

Mexico
CIMMYT released a new category of maize inbred line called CIMMYT Maize Genetic Resource Lines (CMGRL). They are derived from crosses between elite CIMMYT lines and landrace accessions, populations or synthetics from the CIMMYT Germplasm Bank.

The inaugural class of CMGRLs includes five subtropical-adapted lines for tolerance to drought during flowering and grain-fill, and four tropical-adapted lines for tar spot complex resistance. CIMMYT will periodically release CMGRLs as superior lines are identified for economically important abiotic and biotic stresses as well as end-use traits.

The 2020 Innovative Applications in Analytics Award (IAAA) – which emphasizes novelty and creativity in analytics applications along with real-world impact – was awarded to CIMMYT, the Alliance of Biodiversity International and CIAT, and the International Institute for Applied Systems Analysis (IIASA) for their Integrated Analytics for Sustainable Agriculture in Latin America project.

The winning submission recognizes groundbreaking data systems and tools by publicly funded research and field technicians who advise more than 150,000 farmers who participate in MaxAgro, CIMMYT’s bilateral collaboration project with Mexico for sustainable maize and wheat production.

The research results, published in Nature, provide the most comprehensive atlas of wheat genome sequences ever reported. The D10+ Genome Project collaboration involved more than 90 scientists from universities and institutes in Australia, Canada, Germany, Israel, Japan, Mexico, Saudi Arabia, Switzerland, the United Kingdom, and the United States.

Massive-scale genomic study
Researchers working on the Seeds of Discovery (Seeds) initiative have genetically characterized 70,000 samples of wheat from the germplasm banks of CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA).

The findings of the study, published in Nature Communications, are described as “a massive-scale genotyping and diversity analysis” of the two types of wheat grown globally – bread and pasta wheat – and of 27 known wild species.

The results show distinct biological groupings within bread wheats and suggest that a large proportion of the genetic diversity present in landraces has not been used to develop new high-yielding, resilient and nutritious varieties.

GLOBAL

Genomic atlas for wheat improvement
In a landmark discovery for global wheat production, an international team led by the University of Saskatchewan and scientists from CIMMYT (represented by the genomes of 15 wheat varieties) representing breeding programs around the world, enabling scientists and breeders to identify influential genes much more quickly for improved yield, pest resistance and other important crop traits.

The research results, published in Nature, provide the most comprehensive atlas of wheat genome sequences ever reported. The D10+ Genome Project collaboration involved more than 90 scientists from universities and institutes in Australia, Canada, Germany, Israel, Japan, Mexico, Saudi Arabia, Switzerland, the United Kingdom, and the United States.

Massive-scale genomic study
Researchers working on the Seeds of Discovery (Seeds) initiative have genetically characterized 70,000 samples of wheat from the germplasm banks of CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA).

The findings of the study, published in Nature Communications, are described as “a massive-scale genotyping and diversity analysis” of the two types of wheat grown globally – bread and pasta wheat – and of 27 known wild species.

The results show distinct biological groupings within bread wheats and suggest that a large proportion of the genetic diversity present in landraces has not been used to develop new high-yielding, resilient and nutritious varieties.
In Nepal, farmers collectively produce nearly two million tons of wheat each year. Most of them are smallholders with less than one hectare of land. In remote regions, families consume wheat products, such as chapati, roti, momo dumplings, and noodles made from grain that is known to be low in essential micronutrients, contributing to poor nutrition in the areas.

“The tendency to consume wheat directly on the farms and in the communities where it is grown means that fortified wheat from commercial mills is unlikely to reach poor rural communities,” said CIMMYT senior scientist and wheat breeder Velu Govindan.

Research has shown that food security improvements in Nepal over the last several decades can be accredited in part to rising cereal production. Although the situation is improving, malnutrition is still considered a major issue in rural subsistence populations. According to the Global Hunger Index 2019, 36% of children in the country suffer from stunting, an indicator of chronic undernutrition.

This is an important reminder that a simple increase in food availability does not guarantee the population is getting the nutritional content needed to break out of the poverty cycle – a growing issue known as “hidden hunger.” In addition, most of the popular wheat varieties grown in the country have become vulnerable to increasing climatic stresses, new types of wheat diseases or virulent strains of the existing pathogens.

Start with the seed

Huge strides are being made in the world of crop breeding to improve the nutrient quality, yield, and other farmer-preferred traits of staple crops through breeding – has become a powerful tool in combatting hidden hunger. Using conventional breeding methods, CIMMYT has become a leader in the development of micronutrient-dense staple crops.

Biofortification – the development of micronutrient-dense staple crops through breeding – has become a powerful tool in combatting hidden hunger. Using conventional breeding methods, CIMMYT has become a leader in the development of biofortified maize and wheat.

The future is looking brighter

In 2020, CIMMYT worked with the Nepal Agricultural Research Council (NARC) to develop what ended up being a historic release of six new wheat varieties in the country. Five of them were biofortified, developed by crossing modern high yielding wheats with wild relatives that are nearly 20-40% higher in zinc and iron content than local commercial crops. In addition, these varieties were superior in yield and resistance to prevalent diseases compared to existing varieties.

“Biofortification of staple crops such as wheat is a proven method to help reverse and prevent zinc deficiency, especially for those without access to a more diverse diet,” said Arun Joshi, CIMMYT regional director for South Asia.

The five new biofortified varieties – Bheri Ganga, Himganga, Khumal-Shakti, Zinc Gahun 1 and Zinc Gahun 2 – and wheat blast-resistant variety Borlag 2020 were developed in a “fast-track” approach. The team of NARC scientists was led by Dhruva Thapa at Khumaltar, who focused on the mid- and high-hill regions, and Roshan Basnet at the National Wheat Research Program in Bhairahawa, who focused on the Terai plains.

The scientists introduced, tested and identified the best varieties from trials sourced from CIMMYT’s biofortified wheat breeding program with support from Madan Bhatta, a CIMMYT consultant in Nepal. With these varieties, farmers in all wheat growing regions of Nepal will be able to reap enormous benefits.

“The variety is tailored for the environmental conditions of a range of wheat growing regions...”

Within 10 years, it is expected that at least 80% of all new wheat lines from the CIMMYT pipeline targeted for release in Asia, Africa, and Latin America will have higher levels of zinc.

Ravi Singh, head of wheat breeding at CIMMYT.
in the country, including tolerance to diseases and heat stress. Breeders also considered processing quality, to create a diverse range of wheat-based food products.

Setting targets and hitting the mark

Biofortified wheat has several potential advantages as a delivery vehicle for micronutrients in diets, in South Asia and beyond. Since 2019, a project led by CIMMYT (Accelerating the Mainstreaming of Elevated Zinc in Global Wheat Breeding) aims to mainstream biofortification as a breeding standard. Scientists are following a population-wide approach, like adding fluoride to tap water. The support of funders and national partners enabled the release of the new varieties in Nepal in record time.

“This within 10 years, it is expected that at least 80% of all new wheat lines from the CIMMYT pipeline targeted for release in Asia, Africa, and Latin America will have higher levels of zinc. Given CIMMYT’s predominance as a global improved wheat breeding germplasm supplier, people who consume wheat products in developing countries will benefit from substantially increased levels of zinc,” explained Ravi Singh, head of wheat breeding at CIMMYT. Since zinc and iron are highly correlated genetically, these efforts are simultaneously increasing iron content in the grain.

A BIGGER BITE

A call to reassess the value of cereals in food-systems and nutrition research

The world eats cereals. Maize and wheat alone make up nearly a quarter of the world’s dietary energy intake, and are critical vessels for micronutrient and dietary fiber delivery. However, the essential role they play in global nutrition is concerning understated when one looks at trends in agri-nutrition research. The number of hungry people globally has also started to increase again over recent years, a figure that has surely been exacerbated by the effects of the COVID-19 pandemic.

Undermining the role that cereal crops play in global food security poses risks not just to population health, but also to smallholder agricultural economies as many countries across Africa, Asia, and Latin America aim for self-sufficiency in cereal production. FAO data from 2019 shows that wheat and maize covers over 200 million hectares of farmland worldwide.
In 2020, scientists from CIMMYT and the University of London published an important review of agri-nutrition research and dietary guidance revealing that the health benefits of cereals are often undervalued and overlooked. However, cereal grains will play a large role in reducing global malnutrition.

Current nutrition research focuses mostly on micronutrient malnutrition and stunting, which are indisputably important. However, bioactive food components (BIOFOCS), such as dietary fiber and flavonoids, have beneficial antioxidant, anticarcinogenic, anti-inflammatory and antimicrobial properties that are very important in the bigger picture of human health. Additionally, food group categorization does not account for the effect that modern crop breeding, food processing and manufacturing can have on nutritional quality – for better or for worse.

According to the study, co-authored by CIMMYT economists Jason Donovan and Olaf Erenstein, the argument "is for agri-nutrition research to open up to a broader perspective on the nexus of agriculture, food, nutrition and health. At the heart of this complexity is acknowledgment that foods contain more than the conventional macro- and micronutrients, and that agri-nutrition research should address the nutrition and health requirements for all the essential bioactive food components."

In a new working paper, the authors look at the links between agriculture, food security, and human nutrition and health, and the contribution of maize and wheat to achieving the nutrition objectives of the UN Sustainable Development Goals (SDGs). Their work builds on previous research from CIMMYT scientists on nutrition and health, an area of increasing importance.

Partners and funders

CGIAR Research Program on Maize (MAIZE) and CGIAR Research Program on Wheat (WHEAT).

In 2020, scientists from CIMMYT and the University of London published an important review of agri-nutrition research and dietary guidance revealing that the health benefits of cereals are often undervalued and overlooked. However, cereal grains will play a large role in reducing global malnutrition.

Current nutrition research focuses mostly on micronutrient malnutrition and stunting, which are indisputably important. However, bioactive food components (BIOFOCS), such as dietary fiber and flavonoids, have beneficial antioxidant, anticarcinogenic, anti-inflammatory and antimicrobial properties that are very important in the bigger picture of human health. Additionally, food group categorization does not account for the effect that modern crop breeding, food processing and manufacturing can have on nutritional quality – for better or for worse.

According to the study, co-authored by CIMMYT economists Jason Donovan and Olaf Erenstein, the argument "is for agri-nutrition research to open up to a broader perspective on the nexus of agriculture, food, nutrition and health. At the heart of this complexity is acknowledgment that foods contain more than the conventional macro- and micronutrients, and that agri-nutrition research should address the nutrition and health requirements for all the essential bioactive food components."

In a new working paper, the authors look at the links between agriculture, food security, and human nutrition and health, and the contribution of maize and wheat to achieving the nutrition objectives of the UN Sustainable Development Goals (SDGs). Their work builds on previous research from CIMMYT scientists on nutrition and health, an area of increasing importance.

Partners and funders

CGIAR Research Program on Maize (MAIZE) and CGIAR Research Program on Wheat (WHEAT).

WOMEN ENTREPRENEURS lead their families through the COVID-19 crisis

When COVID-19 struck India, the government ordered strict lockdowns on March 24, 2020 to limit the spread of the disease. But for much of India’s labor force, lockdown meant lost jobs and being stranded in towns or cities away from their families, struggling to survive.

The lockdown was particularly agonizing for Sashimoni Lohar, a 53-year-old farmer from Badbil village, in the state of Odisha. Both her sons lost their jobs as laborers, one in a town near home and the other in a city on the opposite side of the country. Her son Debodutta was left stranded for two months in the city of Bengaluru when the midnight lockdown was announced, managing to return home two months later, downtrodden and penniless.

Maize farming has supported us during this low-income and very critical period. I shall continue maize cultivation and hope to increase our lease in land next year.

Sashimoni Lohar, a farmer from Badbil village, in India’s Odisha state.
Odisha who have led their families through the COVID-19 pandemic. Supported by projects such as CIMMYT’s Cereal Systems Initiative for South Asia (CSISA), these women were able to generate enough income from similar roadside maize stalls when the pandemic left many male family members jobless.

The women from Badbil and the nearby villages have become well-known, in and around the district, for their high-quality green cobs and marketing smarts. The rows of industrious women selling maize by the highway became news. These women had the courage to change their circumstances and lifted their families out of situations of uncertainty and hardship.

Many hailed their determination as a symbol of women’s empowerment in the tribal community.

Engaging tribal groups

Maysurbanj is a district in Odisha where almost two thirds of the population are from tribal groups. During the kharif season, from June to November, thousands of hectares of upland are left fallow, as farmers prefer not to take risks against the unpredictable monsoon weather. From 2013 to 2020, CIMMYT researchers from the CSISA project, in collaboration with government departments, NGOs, private companies, women’s self-help group federations and the Integrated Tribal Development Agency (ITDA), helped develop maize cultivation in the district as a sustainable livelihood option for tribal farmers.

Thousands of hectares of fallow lands are now being converted to cultivate maize, focusing on sustainable agriculture and livelihoods, and predominantly involving women. In 2020 alone, more than 100 tribal women from Badbil village had cultivated approximately 120 acres of commercial hybrid maize.

Support to farmers extends all the way from sowing to crop harvesting. To strengthen dry grain marketing and to avail the benefits of different schemes under the government of Odisha’s support for farmer producer groups, CIMMYT staff working under the CSISA project have formed two women’s farmer producer groups in Badbil village, which have been registered by the Odisha Rural Development and Marketing Society (ORMAS). All the women maize farmers of the village are now registered members of the groups, with twenty members each.

Lohar is a member of the Shakti Mayee producer group and has already planned to increase the area of maize farming and to cultivate vegetables for marketing through the group’s support.

CIMMYT and its partners are building on this initiative, creating market linkages to make maize farming more sustainable. As a next step, CIMMYT and ORMAS aim to form a farmers production company formed entirely by women, for joint marketing of maize and other crops.

Quantifying the impact of COVID-19 lockdowns

Over a third of the 61 million people who make up Bangladesh’s labor force are paid daily. A nationwide lockdown from March 26 to May 30, 2020, restricted the spread of COVID-19 but, without adequate support, daily-wage workers faced severe food and nutrition insecurity.

In a study published in PLOS ONE, CIMMYT Agricultural Economist Khondoker Motaleb examined the food security and welfare impacts of COVID-19 lockdowns on daily-wage workers in Bangladesh – both in farming and other sectors. With comparatively lower resources than salaried and self-employed workers, daily-wage workers are more likely to be hit hardest by COVID-related loss in earnings.

Using information from more than 50,000 workers in Bangladesh, collected by the Bangladesh Bureau of Statistics (BBS), the study quantified the economic losses from COVID-19 lockdowns, based on daily-wage workers’ lost earnings.

The authors estimated that each day of complete lockdown represented an economic loss of $64.2 million for all daily-wage workers – on average, more than $3 per worker per day.

Researchers also calculated the subsidies needed to ensure basic food and nutrition security during the lockdown period. After assessing the daily per capita food expenditure for farm and non-farm households, the study estimated the need for a minimum compensation of around $31 per day for each household supported by daily-wage workers.

As the COVID-19 crisis continues to threaten already vulnerable food systems around the world, CIMMYT remains committed to its mission of achieving food security and improving livelihoods around the world through science. Understanding the impacts of global shocks such as the COVID-19 pandemic remains a crucial part of this research agenda.

In Bangladesh, CIMMYT contributes to food and nutritional security and improved livelihoods. Through collaborative research and partnerships, CIMMYT advances sustainable agricultural practices, including improved varieties. CIMMYT works to bolster the productivity of cereal-based farming systems, to improve value chains and market development, and to empower farmers and service providers with personalized advice.
Drip irrigation improves the lives of farmers with disabilities in Zimbabwe

Zimbabwe’s eastern highlands are renowned for their diverse and abundant fresh produce. In districts like Nyanga, farming families grow a variety of crops all year round for personal consumption and for sale: from maize, potatoes, and sugar beans to leafy vegetables and garlic.

Long plastic pipes lining the district – some stretching for more than 10 kilometers – use gravity to transport water from the mountains down to the village gardens. However, over the last decade, increasing climate-induced water shortages, prolonged dry spells and high temperatures have depleted local water reserves.

To manage this limited resource, farmers in the area access it based on a rationing schedule managed by the local council – but availability is inconsistent. Often during the lean season, there is not enough water to irrigate vegetable plots efficiently and in good time, which leads to moisture stress and poor crop performance.

When water availability is low, it is not uncommon for conflict to develop in villages, as households compete for access. Despite efforts to schedule distribution across all areas, reports of farmers cutting off or diverting the water supply abound.

Less waste, more time

Traditionally, farmers in the district have used flood, drag hose, bucket, and sprinkler systems for irrigation – laborious methods that tend to waste water and require the services of young, able-bodied workers.

For Prudence Nyanguru, a maize farmer in Nyanga who also grows tomatoes, potatoes, cabbages, and sugar beans, the limited number of sprinklers available for her garden meant that she previously had to irrigate manually every other day, alternating between the sprinkler and hose pipe and taking more than five hours to cover her 0.05-hectare plot.

But now, new, affordable garden drip irrigation kits installed by CIMMYT are making it easier for farmers like her to manage their limited resources efficiently. They now have more control over application and reduce water waste to a minimum.

“Whereas before I would spend six hours shifting the sprinklers or moving the hose,” said Nyanguru, “I now just switch on the drip and return in about two or three hours to turn off the lines.”

Ease and efficiency for all

CIMMYT researchers supported the use of small pumps for irrigation after noticing that farmers would not reap the full benefits of mechanization if they continued to depend exclusively on erratic rainfall. After the rainy season, two-wheel tractors and other implements were often parked and unused for the rest of the year.

This new form of irrigation has brought many benefits to rural farming communities in Nyanga, from reducing costs to supporting weed management. The reduction of labor intensity has been particularly important to strengthen the resilience of those who may have previously struggled to withstand and recover from stresses like water scarcity.

Of the 30 farmers who received CIMMYT drip kits in 2020, at least five had previously experienced limitations to full participation in farming activities as a result of physical barriers, access challenges and strenuous irrigation methods. The new irrigation kit was intentionally designed with the needs of people with disabilities in mind.

For 37-year-old Simon Makanza, for example, his physical disability made accessing and carrying water to use in his homestead extremely difficult. “I used to walk to a well about 500 meters away to fetch water using a bucket,” he explained. “This was challenging given my condition and by the time I finished, I would be exhausted and unable to do any other work.”

The installation of the drip kit in Makanza’s garden has removed physical barriers, transforming the way he works. He can now operate the pump and drip-line switches with minimal effort, and no longer grapples with uneven pathways to fetch water, or wells and pumps that are heavy for him to operate.

The families of people with disabilities are also benefiting from the advantages of the drip systems. “I don’t spend all day in the field like I used to,” said George Nyamakanga, whose brother Barnabas has a psychosocial disability. “Now, I have enough time to assist and care for my brother while producing enough to feed our family of eight.”

The ease of operation and efficiency of the drip kits also enables elderly farmers to engage in garden activities where they might previously have struggled, with direct benefits for the nutrition and incomes of the wider community.

Partners and funders

This work was carried out under the Program for Growth and Resilience (PROGRESS) consortium, managed by the Zimbabwe Resilience Building Fund (ZRBFF) with support from the Ministry of Lands, Agriculture, Fisheries, Water and Rural Resettlement, the European Union (EU), the Embassy of Sweden, the United Nations Development Programme (UNDP), and the Foreign, Commonwealth & Development Office (FCDO) of the United Kingdom.
INCLUSION BY DESIGN
Targeted outreach increases women participation in trainings

In tropical parts of Mexico, high humidity and pervasive crop pests regularly cause smallholder farmers to lose up to 40% of their grain after harvest, often with severe consequences for local food security. Fortunately, such losses are largely avoidable when farmers adopt best postharvest practices, and appropriate grain storage technologies, which CIMMYT has been promoting for many years.

However, while testing these technologies as part of a large-scale study on dozens of sites across the country, CIMMYT researchers discovered a new obstacle. In rural Mexico, as in many rural communities worldwide, women play an important role in postharvest activities, but researchers noted that it was mostly men who attended relevant trainings on how to process and store grain. To address this, they had to find new approaches to ensure that future CIMMYT trainings would reach those who stand to benefit the most – namely, the women who carry out the bulk of postharvest work in their communities.

Strategies to increase participation included organizing trainings specifically for women, purposefully scheduling trainings at times when women would be available to attend, working in collaboration with female agricultural extension agents, and designing invitations with inclusive language. For example, those sharing invitations – whether using flyers or through word of mouth – were specifically asked to refer to both productores and productoras (the male and female words for “farmers” in Spanish), or use the gender neutral jóvenes when referring to young people.

The new gender inclusion strategies were most recently implemented during a project to strengthen market access for smallholder maize and legume farmers in the states of Campeche, Chiapas and Oaxaca, which ran from 2018 to 2020 and featured a large postharvest management component.

Despite the challenges posed by COVID-19 restrictions in the final project year, CIMMYT trained 2,801 farmers – 38% of them women – on postharvest management, with maize grain losses dropping from 19.5% to less than 0.2% as a result of using hermetic technologies.

Researchers are now looking to build on this success by incorporating this gender-sensitive approach into future projects with the Walmart Foundation, harnessing women’s managerial and technical competencies and encouraging their participation in decision-making over income, cash-crop farming, and autonomy in agricultural production.
Despite COVID-19 pandemic disruptions and extreme weather events, maize and wheat farmers in Africa, Asia, and Latin America were mostly able to salvage good harvests from their 2020 crops. Smallholders overcame many challenges, including the high costs and shortages of field labor, qualms about hiring outside field workers, and being cut off from inputs, credit, or technical support, according to Jelle Van Loon, CIMMYT mechanization specialist in Latin America.

Some rural communities in Mexico closed off completely for fear of COVID... but household members did go to the field and work, aware that the grain they produced might prove critical.

In Africa, COVID-related lockdowns impeded the movement of rural inhabitants who, in addition to farming, depend on trade, part-time jobs as crafts persons and artisans, and small-scale mining. “Off-farm income is a mainstay of rural households in Africa,” observed Frédéric Baudron, CIMMYT systems agronomist based in Zimbabwe.

In northern India, where 2.4 million farmers grow variations of the rice-wheat cropping rotation, researchers had feared that the COVID-19 lockdown would delay rice sowing and disrupt the fine-tuned cropping system. Worst-case scenarios forecast economic losses of nearly $1.5 billion and more severe pollution from the late burning of rice straw. Fortunately, technologies that CIMMYT had refined for decades with national partners, along with policies to promote them, helped ward off the worst effects of the crisis.

What it takes to keep farming going

In South Asia’s extensive maize and wheat lands, particularly in Bangladesh and northern India, excess rainfall and powerful typhoons flooded fields early in the cropping season. However, COVID-19 disrupted agriculture in new, diverse ways, according to T.S. Amjath-Babu, CIMMYT agricultural economist based in Bangladesh.

“International and domestic supply chains for fertilizers, agrochemicals, machinery, and seeds have been impeded by import and movement restrictions,” Amjath-Babu said. “Stay-in-place orders and limitations on migration have created labor shortages, and social distancing hinders farm operations.”

To mitigate labor shortages and make agriculture more manageable, CIMMYT has been testing and promoting scale-appropriate farm machinery for smallholder maize and wheat farmers.

“Some rural communities in Mexico closed off completely for fear of COVID... but household members did go to the field and work, aware that the grain they produced might prove critical.

MAIZE AND WHEAT HARVESTS KEEP PACE DESPITE THE PANDEMIC

Mechanization turns the wheels of small-scale farming

We facilitate and promote farmers’ acquisition and use of the right equipment, along with business models whereby those who already own machinery offer services to farmers for land preparation, planting, irrigation, harvesting, processing, and other activities,” said Timothy Krupnik, systems agronomist and CIMMYT country representative in Bangladesh. “This is a win-win situation for farmers who can’t access or afford field laborers, and allows crucial farm work to take place while maintaining social distancing.”

Smallholders overcame many challenges, including the high costs and shortages of field labor, qualms about hiring outside field workers, and being cut off from inputs, credit, or technical support, according to Jelle Van Loon, CIMMYT mechanization specialist in Latin America.
The use of small machinery lowers production costs and relieves pressure on available labor, Krupnik explained. “In a COVID-altered world, this will remain an essential support for food production in rural areas, particularly by the growing number of women-headed households, as the outmigration of working-age men increases.”

Developing and fostering use of appropriate mechanization is just one way CIMMYT helps pandemic-stricken farmers, according to Van Loon. “We continue to spread sustainable intensification technologies and practices, including cropping diversification, better post-harvest management of grain, business model development, and the targeted use of fertilizers and improved varieties.”

OPPORTUNE SCIENCE AND PROMOTION BOOST CLIMATE-SMART FARMING IN INDIA

With the pandemic lockdown driving millions of migrant workers and day laborers away from northern India to their home villages, prospects for the region’s rice-wheat cropping rotation, which feeds the nation and relies heavily on field workers, looked grim. But scientists at CIMMYT and India seized a glimmer of promise for farmers and policymakers, amid the dark crisis.

“Any delay in the labor-intensive transplanting of rice seedlings pushes back rice harvests; this then causes wheat to be sown later and sorely affects wheat yields,” explained M.L. Jat, a systems agronomist who leads CIMMYT’s climate-smart agriculture research portfolio in South Asia. “Also, farmers normally gather and burn millions of tons of rice straw before sowing wheat, generating regionwide pollution. That’s always harmful but would be worse if burning were delayed until the cold weather of late fall or winter.”

For long, CIMMYT and national partners have studied and advocated for resource-conserving farming practices to help address perennial rice-wheat rotation problems, including severe water and soil depletion and falling profitability. Among alternatives are sowing rice in non-flooded fields, adding or substituting crops in the rotation, and planting wheat directly into just-harvested rice fields without burning the straw or plowing.

The latter is called “zero tillage” and has been adopted already on a limited area in northern India. The practice helps lessen severe seasonal air pollution, profits farmers by $150-200 in reduced costs and improved yields per hectare, saves an average 15% in irrigation water, and allows early wheat planting so that the crop can be harvested before the pre-monsoon heat scalds the grain, according to Harminder S. Sidhu, principal research engineer at the Borlaug Institute for South Asia (BISA), a research center for which CIMMYT shares oversight with the Indian Council of Agricultural Research (ICAR).

“Zero tillage for wheat requires use of a special tractor-mounted implement that opens grooves in the soil, drops in wheat seed and fertilizer, and covers the seeded row with shredded rice residues, all in one pass,” Sidhu explained. He and colleagues in India and CIMMYT developed and refined the implement, known as the Happy Seeder, over 15 years. Conventional wheat seeding practices involve first gathering and burning rice straw, followed by numerous and costly tractor passes to plow, harrow, and then to sow the wheat.

Unprecedented challenges require visionary measures

After a 2020 study by researchers at CIMMYT, ICAR and the International Rice Research Institute (IRRI) described the potentially disastrous outcomes of rice-transplanting delays and alternative rice varieties described above. Notably, after receiving a one-page summary, the Chief Minister of Punjab, the leading rice-wheat farming state, released a video address supporting the scientists’ conclusions. Jat and colleagues then moved quickly to promote adoption of the alternative practices, helping to facilitate subsidies for purchases of the Happy Seeder and ensuring the timely availability of machines and other inputs.

As a result, in 2020 farmers substituted dry-seeded rice for flooded and manually-transplanted rice on 500,000 hectares, which represents 34% more area converted to the new practice than the cumulative total for the previous 10 years. Additionally, 330,000 hectares were sown to alternative crops, principally cotton, maize and legumes.

“The central and state governments in northwestern India, as well as extension agencies, are promoting no-burn alternatives that include direct seeding of wheat using the Happy Seeder, and there are state directives and fines to stop straw burning, especially in this unprecedented time of the COVID-19 pandemic,” Sidhu said.

Partners and funders

In Africa, this work was carried out through the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project, funded by the Australian Centre for International Agricultural Research (ACIAR) and the CGIAR Research Programs on Maize (MAIZE), Wheat (WHEAT), and Climate Change, Agriculture & Food Security (CCAFS). Partners include Ethiopia’s Ministry of Agriculture, the University of Southern Queensland, the University of Zimbabwe, Zimbabwe’s Ministry of Lands, Agriculture, Fisheries, Water and Rural Settlement, service providers and training centers from Zimbabwe, and the private sector in Zimbabwe and Ethiopia.

In Bangladesh, this work was carried out through the Cereal Systems Initiative for South Asia Mechanization and Irrigation (CSISA-MI) and the Cereal Systems Initiative for South Asia Mechanization Extension Activity (CSISA-AREA), both funded by the Feed the Future initiative of the United States Agency for International Development (USAID).

In Mexico, the Crops for Mexico project is supported by Mexico’s Secretariat of Agriculture and Rural Development (SADER). MasAgro-Guanajuato activities are supported by the state of Guanajuato.

In India, the Happy Seeder and pre-monsoon heat scalds the grain.

Partners and funders

Borlaug Institute for South Asia (BISA), governments of India and of the states of Haryana and Punjab, Indian Council of Agricultural Research (ICAR), an Punjab Agricultural University (PAU), This project was supported by the Bill & Melinda Gates Foundation, Georgia Institute of Technology (Georgia Tech), iDE, the International Food Policy Research Institute (IFPRI), and the International Rice Research Institute (IRRI).
PLANTS, PEOPLE AND THE NEXT PANDEMIC

R -numbers, fomite versus airborne transmission, droplets versus aerosols, mRNA and viral vector vaccines. For over a year the argot of epidemiology, virology and other scientific and medical disciplines has seeped into everyday language, as people across the globe grappled with the unprecedented challenges of the COVID-19 pandemic.

Meanwhile, scientists and communicators have struggled to limit the spread of misinformation and ensure that reliable facts are what ultimately goes viral.

As the world is still fighting to handle the COVID-19 crisis, what are the messages and lessons that we must adopt now to better prepare for future challenges?

Global agriculture is a key battleground

Globalization, climate change, ecosystem degradation and biodiversity loss are key variables in the growing threat of infectious disease outbreaks. Agriculture overlaps with each of these processes and is vulnerable to the disease risks they amplify.

Former director of CIMMYT’s Global Wheat program, Hans Braun, recently stressed the parallel between what we have witnessed with COVID-19 and disease threats facing global agri-food systems. “The epidemiology models for humans … we see now have a lot in common with plant epidemiology,” Braun said in a conversation on wheat diseases. There are currently over 1,300 pests and pathogens known to infect agricultural crops worldwide.

“When it comes to epidemics, what applies to humans applies to plants. If there is a new race of a given crop disease, in that moment, the plant does not have a defense mechanism, like humans in the case of COVID-19, because we haven’t developed any immunity,” Braun explained.

As with a human pandemic, investments in prevention, containment and preparedness measures – such as the global wheat rust monitoring systems managed by the Borlaug Global Rust Initiative at Cornell University and CIMMYT – are of key importance. “If ‘doomsday’ happens, it will be too late to react,” Braun said. “At present, with a human pandemic, people are worried about the supply chain from food processing to the supermarket. But if we have an epidemic in plants, then we do not have the supply chain from the field to the food processing industry. And if people have nothing to eat, they will go to the streets and we will see violence. We simply cannot put this aside.”

Agriculture accounts for 30% of global GDP, yet only 5% of global research and development investment goes to the sector. “If there is any flip side to the COVID-19 disaster, it is that hopefully our governments realize that they have to play a much more serious role in many areas, in particular public health and disease control in humans but also in plants,” Braun said.

The butterfly and the bulldozer

The exponential growth trajectory of a disease outbreak can lead one to think of the famous butterfly effect. A single fateful encounter between a host and a pathogen can lead to world-shaking consequences. However, this overlooks how human activity is creating massive, environmental and ecosystem changes that impact the likelihood and severity of future disease outbreaks.

Recently Frédéric Baudron, systems agronomist at CIMMYT, and Florian Liégeois, virologist at the Institut de Recherche pour le Développement (IRD), recalled that, “60% of infectious diseases are zoonotic,” which rupture the upper surface of the leaf blade as the spores mature.
Fall armyworm is a fearsome adversary, especially for maize farmers. The second half of its scientific name, Spodoptera frugiperda, literally means “lost fruit.” Native to the Americas, the pest was first encountered in Africa in 2016. It quickly spread to over 40 African countries, causing an estimated $3 billion worth of crop losses. By 2018 it spread to Asia.

Faced with this crisis, researchers at CIMMYT – bolstered by strong global collaboration and partnerships – worked at breakneck speed to respond. The pest cannot be eradicated. So CIMMYT and its partners raced to create awareness about the pest, the need for monitoring and early detection during the crop season and agronomic best practices for managing the pest in Africa and Asia.

"Fall armyworm poses a complex challenge and cannot be sustainably tackled by a single solution," explained B.M. Prasanna, director of CIMMYT’s Global Maize program and the CGIAR Research Program on Maize. "We need to adopt an integrated pest management strategy based on scientifically validated technologies and management practices – including host plant resistance, biological control, environmentally safer pesticides, and agroecological management – considering the socioeconomic contexts of farming communities."

The new hybrids (left) responded well to artificial fall armyworm infestation, compared to commercial varieties included as checks in the study (right).

Fall armyworm artificial infestation in screenhouses at Kiboko, on-farm trials in Kenya, and evaluations for other farmer-preferred traits in eastern Africa.

Based on these trials, three CIMMYT-derived hybrids emerged as the strongest candidates. When artificially infested with fall armyworm, these hybrids yielded 7 to 8.5 times more maize than the commercial checks.

CIMMYT is now partnering with research programs in over 10 countries across eastern and southern Africa to further evaluate these hybrids in national performance trials before their release. Once these hybrids are released as varieties in the target countries, they will be sublicensed to seed companies for scale-up to better reach farming communities. This process is expected to begin in 2022.

Host plant resistance is an important pillar of integrated pest management. And the identification of the first set of fall armyworm-tolerant maize hybrids for Africa is a major development," Prasanna said. "We intend to extend this success to Asia, where the pest is also causing havoc in many countries. A strong pipeline of elite maize varieties with farmer-preferred traits, including genetic resistance to fall armyworm, is the need of the hour in both Africa and Asia."

Partners and funders

The Stress Tolerant Maize for Africa (STMA) project is funded by the Bill & Melinda Gates Foundation, the CGIAR Research Program on Maize (MAIZE), and the United States Agency for International Development (USAID).
As both CGIAR Research Programs and Wheat innovations, outcomes and impacts, please use the CGIAR results dashboard: https://www.cgiar.org/dashboards/

The CGIAR Research Program on Maize (MAIZE) receives Windows 1 & 2 support from the governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Mexico, the Netherlands, New Zealand, Norway, Sweden, Switzerland, the United Kingdom, the United States, and the World Bank.

Under Wheat, scientists estimated the annual gains in grain yield of CIMMYT’s High Rainfall Wheat - Trials ~ CGIAR-derived wheat grown by national partners around the world ~ from 2006 to 2017. They found 3.8% annual genetic gains in the high rainfall environment (compared to 1.7% in low rainfall varieties), and 0.93% in low rainfall (compared to 0.73%), benefiting farmers on around 61 million hectares of wheat farmland.

A CGIAR-commissioned review of Wheat found it has a “track record of delivering local solutions with a global perspective” and its work is “essential” to meet the global demand for food.

Likewise, a MAIZE Phase II review determined that MAIZE “uniquely fills a gap at the global and regional level.”

In a year of global challenges, CGIAR Excellence in Breeding (EiB) pushed forward with modernizing CGIAR and national agricultural research systems (NARS) breeding.

EiB described over 320 market segments and 126 breeding pipelines; led development of new breeding KPIs; launched shared genotyping services, and supported major operations upgrades through investments, continuous improvement processes, breeding simulation use, a program costing, process, and more. Integrated data management advanced to the next level and EiB developed a new model for collaboration between CGIAR and NARS. Meanwhile partners showed progress on delivering higher genetic gain and varietal turnover in market-focused products.

EiB is set to continue maximizing the full potential of Crops to End Hunger (C2EH) investments, helping partners meet funder requests, and leading the One CGIAR transition.

For more information visit excellenceinbreeding.org.

FUNDERS

We gratefully acknowledge the countries, organizations, partners and individuals who supported our agricultural research for development in 2020. We also thank all funders that supported this work through their contributions to the CGIAR System.

Amount

Top funders

Based on 2020 project execution

24,247

CGIAR Research Programs and Platforms (see Note 1)

19,071

Bill & Melinda Gates Foundation, USA

14,512

United States Agency for International Development, USA

7,920

Mexican Government Contributions, Mexico (see Note 2)

2,216

Cornell University, USA (see Note 3)

1,207

Walmart Foundation, USA

1,130

Australian Centre for International Agricultural Research, Australia

950

Global Crop Diversity Trust, Germany

854

Ministry of Agriculture and Farmers Welfare, India

322

The Development Fund (AGROSAVIA)

303

Corporación Colombiana de Investigación Agropecuaria (CGIAR)

273

Swiss Agency for Development and Cooperation (SDC)

269

International Fund for Agricultural Development (IFAD)

163

The World Bank

149

National Agriculture Research Organization (CSIRO)

146

International Potato Center (CIP)

132

GrainMarker

128

University of Queensland

125

University of Florida

125

University of Cambridge

123

United Kingdom’s Met Office

123

Koch Agronomic Services

120

Swedish University of Agricultural Sciences

102

Hochheim University

101

Michigan State University

96

Nestlé México S.A. de C.V.

92

African Agricultural Technology Foundation (AATF)

Note 1:

CGIAR Research Programs and Platforms was supported by: $1,207,781 from the governments of Canada, Australia, New Zealand, Spain, and South Korea. $1,130,719 from the governments of Australia, the Netherlands, New Zealand, Norway, and Switzerland. $950,000 from the Global Crop Diversity Trust. $854,000 from the Ministry of Agriculture and Farmers Welfare, India. $322,000 from the Development Fund (AGROSAVIA). $303,000 from the Corporación Colombiana de Investigación Agropecuaria (CGIAR). $269,000 from the International Fund for Agricultural Development (IFAD). $216,000 from Cornell University. $196,000 from the Walmart Foundation. $146,000 from the National Agriculture Research Organization (CSIRO). $128,000 from the International Potato Center (CIP). $125,000 from the University of Queensland, the University of Florida, and the University of Cambridge. $123,000 from the United Kingdom’s Met Office, the Koch Agronomic Services, and the Michigan State University. $102,000 from Hochheim University. $92,000 from Nestlé México S.A. de C.V. and $96,000 from AATF.

Note 2:

The CGIAR Research Program on Wheat was supported by: $9,157 from the governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Mexico, the Netherlands, New Zealand, Norway, Sweden, Switzerland, the United Kingdom, and the United States, and the World Bank.

Note 3:

The CGIAR Research Program on Wheat was supported by the governments of Canada, Australia, New Zealand, Spain, and South Korea.

Note 4:

Note 4: Administrative expenses are not included in this financial statement.

Amounts exclude deferred depreciation.

Note 1:

Note 1: CIFOR received $216,000 from the World Bank. $200,000 from the Korean Agricultural Cooperation Council. $189,000 from the Ministry of Agriculture, Forestry and Fisheries of Japan. $186,000 from the National Agricultural and Rural Development Program of Korea (NARDP). $165,000 from the Ministry of Environment, the Republic of Korea. $85,000 from the Government of Australia. $53,000 from the Ministry of Agriculture and Forestry of the United States. $36,000 from the United States Agency for International Development. $34,000 from the United States Department of Agriculture. $30,000 from the Center for Agriculture and Bioscience International (CABI). $27,000 from the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH). $20,000 from the West African Development Bank. $18,000 from the Rockefeller Foundation. $12,000 from the CGIAR Research Program on Crops to End Hunger (C2EH). $11,000 from the United States Agency for International Development. $9,000 from the United States Department of Agriculture. $7,000 from the National Science Foundation. $4,000 from the United States Agency for International Development.

Note 2:

Note 2: CIFOR received $177,000 from the Norwegian Ministry of Climate and Environment. $132,000 from the National Agriculture and Rural Development Program of Korea (NARDP). $114,000 from the Ministry of Agriculture and Forestry of the United States. $60,000 from the United States Agency for International Development. $10,000 from the United States Department of Agriculture.

Note 3:

Note 3: CIFOR received $72,000 from the United States Agency for International Development. $25,000 from the Australian Department of Agriculture and Water Resources. $10,000 from the United States Agency for International Development.

Note 4:

Note 4: CIFOR received $72,000 from the United States Agency for International Development. $25,000 from the Australian Department of Agriculture and Water Resources. $10,000 from the United States Agency for International Development.
BOARD OF TRUSTEES

SERVED DURING 2020

- **Nicole Birrell** (Australia) Chair, CIMMYT Board of Trustees
- **Víctor Manuel Villalobos Arámbula** (Mexico) Honorary Chair, CIMMYT Board of Trustees
- **William (Bill) Angu** (United Kingdom) Member, CIMMYT Board of Trustees
- **Margaret Bath** (United States) Member, CIMMYT Board of Trustees
- **José Ernesto Cacho Ribeiro** (Mexico) Member, CIMMYT Board of Trustees
- **Víctor Manuel Villalobos** (Mexico) Honorary Chair, CIMMYT Board of Trustees
- **Harry de Roo** (Netherlands) Member, CIMMYT Board of Trustees
- **del Bosque Luis Ángel Rodríguez** (Mexico) Member, CIMMYT Board of Trustees
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Esperanza Bongiwe Njobe** (South Africa) Member, CIMMYT Board of Trustees
- **Ramesh Chand** (India) Member, CIMMYT Board of Trustees
- **José Antonio Cueto Wong** (Mexico) Member, CIMMYT Board of Trustees
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Shenggen Fan** (China) Member, CGIAR System Board
- **Patrick Caron** (France) Member, CGIAR System Board
- **Monika Altmaier** (Germany) Member, CGIAR System Board
- **Diana Avila** (Valle del Cauca/Colombia) Member, CGIAR System Board
- **José Antonio Cueto Wong** (Mexico) Member, CGIMYT Board of Trustees
- **Ramesh Chand** (India) Member, CIMMYT Board of Trustees
- **Ramesh Chand** (United States) Member, CGIAR System Board
- **Ramesh Chand** (Morocco) Member, CGIAR System Board
- **Ramesh Chand** (United States) Member, CGIAR System Board
- **Harry de Roo** (Netherlands) Member, CIMMYT Board of Trustees
- **del Bosque Luis Ángel Rodríguez** (Mexico) Member, CIMMYT Board of Trustees
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Ramesh Chand** (India) Member, CIMMYT Board of Trustees
- **Ramesh Chand** (Netherlands) Member, CGIAR System Board
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **José Ernesto Cacho Ribeiro** (Mexico) Member, CIMMYT Board of Trustees
- **Bongiwe Njobe** (South Africa) Member, CIMMYT Board of Trustees
- **Ramesh Chand** (India) Member, CIMMYT Board of Trustees
- **Ramesh Chand** (Netherlands) Member, CGIAR System Board
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **José Ángel Rodríguez del Bosque** (Mexico) Member, CIMMYT Board of Trustees
- **Harry de Roo** (Netherlands) Member, CIMMYT Board of Trustees
- **José Fernando de la Torre Sánchez** (Mexico) Member, CIMMYT Board of Trustees
- **Patrick Caron** (France) Member, CGIAR System Board
- **Monika Altmaier** (Germany) Member, CGIAR System Board
- **Diana Avila** (Valle del Cauca/Colombia) Member, CGIAR System Board
- **José Antonio Cueto Wong** (Mexico) Member, CGIMYT Board of Trustees
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees
- **Martin Kropff** (Netherlands) Director General, CIMMYT
- **Alice Ruhweza** (Netherlands) Member, CGIAR System Board
- **Rita Mumm** (Netherlands) Member, CIMMYT Board of Trustees
- **Feng Feng** (China) Member, CIMMYT Board of Trustees