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ABSTRACT

Identifying mechanisms and pathways involved in gene–environment interplay and phenotypic plasticity is

a long-standing challenge. It is highly desirable to establish an integrated frameworkwith an environmental

dimension for complex trait dissection and prediction. A critical step is to identify an environmental index

that is both biologically relevant and estimable for new environments. With extensive field-observed com-

plex traits, environmental profiles, and genome-wide single nucleotide polymorphisms for three major

crops (maize, wheat, and oat), we demonstrated that identifying such an environmental index (i.e., a com-

bination of environmental parameter and growth window) enables genome-wide association studies and

genomic selection of complex traits to be conducted with an explicit environmental dimension. Interest-

ingly, genes identified for two reaction-norm parameters (i.e., intercept and slope) derived from flowering

time values along the environmental index were less colocalized for a diverse maize panel than for wheat

and oat breeding panels, agreeing with the different diversity levels and genetic constitutions of the panels.

In addition, we showcased the usefulness of this framework for systematically forecasting the performance

of diverse germplasm panels in new environments. This general framework and the companion CERIS-

JGRA analytical package should facilitate biologically informed dissection of complex traits, enhanced per-

formance prediction in breeding for future climates, and coordinated efforts to enrich our understanding of

mechanisms underlying phenotypic variation.
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INTRODUCTION

Climate change and climate variability present a mounting chal-

lenge to sustainable food production (Wheeler and von Braun,

2013). Developing climate-resilient crops can be greatly

enhanced through a comprehensive understanding of the

global crop production system and by developing an actionable
874 Molecular Plant 14, 874–887, June 7 2021 ª The Author 2021.
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blueprint to build such an understanding (Lobell et al., 2008;

McCouch et al., 2013). Most traits relevant to adaptation and

productivity are affected by the complex interplay between
ttp://creativecommons.org/licenses/by-nc-nd/4.0/).
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genes and the environment, but in-depth functional analysis of

genetic pathways and physiological effects under varied genetic

backgrounds and different environmental conditions is not al-

ways feasible. Fortunately, advances in genomic technologies

have enabled many innovative gene discovery approaches in

crops and promoted a concerted effort to tackle long-

standing challenges in biology and agriculture (Hickey et al.,

2019).

How to explain and predict phenotypes is a prominent question in

biology and evolution (Mackay et al., 2009; Boyle et al., 2017;

Exposito-Alonso et al., 2019). Answering this question requires

the holistic examination of genomes, environments, and their

interaction throughout the spatial and temporal dimensions of

an organism’s life cycle. Gene–environment-wide association

studies were proposed to incorporate environmental

information into genomic and pathway databases to inform

analyses of gene–environment interaction (Thomas, 2010).

Recent progress in a few key research areas has set the stage

for tackling this challenge through an integrated approach. First

is the comprehensive genome profiling of a large number of

diverse genotypes in major crops and coordinated phenotyping

across varied environments (Bevan et al., 2017). Second is the

better appreciation and modeling of the intertwined relationship

between genotype and environment (Wilczek et al., 2009;

Lobell et al., 2014; Exposito-Alonso et al., 2019; Peng et al.,

2020). Quantitative measurements of environmental factors in

natural field conditions are being incorporated into performance

modeling and forecasting. Finally, research into phenotypic

plasticity and genotype by environment interaction (G 3 E) has

received revived attention (Des Marais et al., 2013; Malosetti

et al., 2013; Fan et al., 2016; Gage et al., 2017; Kusmec et al.,

2017).

Genome-wide association studies (GWAS) have been conduct-

ed to understand the genetic architecture of complex traits

(Lipka et al., 2015; Tibbs Cortes et al., 2021). In addition to

the single trait mixed model approach (Yu et al., 2006; Kang

et al., 2010; Zhang et al., 2010), the GWAS method has been

advanced to identify pleiotropic loci (Grotzinger et al., 2018),

gene–environment interactions (Moore et al., 2019), and gene

expression effects across varying conditions and tissues

(Urbut et al., 2019). Genomic selection (GS) has been

conducted to leverage predictions of untested individuals

based on a genotype-phenotype model established with

training individuals (Crossa et al., 2017; Xu et al., 2020).

However, it is still a common practice to first summarize

phenotypic data collected over multiple environments

before investigating association with genotyping data to either

identify genomic regions associated with the aggregated

trait values or generate prediction models. Different

approaches have been proposed to incorporate environmental

information in GS so that performance prediction can be

context-specific and achieved with better accuracy (Heslot

et al., 2014; Jarquin et al., 2014; Cooper et al., 2016; Millet

et al., 2019; Costa-Neto et al., 2021). Nevertheless, some of

these approaches require extensive environmental data,

phenotyping data of component traits, or crop modeling,

which may not be readily available or conducted. Connections

between genetic effects and major environmental factors are

still challenging to establish.
M

Here, we demonstrate that, by taking a simple but critical step,

we can establish a novel, integrated framework to add the envi-

ronmental dimension to both GWAS and GS of complex traits.

Although the concept of a performance-free environmental index

was suggested decades ago (Finlay and Wilkinson, 1963;

Eberhart and Russell, 1966), limited research has been reported

about taking this step until recently (Li et al., 2018; Millet et al.,

2019; Guo et al., 2020), and the environmental dimension has

not been explicitly addressed in typical GWAS with diverse

populations. It is critical to demonstrate that complex traits

measured for diverse genetic materials across environments

can be dissected through GWAS with an explicit environmental

dimension. Identifying the major environmental pattern also

facilitates the prediction and forecasting of complex traits

through GS. Moreover, focusing on extracting the main

environmental factors to differentiate field environments would

help translate findings from targeted studies under controlled

environmental conditions (Blackman, 2017; Scheres and van

der Putten, 2017) and with well-equipped field sensors (Millet

et al., 2019) to reveal the major patterns across environments.

With data for three major crops, we showed that the changing

effects of genes along an environmental index can be revealed

for quantitative traits, and that patterns uncovered from

apparently complex phenotype dynamics can be exploited for

genomics-enabled, cross-environment performance prediction.

Profiling gene effect continua along an environmental gradient

may serve as an umbrella framework for dissecting and validating

genomic determinants underlying complex trait variation and

their interactions with the environment.
RESULTS

Phenotypic plasticity exhibited by crops

Diverse inbred lines from three major crops were grown at multi-

ple year–location combinations (Figure 1). The maize population

had 282 inbred lines (Flint-Garcia et al., 2005), the wheat

population had 288 inbred lines (Sukumaran et al., 2017), and

the oat population had 433 inbred lines (Esvelt Klos et al.,

2016). While all three populations were assembled to cover

diverse genetic backgrounds, the wheat and oat populations

comprised elite breeding materials. In total, there were 51 year–

location combinations (i.e., environments) (Supplemental

Table 1) covering a range of latitudes and longitudes that are

representative of important production areas for each crop

(Figure 1). A total of 35 212 phenotypic values for three traits

(flowering time, plant height, and grain yield) were recorded for

these inbred lines (Supplemental Figure 1). Given that the

geographical regions involved were much wider than those in

earlier studies, environmental effect accounted for a large

proportion of the phenotypic variance, followed by genotype

effect in most cases (Figure 1). These phenotypes appeared to

represent complex quantitative patterns that were not easily

explained by latitude or time individually (Supplemental

Figure 1). However, after ordering these environments based on

the trait means (i.e., environmental means) and fitting a

regression on environmental mean for each inbred line, a clear

pattern emerged in the reaction norms of these genotypes

(Supplemental Figure 2). This widely adopted process is termed

joint regression analysis (Finlay and Wilkinson, 1963; Eberhart

and Russell, 1966). While we sought to expand this concept to
olecular Plant 14, 874–887, June 7 2021 ª The Author 2021. 875



Figure 1. Phenotypic variation of diverse crop genotypes across varied environments.
(A) Geographic distribution of experimental locations for maize, wheat, and oat.

(B) Variances due to environment, genotype, G 3 E, and residual error for eight crop–trait combinations.

(C) Schematic design of the whole study, which aimed to explicitly incorporate environmental index in genome-wide association study (GWAS) and

genomic selection.

(D) The Critical Environmental Regressor through Informed Search (CERIS) procedure. Environmental index is identified as the combination of envi-

ronmental parameter and growth period that has the strongest correlation with environmental mean (em) of the population (pop.) and a reasonable

physiological interpretation. DL, day length; GDD, growing degree days; PTT, photothermal time.
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quantify the contribution of individual genes, we also recognized

a fundamental shortcoming in this analysis: that the mean

performance in a new environment is not known in advance.

Relying only on environmental means, we could not quantify

growing conditions with specific environmental parameters.
Identifying the environmental index: A critical, enabling
step

Temperature and photoperiod have been widely regarded as the

two most critical environmental factors affecting phenotypes in
876 Molecular Plant 14, 874–887, June 7 2021 ª The Author 2021.
many crop species and used in crop development modeling

(Robertson, 1968; Angus et al., 1981; Hammer et al., 1982;

Masle et al., 1989; Brachi et al., 2010; Des Marais et al., 2013;

Blackman, 2017; Scheres and van der Putten, 2017). They

varied substantially among the examined environments

(Supplemental Figure 3). We recognized that this concept may

provide a solution to addrss the shortcoming of the established

joint regression analysis. Replacing the environmental means

with a quantitative environmental index is highly desirable

because once such an index is obtained, we cannot only model

the observed phenotype with this environmental index, but also
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predict phenotypic performance in new environments by using

historical weather averages, in-season weather, or forecasted

weather data (Figure 1).

Building on the findings from a single trait (flowering time) in nar-

row genetic backgrounds (biparental mapping populations) (Li

et al., 2018; Guo et al., 2020), we expanded the search for an

environmental index to a list of quantitative traits obtained for

diverse genetic materials to identify environmental indices with

sufficient explanatory power to approximate the observed

environmental means for these traits (Supplemental Table 2).

We termed this process Critical Environmental Regressor

through Informed Search (CERIS). If the whole population is

viewed as a single mega-genotype, its performance in different

environments (i.e., environmental means) indicates the difference

in crop growth and development among environments. Replac-

ing environmental means would then allow us to quantitatively

connect all tested environments with a common index, which

subsequently bridges the tested environments with new environ-

ments. We focused on three complex traits: flowering time, plant

height, and grain yield. In brief, for a trait measured in multi-

environment trials, CERIS searches the sets of average values

obtained for an environmental parameter from different periods

of time (windows) and calculates the correlation of these values

to environmental means. The parameter–window combination

that yields the strongest correlation to the observed environ-

mental means is chosen as the environmental index for a partic-

ular trait. Four environmental parameters were examined: photo-

period (day length [DL]), temperature (expressed as growing

degree days [GDD]), photothermal time (PTT = GDD 3 DL), and

photothermal ratio (PTR = GDD/DL).

Using the CERIS algorithm, we found that environmental indices

based on PTT or PTR were consistently more strongly correlated

with environmental means than indices from individual environ-

mental factors (Figure 2 and Supplemental Figures 4–6).

Biological relevance was inspected to ensure that the identified

environmental index agreed with the general understanding of

physiological processes and was quantifiable before the stage

when the target trait was observed. This avoided the search for

irrelevant growth periods and enabled the use of in-season

weather data for forecasting. While maize flowering time was

best modeled by PTR, flowering time in wheat and oat was

best modeled by PTT. For plant height in maize and wheat, PTT

was the best choice, while PTR was the best choice for modeling

plant height in oat. For grain yield, PTR was the best choice for

both wheat and oat. Given the chosen environmental indices

for flowering time, we also examined correlations for other envi-

ronmental parameters within the fixed window. For maize flower-

ing time, PTR from 22 to 37 days-after-planting (DAP) had the

strongest correlation with environmental mean (r = �0.97,

Figure 2). Temperature (in GDD) was negatively correlated with

environmental mean, as higher temperature promotes early

flowering (r = �0.95, Figure 2), but photoperiod (DL) had a

positive correlation (r = 0.87) with environmental mean, as short

DL promotes early flowering (Figure 2). The ratio of GDD to DL,

PTR, captured these antagonistic effects and yielded a stronger

correlation to flowering time. On the other hand, for wheat and

oat, PTT correlated with flowering time better than the primary

factors (DL and GDD) with synergistic effects (Supplemental

Figure 7).
M

One requisite for the environmental index is that it should be

obtainable from a growth period before the trait establishment.

For flowering time, the identified window was at least 1 week

earlier than 97% of the 13 088 flowering time observations re-

corded across the three crops (Supplemental Figure 8). For

plant height and grain yield, the identified windows were also

generally earlier than the dates when traits were fully developed

(Figure 2 and Supplemental Figure 8). For instance, maize plant

height was correlated with PTT from 52 to 59 DAP, while the

average flowering time across nine environments ranged from

56 to 83 DAP. Therefore, this 52–59-DAP window overlaps with

the exponential growth stage.

To further demonstrate that the CERIS algorithm can identify

environmental indices, we conducted searches for other agro-

nomic and physiological traits collected for the maize panel.

Indeed, replacing environmental means with environmental

indices could be achieved for different traits (Supplemental

Table 2).

With the identified environmental indices, phenotypic perfor-

mance can be systematically modeled with two reaction-norm

parameters, intercept and slope, obtained by regressing

observed phenotypic values of each inbred line on this index

(Figure 2). While intercept measures the expected performance

of a genotype at the average point (center) of the environmental

range, slope measures the degree of plasticity of an individual

genotype along the environmental gradient. Deviations of the

observed values from the regression-fitted values represent ef-

fects due to other local environmental factors and random errors.

Across three diverse panels of genotypes, we observed a range

of values for intercept and slope (Supplemental Figure 9). Using

the environmental index, traditional joint regression analysis

was transformed into a framework, where not only the

performance of a genotype but also genetic effects at different

loci can now be quantified with the environmental gradient. We

termed this overall framework CERIS-Joint Genomic

Regression Analysis (CERIS-JGRA).
Dissecting genetic architecture with an environmental
dimension

To reveal gene–environment interplay underlying phenotypic

plasticity, we conducted GWAS using reaction-norm parameters

(slope and intercept) obtained for all trait-crop combinations

(Supplemental Figures 10–12). Here, we focused on flowering

time because this trait has been better characterized and

previous studies have uncovered a list of confirmed or

candidate genes. Because both parameters were derived from

regressing the flowering time phenotype on the environmental

index, we expected GWAS to identify genomic regions

harboring genes responsible for the environmental factors

involved in trait expression. Indeed, using 12 million single-

nucleotide polymorphisms (SNPs), we detected many genomic

regions significantly associated with the slope for flowering time

and one for the intercept in maize (Figure 3). The genomic

regions with the strongest signals associated with slope

variation contained flowering time genes contributing to maize

adaptation: ZmCCT on chromosome 10 and Vgt1 on

chromosome 8 (Salvi et al., 2007; Hung et al., 2012;Bouchet

et al., 2013; Yang et al., 2013; Romero Navarro et al., 2017).
olecular Plant 14, 874–887, June 7 2021 ª The Author 2021. 877



Figure 2. Environmental indices underlying phenotypic plasticity.
(A) Environmental indices identified by CERIS for each trait-crop combination. The index is identified by searching through combinations of environmental

parameters and growth periods for the combination with the strongest correlation with the observed environmental means of the population.

(B) Photothermal ratio (PTR) from the 22–37 days-after-planting (DAP) window has the strongest correlation with the environmental means for maize

flowering time (FT).

(C–E) PTR captures the antagonistic effects on maize FT by temperature (D) and photoperiod (E).

(F–M) Performance dynamics modeled by environmental indices. (F) Maize FT. (G) Maize plant height (PH). (H)Wheat FT. (I) Wheat PH. (J) Wheat grain

yield (GY). (K)Oat FT. (L) Oat PH. (M) Oat GY. In (F)–(M), each dot denotes the observed phenotypic value for each genotype in an environment, and each

line is the regression-fitted values for each genotype.
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We further investigated four detected genes (ZMM22/

ZmMADS69, ZMM5, Conz1, and ZCN8) by comparing se-

quences from eight publicly available whole-genome assemblies

(Supplemental Figure 13). The strongest association for intercept

variation implicated ZMM22 on chromosome 3, encoding a

MADS-box gene, and its expression level was reported to be

associated with flowering time variation (Hirsch et al., 2014; Lin

et al., 2017; Liang et al., 2019). Transposon insertions in the

introns caused three haplotypes among these eight maize

inbreds. ZMM22 in B73, B104, and CML247 contained an extra

10.5 kb of sequence due to insertions of a Copia

retrotransposon (8.9 kb) and a hAT transposon (1.6 kb), while in

W22 contained an 8.6 kb Gypsy retrotransposon (XILON1)

insertion in the last intron. We observed transposons within the

intron of another MADS-box gene (ZMM5) on chromosome 9

and in the upstream promoter regions of Conz1 on chromosome
878 Molecular Plant 14, 874–887, June 7 2021 ª The Author 2021.
9. In the promoter of ZCN8 on chromosome 8, one extra segment

with a protein coding sequence resulted in two haplotypes. In

previous studies, ZCN8 was designated as the candidate gene

underlying QTL Vgt2 because it encodes florigen and its gene

expression is associated with flowering time (Meng et al., 2011;

Bouchet et al., 2013; Guo et al., 2018). Conz1 is a homolog of

Arabidopsis CO (CONSTANS) and rice Hd1 (Heading date 1)

(Miller et al., 2008), both being validated flowering time genes.

Our observation of transposon variants in these four genes

provides relevant evidence for follow-up studies of functional

polymorphisms.

Unlike maize, where many loci with known or candidate genes

were detected, only a few major loci were detected for flower-

ing-time phenotypic plasticity in wheat and oat (Supplemental

Figures 11 and 12). This may be due in part to the use of



Figure 3. Genetic architecture of FT phenotypic plasticity and gene–environment interplay.
(A and B) Manhattan plot from GWAS of intercept (A) and slope (B) derived for maize FT phenotypic plasticity.

(C) Scatter plot of �log10(P) from the GWAS of slope and intercept for maize FT.

(D) Scatter plot of �log10(P) from the GWAS of slope and intercept for wheat FT.

(E) Scatter plot of �log10(P) from the GWAS of slope and intercept for oat FT.

(F) Genetic effect continua of phenotypic-plasticity genes for maize FT.

(G) Genetic effect continua of phenotypic-plasticity genes for wheat FT.

(H)Genetic effect continua of phenotypic-plasticity loci for oat FT. The false discovery rate significance threshold of 0.05 is indicated with a dotted line in

(A–B). Minor allele frequency is shown in parentheses after the locus name in (F–H).
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diversity panels that were biased toward breeding materials

adapted to a set of target environments, in contrast to the

maize panel, which was considerably more diverse. Moreover,

while different sets of genes were associated with intercept and

slope in maize, similar sets of genes were found to be

associated with intercept and slope of flowering-time

phenotypic plasticity in wheat and oat (Figure 3). In wheat, the

region with the strongest association with both slope and

intercept was located near VRN-A1, which encodes a MADS-

box transcription factor involved in a flowering time regulatory

network (Yan et al., 2003). The recessive VRN-A1 allele is one

of the main targets for breeding of spring wheat. Multiple VRN-

A1 alleles have been discovered with indel polymorphisms in

the promoter. Similarly, VRN3 on oat chromosome 1 (Esvelt

Klos et al., 2016) and one unknown locus on chromosome 2

were associated with both intercept and slope. Although known

candidate genes were not found in several other genomic

regions identified from GWAS of slope and intercept in wheat

and oat, these detected regions provide critical information for

future targeted studies of individual genes that may become

possible as mature reference genomes and molecular tools are

developed.

To further understand the gene–environment interplay, we exam-

ined genetic effect dynamics along the identified environmental

index. We first obtained genetic effects within individual environ-

ments for SNPs associated with slope and intercept of flowering

time. Then we regressed these genetic effects onto the environ-

mental index to obtain fitted lines describing the genetic effect

continua for these loci (Figure 3). Several known genes (PhyB2,

CIB1, and ZmPRR59 for maize; VRN-B1 and VRN-D3 for

wheat) were also plotted to show the potential reasons why

they did not pass the significance threshold in GWAS

(Supplemental Figures 10 and 11): low minor allele frequency,

relatively small effect size at the mean value of the

environmental index, or relatively small change in effect size

across the values of the environmental index. We followed the

nomenclature from earlier publications to interpret these

findings (Des Marais et al., 2013; Li et al., 2018). Differential

sensitivity, i.e., genetic effect varying in degree but not in

direction, was the primary mode of gene action across all three

crops. Conditional neutrality, i.e., genetic effect detected in

some but not in all environments, was found for a single locus

(VRN-A1) in wheat but for a few other loci in maize, including

ZMM5. Antagonistic pleiotropy, i.e., genetic effect varying in

direction, was also detected for several loci in maize. These

findings revealed different patterns of gene–environment

interplay underlying the observed phenotypic plasticity. Since

we know that genes do not function in isolation and that gene

networks are involved, our interpretation is that the marginal

effects of individual genes involved in the network can vary

according to different environmental conditions.
Genomics-enabled, on-target performance forecasting
across environments

We tested the CERIS-JGRA framework for performance fore-

casting. Each crop population was planted in two consecutive

years; we established the prediction model with data from only

the first year. CERIS generally identified the same environmental

indices from similar periods (Supplemental Table 3 and Figure 2).
880 Molecular Plant 14, 874–887, June 7 2021 ª The Author 2021.
The specific value of the environmental index for trials conducted

in the second year was then used by the model to obtain

predictions for all genotypes. In this relatively simple case, no

sampling of genotypes (G) was made (thus, the case was

termed CERIS-JRA). Predictions made with the CERIS-JRA

contained the environmental effect and G 3 E interaction

(Supplemental Figure 14). This approach resulted in higher

prediction accuracy across all environments than obtained

using the first-year averages computed for all locations as predic-

tions (Supplemental Figure 15). This was also clear when the

distributions of the observed-predicted ratios were compared

between CERIS-JRA and the approach of using the previous-

season averages. Moreover, although prediction accuracy within

environments was comparable between the two approaches,

which was expected due to the small amount of G3 E interaction

(Figure 1), having differential performance prediction through

CERIS-JRA is more desirable than simply relying on the fixed

sets of previous year averages.

Next, we considered a more challenging forecasting scenario

where genome-wide (G) SNP information was used and sampling

of genotypes (G) was involved, i.e., predicting performance of un-

tested genotypes in new seasons. CERIS was implemented to

identify the environmental index using environmental data and

the performance data from half of the panel in the first year.

Genomic prediction models were established for reaction-norm

parameters, which were then fed into JGRA to obtain predicted

performance values for the other half of the panel in the second

year by factoring in both SNP information and environmental-in-

dex values (Figure 4). It was encouraging to see that CERIS-JGRA

had generally high accuracy for most trait–species combinations.

Notice that, in this case, prediction was only possible with the

CERIS-JGRA approach, because of the connection through ge-

nomics between the two halves of the panel, i.e., the ‘‘G’’ in

‘‘JGRA.’’ In other words, genomics connected the different sets

of genetic materials included in the training and validation sets.

The relatively modest prediction accuracy for individual trials of

some trait–species combinations was partially due to the low

number of replications andmay be improved with additional envi-

ronmental indices. We also investigated one less-challenging

forecasting scenario, where performance prediction of untested

genotypes in untested environments was conducted by leaving

one environment and 50% of the genotypes out. CERIS-JGRA

generated consistent results (Supplemental Figure 16). In both

scenarios (Figure 4 and Supplemental Figure 16), it was not

realistic to expect the prediction accuracy to be high for all

environments, as location–season-specific environmental

factors can alter the growth and development of genotypes.

The combination of generally high overall prediction accuracy,

mostly modest within-environment prediction accuracy, and

sometimes low within-environment prediction accuracy not only

demonstrated the capacity of this approach but also revealed

the complex biological reality.

DISCUSSION

Many complementary approaches have been developed to

incorporate environmental data, physiological insights, and

crop models into genetic analysis (Heslot et al., 2014; Jarquin

et al., 2014; Cooper et al., 2016). These earlier studies

stimulated research aimed at bringing environmental context
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Figure 4. Performance forecasting with the CERIS-JGRA framework.
Environment profile from the first year, and phenotype and genotype data of half of each crop panel from the first year were used to identify the envi-

ronmental indices and build the forecasting models. Predicted values for the other half of the panel were obtained using CERIS-JGRA for the second year

and compared with the observed values.

(A) Maize FT.

(B) Maize PH.

(C) Distribution of the ratio of observed versus predicted values across all species–trait combinations.

(D) Wheat FT.

(E) Wheat PH.

(F) Wheat GY.

(G) Oat FT.

(H) Oat PH.

(I) Oat GY. Within each crop–trait combination, colors represent different trials. The gray diagonal line marks the desired 1:1 relationship between

observed and predicted values.
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into genetic mapping and genomic prediction. Besides improving

modeling and prediction capacity, connecting findings of genetic

and environmental determinants to show the relationship

between a gene, organism, and environment is also critical (Li

et al., 2018; Guo et al., 2020). By reinstating the environmental

dimension to GWAS and GS with an environmental index, our
M

proposed framework can be used for both complex trait

dissection and prediction. By recognizing different biological

responses to environmental cues, such as temperature and

photoperiod, which may be either synergistic or antagonistic,

the CERIS algorithm successfully identified an effective

environmental index to enable the quantitative analysis of
olecular Plant 14, 874–887, June 7 2021 ª The Author 2021. 881



Molecular Plant Reinstating environmental dimension for GWAS and GS
phenotypic plasticity. Using the index built from these

environmental cues, phenotypic plasticity observed in a multi-

environment trial can be not only visualized andmodeled by reac-

tion norms of genotypes along the environmental gradient but

also further dissected into genetic effect continua along the iden-

tified environmental gradient. With extensive characterization of

environments, ‘‘envirotyping’’ and ‘‘enviromics’’ (Xu, 2016;

Resende et al., 2021), we expect to see increased efforts to

understand the environmental context of the observed

phenotype complexity (Guo et al., 2020).

It is desirable to systematically show that individual genes underlie

the plastic responses of diverse genotypes along an explicit envi-

ronmental dimension for diverse natural field conditions. Because

it attributes the environmental response to quantifiable factors, the

CERIS-JGRA framework can facilitate comparison of genes de-

tected under varied conditions in the same GWAS study with mul-

tiple environments or in different GWAS studies. Furthermore, it

can document the genetic effect continua and gene network dy-

namics in a way that promotes the elucidation of molecular mech-

anisms (DesMarais et al., 2013; Blackman, 2017; Scheres and van

der Putten, 2017). This framework can also be used to evaluate

engineered alleles and modified networks from genome editing

(Eshed and Lippman, 2019; Lin et al., 2020). Interestingly, we

may ask how many genomic regions would be detected at

different input values across the range of a single environmental

index, or multiple different environmental indices, i.e., providing

evidence for the recently proposed ‘‘omnigenic’’ nature of

complex traits (Boyle et al., 2017).

On the prediction side, we believe that introducing the environ-

mental dimension helps to establish optimally designed multi-

environment trials for forecasting crop performance at regional

or global scales. Two major advantages of the current approach

are that photoperiod and temperature profiles are generally

readily available for field experiments and that they account for

a large proportion of environmental variation. On the other

hand, with advances in high-throughput phenotyping, additional

effort in full-scale crop modeling with data collected from field

sensors would further improve the capacity for general perfor-

mance forecasting and in-season forecasting, particularly for

complex traits, such as grain and biomass yield, under the influ-

ence of a lot more environmental factors (regional and local)

(Millet et al., 2019). Such forecasting may impact the process of

price determination in commodity markets of the agricultural

sector through better modeling of expected supply (Trostle,

2010). Widely used benchmarks estimated by government

agencies, such as the United States Department of Agriculture,

have relied on self-reported performance from contracted

growers. Because the varieties released into the markets, which

generally have 3–4 years of product life (Magnier et al., 2010),

have been extensively tested in multiple years and locations by

developers, forecasting models based on environmental indices

that are tuned to specific varieties could be used. The obvious

extension of this concept is to improve our ability to anticipate

long-term effects of climate change, and even to anticipate,

deploy, and modify specific genes and gene networks that will

enable mitigation or leverage of these changes.

In terms of genetic architecture, differences were found for flow-

ering time in maize versus wheat and oat. Although all species
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respond to two primary environmental factors (temperature and

photoperiod), the responses among maize, wheat, and oat var-

ied, being predicted best by either PTT or PTR. This, as well as

the difference in detection of either distinct (maize) or overlapping

genes (wheat and oat) for slope and intercept, may be explained

partly by the specific materials involved (diverse maize panel

versus breeding panels in wheat and oat) and different ranges

of environments examined, although we cannot rule out the pos-

siblity that different underlying regulatory mechanisms may have

evolved in these species (Imaizumi and Kay, 2006; Andres and

Coupland, 2012). While two sets of mostly non-overlapping loci

were detected for slope and intercept in maize, supporting the

structural gene theory (Scheiner and Lyman, 1989; Scheiner,

1993; Kusmec et al., 2017), similar sets of loci were detected

for slope and intercept in wheat and oat as well as biparental

mapping populations of sorghum (Li et al., 2018) and rice (Guo

et al., 2020), supporting the allelic sensitivity theory (Via and

Lande, 1985; Via, 1993). It is reasonable to speculate that the

degree of overlap between genes associated with slope and

intercept is an emergent property of the underlying genetic

mechanisms and environmental conditions examined. Further

analyses of diversity panels with a diversity level comparable to

that of the maize panel over a comparable geographical and

climatic range would be informative. Additional bivariate GWAS

analysis may also be conducted to exploit the varied

relationship between intercept and slope. Nevertheless, our

current and previous research (Li et al., 2018; Guo et al., 2020)

provided initial population-level support to show that patterns

may be uncovered from the outcome of the plant perceptron in-

teracting with environmental and developmental cues (Scheres

and van der Putten, 2017) and they can be profiled for core

genes in the omnigenic model (Boyle et al., 2017). It is possible

that the effects of some peripheral genes are non-detectable un-

der certain environmental conditions. For a specific environment,

the effect estimates for core genes and peripheral genes can also

change if strong local environmental factors drive the gene–envi-

ronment interplay in different directions than the major environ-

mental forces.

In summary, our development and demonstration of the CERIS-

JGRA framework using three major crops have offered mecha-

nistic insights into gene–environment interplay, enabling accu-

rate, whole-genome, cross-environment performance prediction.

This framework can be extended to further incorporate gene

expression, regulatory network, and other functional character-

ization data to shed light on questions in genetics, ecology, and

evolution.

METHODS

Germplasm and phenotype

The maize diversity panel was assembled to capture the genetic diversity

in maize germplasm (Flint-Garcia et al., 2005). This population was

evaluated in 10 environments in 2006 and 2007 and phenotype data

were deposited in Panzea (https://www.panzea.org/phenotypes). The

wheat diversity panel was assembled from advanced spring wheat lines

selected from globally distributed nursery fields by the International

Maize and Wheat Improvement Center. Phenotypes of these advanced

lines were evaluated in 2009 and 2010, and data were deposited in the

International Maize and Wheat Improvement Center Dataverse (https://

data.cimmyt.org/) (Sukumaran et al., 2017). The oat diversity panel

population was a set of spring oat genotypes nominated by breeders

https://www.panzea.org/phenotypes
https://data.cimmyt.org/
https://data.cimmyt.org/
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and evaluated in 2010 and 2011 (Esvelt Klos et al., 2016). Field information

and phenotypes were deposited in T3/oat (https://triticeaetoolbox.org/

oat/). GPS coordinates and planting dates are listed in Supplemental

Table 1. Not all traits were scored in all environments. For some traits,

environments with a high missing observation rate or with a low

correlation between replications were removed from further analysis.

For example, one maize environment (06NY) was removed from analysis

because 25% of genotypes did not have flowering time records.

Themaize diversity panel with 282 inbred lines was planted in Puerto Rico,

Florida, North Carolina, Missouri, Illinois, and New York. Each location

was arranged in an augmented lattice design with a single replicate.

Each genotype was planted in a single-row plot of 8–15 plants. Flowering

time (days to anthesis) was measured as the days from planting to median

anthesis in a plot. Plant height was measured as the distance in centime-

ters from the soil line of the plant to the base of the flag leaf at reproductive

maturity. The wheat diversity panel of 287 elite lines was phenotyped in

major wheat-growing areas of India, Pakistan, Nepal, Bangladesh, Iran,

Egypt, Sudan, and Mexico. In each location, plants were grown in plots

with an a-lattice design with two replications. Flowering time (days to

heading) was measured from planting to when 50% of the plants in the

plot showed spikes coming out of the boot leaves. Plant height was

measured as the length of individual culms from the soil surface to the

tip of the spike. Grain yield was the grainweight per squaremeter and con-

verted to tons per hectare. The oat diversity panel with 434 genotypeswas

planted by sowing 50 g of seed in unreplicated four to five row plots of 1.2–

2.2 m length in Idaho, North Dakota, and New York, United States and in

3.25–4.6 m2 plots in Lacombe and Ottawa, Canada. In addition, 15–20

seeds were planted in hill plots in Minnesota in the United States. Flower-

ing time (days to heading) was measured from planting to when half of the

plants in a plot had emerged inflorescences. Plant height was measured

from the soil surface to the tip of panicle. Grain yield was recorded as

grams per square meter and converted to tons per hectare.

Genomic data

Genotyping data of the maize population were a subset of maize

HapMap3 (Bukowski et al., 2018), and 12 million maize SNPs were

obtained after filtering out SNPs with a missing rate higher than 20%

and minor allele frequency less than 1%. The wheat population was

genotyped with an Illumina iSelect 90K SNP assay providing data for

26 814 SNPs (Sukumaran et al., 2015). The oat population was

genotyped at 35 176 genotyping-by-sequencing-derived SNPs, which

were anchored to a consensus linkage map (Bekele et al., 2018).

CERIS

Daily temperature andDL data (civil twilight, hours) from the entire growing

season were retrieved from National Centers for Environmental Informa-

tion (NOAA, http://www.ncdc.noaa.gov) and The Astronomical Applica-

tions Department of the U.S. Naval Observatory (http://aa.usno.navy.

mil/data/index.php), respectively. For the ith DAP in the eth environment,

daily GDD was calculated as follows:GDDei = ðTmax ei + Tmin eiÞO 2 �
Tbase; where Tmax ei is the maximum temperature (�F, with the highest

observation of 86�F for maize, and 100�F for wheat and oat), Tmin ei is

the minimum temperature, and Tbase is the species-specific base temper-

ature (50�F for maize and 32�F for wheat and oat) (Bauer et al., 1984;

McMaster and Wilhelm, 1997; Cousens et al., 2003). For Tmin ei < Tbase,

Tmin ei was set to Tbase. Two composite environmental parameters, PTT

and PTR, were derived from temperature and photoperiod as follows:

PTTei = GDDei 3 DLei ; PTRei = GDDeiODLei.

We implemented the CERIS algorithm with R to identify the environmental

indices (https://github.com/jmyu/CERIS_JGRA). In brief, for any target

trait evaluated in n ðn>3Þ environments, the algorithm calculates the

average performance of the evaluated population at each environment

(environmental mean of the trait). The pipeline then calculates the average

value of the environment parameters (DL, GDD, PTT, or PTR) for the win-
M

dow from DAPi to DAPj, where DAPi is the ith day after planting, DAPj is

the jth day after planting, and i<j� 5. The correlation between the environ-

mental mean vector and each parameter–window value vector is calcu-

lated and stored separately. The parameter–window combination with

the strongest correlation (either positive or negative) is then chosen as

the environmental index and used for further analyses. We restricted the

search for the window to the times before the trait is fully developed,

following the sequence of physiological growth. Because of the overlap-

ping nature of windows, the window with the strongest correlation for an

environmental parameter is generally supported by the surrounding win-

dows. To minimize spurious search results, we restricted the window to

a span of at least 5 days, and conducted leave-one-environment-out

cross-validation (i.e., the average of n correlations was reported for

each window).

The high correlation between environmental index and environmental

means is interpreted as follows. For each environment, the environmental

mean of the measured trait was obtained by averaging across all geno-

types: 282 lines in maize, 287 in wheat, and 434 in oat. With a large sample

size, the average value (environmental mean) is an accurate reflection of

the environment effect on the whole population. In other words, if the

whole population is regarded as a single entity, its performance (repre-

sented by environmental means) is explained adequately by the environ-

mental effect captured by the environmental index. When environmental

parameters (DL, GDD, PTT, or PTR) within different windows of time are

searched, we expect to observe a high level of correlation when the envi-

ronmental parameter with the period of the growing season is a major

differentiating factor underlying the differences among the environmental

means dervied from the performance data. Moreover, the parameter–win-

dow combination selected as the environmental index should be sur-

rounded by other windows with slightly decreased correlation values.
Performance prediction

CERIS-JGRA performance prediction includes three scenarios: (1) pre-

dicting the performance of tested genotypes in untested environments,

(2) predicting the performance of untested genotypes in tested environ-

ments, and (3) predicting the performance of untested genotypes in un-

tested environments (Li et al., 2018; Guo et al., 2020). Unlike the

traditional joint regression analysis, CERIS-JGRA involves performance

prediction for genotypes without performance data by exploiting the

genomic relationship between tested and untested genotypes, and per-

formance prediction for individuals without performance data in future en-

vironments by exploiting both genomic relationship and environmental

index.

For the first scenario, the leave-one-environment-out cross-validation

was conducted. (1) Let the jth (j = 1, 2, 3.,m) environment be the untested

environment, and the remaining the training (tested) environments. (2)

Search for the environmental index with CERIS by using the environmental

means from the tested genotypes in the tested environments. (3) For the ith

(i = 1, 2, 3., n) genotype, regress the observed phenotypes from the

tested environments on the identified environmental index to obtain inter-

cept and slope estimates. (4) Predict the phenotype in the jth untested

environment by supplying the fitted linear models (regression models

from step 3) with the value of the corresponding environmental index value

from the jth untested (to be predicted) environment. (5) Repeat steps 1 to 4

until each environment is predicted.

For the second scenario, the leave-one-half-of-genotypes-out cross-

validation was conducted. (1) Equally split n genotypes into tested geno-

types and untested genotypes. (2) Search for the environmental index with

CERIS by using the environmental means from the tested genotypes. (3)

Regress the observed phenotypes on the identified environmental index

to obtain intercept and slope estimates for each tested genotype. (4)

Treating intercept and slope as new ‘‘traits’’, run genomic prediction

through ‘‘rrBLUP’’ (Endelman, 2011) to predict the intercept and slope
olecular Plant 14, 874–887, June 7 2021 ª The Author 2021. 883
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for each untested genotype. (5) Predict the phenotypes of the untested

genotypes with the predicted intercept and slope and the

environmental-index value of each environment.

For the third scenario, the joint leave-one-environment-out and one-half-

of-genotypes-out cross-validation was conducted. (1) Let the jth (j = 1, 2,

3., m) environment be the untested environment, and the remaining the

training (tested) environments. (2) Equally split n genotypes into tested ge-

notypes and untested genotypes. (3) Search the environmental index with

CERIS by using the environmental means from the tested genotypes in the

tested environments. (4) Regress the observed phenotypes on the identi-

fied environmental index to obtain intercept and slope estimates for each

tested genotype. (5) Treating intercept and slope as new ‘‘traits’’, run

genomic prediction through rrBLUP to predict the intercept and slope

for each untested genotype. (6) Predict phenotypes of the untested geno-

types in the untested environment with the predicted intercept and slope

and the environmental-index value from the untested environment. (7)

Repeat steps 1 to 6 until each environment is processed.

The joint regression analysis model is as follows: Pij = gi + bitj + eij,

where Pij is the phenotypic value of genotype i in environment j; gi is the

genotypic effect (intercept); bi is the regression coefficient (slope); tj is

the environmental-index value of environment j centered by the average

environmental-index values across the environments; and eij is the resid-

ual. Average values from two replications were used for wheat traits, while

single-replication observations were used for maize and oat traits. The

genomic prediction model in JGRA uses the following mixed model: y =

1m + Zg + e, where y is the phenotypic values (i.e., intercept or slope

derived for the original phenotype), m is the overall mean (fixed effect), g

is the vector of random genetic effects, and e is the vector of residuals.

1 and Z are incidence matrices. The variance of the random effects u is

varðuÞ = As2g, where A is the genomic relationship matrix and s2g is

the additive genetic variance. The variance of the residuals e is varðeÞ =
Is2e, where I is the identity matrix.

JGRA is a generic framework that is applicable to input datasets with sizes

ranging from small to large. For genomic prediction with the genome-wide

relationship or genome-wide marker effect estimation, rrBLUP is used as

the default setting, which can be customized to accommodate other

methods. In addition, splitting environments into training and testing envi-

ronments is user-defined, so is splitting genotypes.

When the multi-environment trial involves 2 years with adequate sites

within each year, the generic term ‘‘prediction’’ can be replaced with

‘‘forecasting’’. The purpose of CERIS-JRA forecasting is to predict the

performance of tested genotypes in the second year. We split the multi-

environment trial into training environments and testing environments

based on the planting year. Trials planted in the first year were used as

training environments and those planted in the second year as testing en-

vironments. Because the prediction scenario predicts tested genotypes in

untested environments (i.e., genotypes are all tested), genomics is not

involved in this forecasting. The purpose of CERIS-JGRA forecasting is

to predict performances of untested genotypes in the second year. In

this case, we equally split genotypes into two halves, one as a training

set and the other as a testing set. By applying CERIS-JGRA, performance

forecasting can be done for the second half of genotypes in the second-

year environments.

Prediction accuracy was calculated as the correlation between

observed and predicted values. The predicted values were generated

from the model developed from the training set of tested genotypes un-

der tested environments. Prediction accuracy was assessed across all

environments and at the individual environment level. When sampling

of the genotypes was conducted, the average value of prediction accu-

racy across 50 runs was calculated. A representative run is shown in the

figure for illustration.
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Identification of loci associated with phenotypic plasticity
through GWAS

Reaction norm relates the environments to which a particular genotype is

exposed to the phenotypes produced by the genotype. With the identified

environmental index, two reaction norm-norm parameters (intercept and

slope) were obtained for each trait using the joint regression analysis of

the observed trait values across environments. Treating the estimates of

intercept and slope as two derived traits, the established mixed model

GWAS procedure (Yu et al., 2006; Zhang et al., 2010) implemented in

GAPIT (Tang et al., 2016) was used, separately for each trait, to identify

genomic loci underlying the variation observed for slope and intercept

across different genotypes.

Both principal components and relative kinship were used to control ge-

netic relatedness through the default model selection process before

testing individual SNPs. Genome-wide significance thresholds were first

determined using the false discovery rate at the 0.05 level (Benjamini

and Hochberg, 1995). For maize GWAS, when a false discovery rate at

the 0.05 level was not obtainable, a commonly used suggestive

threshold value (�log10(P) = 6) was plotted as a visual aid. For wheat

and oat GWAS with less SNP coverage than maize, we used the

SimpleM method to obtain the significance threshold (Gao et al., 2008,

2010). To model the genetic effect dynamics along the environmental

gradient, SNPs significantly associated with intercept and slope were

tested for association with flowering time within each environment using

the mixed model method in GAPIT. The same procedure was done for

five additional known genes: PhyB2, CIB1, and ZmPRR59 for maize and

VRN-B1 and VRN-D3 for wheat. These separate genetic effects were

then regressed on the environmental index to generate the fitted lines

as the genetic effect continua, i.e., varied genetic effects with different

environmental inputs.

Sequences surrounding the genes (ZCN8, Conz1, ZMM5, and ZMM22/

ZmMADS69) implicated in flowering-time phenotypic plasticity were

retrieved from MaizeGDB (https://www.maizegdb.org/genome/

assemblies_overview) for B73, B104, CML247, EP1, F7, PH207, W22,

and Mo17. Because annotation information for most assemblies was

not available, coding sequences from B73 were used as queries in BLAST

searches to anchor the corresponding sequences in other assemblies.

The collinear sequences among eight inbred lines were BLASTed against

each other to identify structural variations. Transposon elements encoded

in the targeted sequences were identified with CENSOR (www.girinst.

org). Primer 3 (http://bioinfo.ut.ee/primer3/) was used to design primers

to amplify sequences near insertion/deletion sites. PCR amplicons were

separated in an agarose gel to verify the potential structural variations.
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