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A B S T R A C T   

Improving agricultural productivity of smallholder farms (which are typically less than 2 ha) is key to food 
security for millions of people in developing nations. Knowledge of the size and location of crop fields forms the 
basis for crop statistics, yield forecasting, resource allocation, economic planning, and for monitoring the 
effectiveness of development interventions and investments. We evaluated three different full convolutional 
neural network (F–CNN) models (U-Net, SegNet, and DenseNet) with deep neural architecture to detect func
tional field boundaries from the very high resolution (VHR) WorldView-3 satellite imagery from Southern 
Bangladesh. The precision of the three F–CNN was up to 0.8, and among the three F–CNN models, the highest 
precision, recalls, and F-1 score was obtained using a DenseNet model. This architecture provided the highest 
area under the receiver operating characteristic (ROC) curve (AUC) when tested with independent images. We 
also found that 4-channel images (blue, green, red, and near-infrared) provided small gains in performance when 
compared to 3-channel images (blue, green, and red). Our results indicate the potential of using CNN based 
computer vision techniques to detect field boundaries of small, irregularly shaped agricultural fields.   

1. Introduction 

Smallholder farms provide up to 90% of the food in developing na
tions (Singh, 2002). The sizes of smallholder farms are small, typically 
less than 2 ha. The land is split into several parcels, on which farmers 
sometimes grow a mix of different crops, and the boundaries are hard to 
distinguish (Fritz and See, 2008). As the human population keeps 
growing in many developing countries (Haub, 2013), field sizes will 
likely decrease, and more marginal lands will be brought into produc
tion (Debats et al., 2016). Given the potential role of smallholder agri
culture in addressing food security, it is vital to gather spatial 
information of functional agricultural field units and how field units 
vary within and across geographic regions and over time. Such infor
mation is essential for improving crop yield prediction, providing crop 
management advice, resource allocation, economic planning, and 
monitoring the effectiveness of development interventions and 

investments. Many developing countries do not have an electronically 
accessible cadaster system in place. Moreover, field boundaries are not 
static. 

Satellite data with a resolution up to 0.3 m open opportunities do 
delineate field boundaries, or functional agricultural field units, at a 
reasonable cost. Yet the development of an automatic field boundary 
detection and extraction method for smallholder farms across a broad 
range of agricultural environments is a complex challenge. Some studies 
have shown promising results (Debats et al., 2016; Yan and Roy, 2014). 
It is prudent to develop a specialized methodology using machine 
learning algorithms and readily available satellite images to tackle this 
non-trivial problem. 

Early automatic and semi-automatic techniques for boundary 
delineation were based on edge detection methods such as Roberts de
tector (Roberts, 1963), Sobel edge detector (Gupta and Mazumdar, 
2013), Laplacian of Gaussian detector (Gonzalez et al., 2004), and 
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Canny edge detector (Canny, 1986). Edge detection combined with 
image segmentation (Pavlidis and Liow, 1990; Schoenmakers, 1995), 
graph-based vectorization (Turker and Kok, 2013), and multi-scale 
contrast limited adaptive histogram equalization (Graesser and Ram
ankutty, 2017) have been used for boundary detection. But the appli
cation of such methods tends to result in over-segmentation (Schick, 
2011). They need parameter tuning through trial and error since they 
are highly dependent on a correct parameter selection (García-Pedrero 
et al., 2017). Recent agricultural field boundary detection techniques 
such as the line segment detection algorithm (LSD), the variational 
region-based geometric active contour method (VRGAC), when com
bined with a watershed segmentation algorithm, have performed 
reasonably well in regularly shaped agricultural fields (Alemu, 2016; 
Yan and Roy, 2014), yet failed to detect boundaries in heterogeneous 
landscapes dominated by smallholder farms. Moreover, due to their 
inherent complexity, these methods are not scalable over the broad 
range of agricultural landscapes where land cover displays high 
Spatio-temporal variability. 

Recently, machine learning algorithms with deep neural architecture 
such as the convolutional neural network (CNN) have shown superior 
performances in object detection in a variety of imagery (Girshick et al., 
2014; Krizhevsky et al., 2012; Ren et al., 2015). The availability of vast 
amounts of satellite imagery with the high spatial and temporal reso
lution has enabled several significant recent efforts to automate object 
detection, such as buildings (Gavankar and Ghosh, 2018; Yang et al., 
2018a), roads (Xu et al., 2018a; Zhang et al., 2018), vehicles (Fan et al., 

2016), airports (Xu et al., 2018b) and ships (Yang et al., 2018b; Zhang 
et al., 2016). Most of these methods were developed for object detection 
in urban settings, where regularly shaped objects dominate. They have 
not been adequately adapted or optimized for the detection of poorly 
delineated objects, such as small crop fields from satellite images (Ren 
et al., 2018). Only a few studies have adapted CNN for classification and 
extraction of crop fields from satellite imagery (Ji et al., 2018; Kussul 
et al., 2017; Zhong et al., 2017), and these studies have concentrated on 
large-scale farming applications. Recently, Musyoka (2018) applied 
F–CNN to detect agricultural field boundaries in northern Nigeria, 
where the average field size is 0.53 ha (FAO, 2019) and found that 
F–CNN outperformed other, traditional edge-detectors algorithms. Fully 
convolutional neural networks were able to accurately delineate 
boundary classes by learning the spatial-contextual features in a very 
complex dataset. In Bangladesh, the average size of landholding per 
farm is only about 0.3 ha. The land is split up into several parcels, 
resulting in areas of 0.08 ha for small and 0.16 ha for medium farms 
(Rahman and Rahman, 2009). This country represents one of the most 
challenging environments for automated field boundary detection from 
satellite images. 

Semantic segmentation, a pixel-wise image recognition technique 
with deeper CNN architecture such as SegNet (Badrinarayanan et al., 
2017), U-Net (Ronneberger et al., 2015), DenseNet (Huang et al., 2017), 
and RefineNet (Lin et al., 2017) might be a suitable technique for 
automated field boundary detection in this environment. It has been 
used in remote sensing applications for the detection of roads, buildings, 

Fig. 1. False-color R-G-B image of the study area with manually drawn field boundaries, Patuakhali District, Bangladesh.  

Table 1 
WorldView-3 sensor specifications.  

Band Wavelength 
(nm) 

Sensor Resolution Swath Width Revisit Frequency (at 40◦N Latitude) 

Panchromatic 450–800 Panchromatic: 0.31 m GSD at nadir, 0.34 m GSD at 20◦ off-nadir 
Multispectral: 

13.1 km at 
nadir 

Less 1 day at 1 m GSD or 4.5 days at 20◦ off- 
nadir or less      

8 Multispectral 
bands  

1.24 m GSD at nadir, 1.38 m GSD at 20◦ off-nadir   

Coastal 400–450    
Blue 450–510    
Green 510–580    
Yellow 585–625    
Red 630–690    
Red Edge 705–745    
Near-IR1 770–895    
Near-IR2 860–1040     
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water, and trees (Buslaev et al., 2018; Tao et al., 2018). In this study, we 
evaluated these three F–CNN based algorithms, U-net, SegNet, and 
DenseNet, to detect field boundaries from very high resolution (VHR) 
satellite images in a rice-based cropping system of Bangladesh. Also, two 
state-of-the-art pixel-wise segmentation methods named random forest 
(Debats et al., 2016) and FCN-DKConv6 (Musyoka, 2018) are also 
applied as the comparison method to verify the feasibility of proposed 
F–CNN based algorithms. 

2. Material and methods 

2.1. Study site 

We used a WorldView-3 multispectral image from the Patuakhali 
District, a southern coastal district in Bangladesh (Fig. 1), acquired on 
March 18, 2015. Its ground sampling distance (GSD) is 1.24 m. Agri
culture in this region is characterized by a complex rice-based cropping 
system with small and fragmented fields. The study sites consist of 557 
fields with an average field size of 0.105 ha. The fields are separated by 
paddy bunds (dikes), usually only about 0.3 m wide. In the winter sea
son, which is dry, a large part of the study region is covered by low- 
intensity rabi crops (dry season crops) such as grass pea (Lathyrus sat
ivus L.) and mung bean (Vigna radiata (L.) Wilczek) or left fallow. Some 
fields are cultivated with irrigated rice (boro). 

2.2. Remote sensing and ground truth data 

A very high resolution (VHR) WorldView-3 satellite image was 

obtained through the STARS project of the International Maize and 
Wheat Improvement Center (CIMMYT). The WorldView-3 sensor spec
ifications are shown in Table 1. For this study, we used the blue, green, 
red, and near-infrared-2 bands. 

We performed on-screen digitization in ArcGIS 10 (ESRI, 2019) to 
draw the boundaries of each field. We applied a buffer (0.5 m) function 
on the resulting single line vector data to create polygons of field 
boundaries. The resulting polygons were labeled as the boundary class 
(Class 1), and the region not covered by the buffer (the agricultural 
fields) labeled as the non-boundary class (Class 2). Finally, we converted 
this vector polygon to a binary raster format at 0.5 m resolution (Fig. 2). 

2.3. Preprocessing 

Deep learning algorithms are “data-hungry” as they work better with 
a large amount of data, and deep learning models trained with small 
datasets do not generalize well. Data augmentation techniques can be 
used to create additional data by modifying the original data without 
changing their meaning (Perez and Wang, 2017; Simard et al., 2003) 
and reducing the variance of the model and overfitting (Krizhevsky 
et al., 2012). There are several data augmentation methods available in 
computer vision-based image processing techniques such as horizon
tal/vertical flip, rotation, color modification, noise addition, size 
modification, and affine transformation. Before augmentation, we split 
both the very high resolution (VHR) and the labeled raster images 
containing the boundary (Class 1) and field classes (Class 2) into 51 
images of 192 × 192 pixels. Then we applied 90-, 180- and 270-degree 
rotations on all images (Fig. 3) and generated a total of 204 image tiles. 

Fig. 2. Sample false-color R-G-B images and corresponding labeled field boundaries.  

R. Yang et al.                                                                                                                                                                                                                                    



Remote Sensing Applications: Society and Environment 20 (2020) 100413

4

These images were split into 172 training, 8 validation, and 24 test 
images. 

2.4. Boundary detection methods 

We evaluated three different full convolutional neural networks 
(F–CNN) models, such as U-Net, SegNet, and DenseNet)with deep neural 
architecture to detect functional field boundaries from the very high 
resolution (VHR) WorldView-3 satellite imagery. We also used random 
forest (RF) and FCN-DKConv6 as base models to evaluate the perfor
mance of the proposed three kinds of F–CNN models. 

2.4.1. F–CNN based methods 
Data-driven machine learning methods, especially CNN, have 

recently been widely used in the domain of remote sensing (Fan et al., 
2016; Gavankar and Ghosh, 2018; Yang et al., 2018b). Although deep 
CNNs are very successful in object classification, their performance de
grades when faced with semantic segmentation tasks such as field 
boundary detection. Due to a loss of object details at the pixel level, most 
of the deep CNN cannot recognize the specific object contour and fail to 
provide the right classification label to each pixel. This weakness can be 
overcome by a classification model that uses fully connected layers to 
predict the classes. The F–CNN model substitutes the last fully connected 
layer with a convolutional layer to capture the global context of the 
image. For field boundary detection, F–CNN is advantageous over CNN 
architectures for two reasons: First, an F–CNN naturally operates on an 
input of any size and produces an output of corresponding (possibly 
resampled) spatial dimensions (Long et al., 2015). Second, F–CNN is 
more efficient. They avoid tedious convolution computations and 
memory storage problems. In general, the encoder-decoder architecture 
is the most popular F–CNN model. The encoder can gradually reduce the 
input dimension, and the decoder gradually restores the details of the 
objects and the spatial dimension. Commonly, skip connections between 

the encoder and the decoder are used to enable better restoration details. 
In this study, we tested the suitability of three existing F–CNN based 
semantic segmentation architectures, namely U-Net, SegNet, and Den
seNet, to detect field boundaries from VHR satellite images. 

2.4.1.1. U-Net. U-net is a class of a fully convolutional network with 
symmetrical encoder-decoder deep learning architecture developed 
explicitly for biomedical image segmentation (Ronneberger et al., 
2015). The encoder part is the typical convolutional neural network 
where each step consists of two 3 × 3 convolutional layers followed by a 
rectified linear unit (ReLU) and a 2 × 2 max pooling layer with stride 2. 
Each step of the decoder part involves the two 3 × 3 convolutional layers 

Fig. 3. Data augmentation (a) initial Image (b) 90-degree rotation (c) 180-degree rotation (d) 270-degree rotation.  

Fig. 4. The architecture of the proposed U-Net model for satellite image segmentation.  

Table 2 
Parameters of U-Net architecture (k: kernel size, c: channel number).  

Layer Down-sampling Layer Up-sampling 

Conv1 k (3 × 3)/c (64) Upsampling1 k (2 × 2) 
Conv2 k (3 × 3)/c (64) Conv11 k (3 × 3)/c (512) 
Dropout1 0.5 Conv12 k (3 × 3)/c (512) 
Maxpool1 k (2 × 2) Dropout5 0.5 
Conv3 k (3 × 3)/c (128)) Upsampling2 k (2 × 2) 
Conv4 k (3 × 3)/c (128)) Conv13 k (3 × 3)/c (256) 
Dropout2 0.5 Conv14 k (3 × 3)/c (256) 
Maxpool2 k (2 × 2) Dropout6 0.5 
Conv5 k (3 × 3)/c (256) Upsampling3 k (2 × 2) 
Conv6 k (3 × 3)/c (256) Conv15 k (3 × 3)/c (128) 
Dropout3 0.5 Conv16 k (3 × 3)/c (128) 
Maxpool3 k (2 × 2) Dropout7 0.5 
Conv7 k (3 × 3)/c (512) Upsampling4 k (2 × 2) 
Conv8 k (3 × 3)/c (512) Conv17 k (3 × 3)/c (64) 
Dropout4 0.5 Conv18 k (3 × 3)/c (64) 
Maxpool4 k (2 × 2) Dropout8 0.5 
Conv9 k (3 × 3)/c (1024) Conv19 (softmax) k (1 × 1)/c (2) 
Conv10 k (3 × 3)/c (1024)    
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followed by a 2 × 2 up-convolutional layer. The cropping is necessary 
due to the loss of border pixels in every convolution. The last layer is a 1 
× 1 convolutional layer for mapping from the feature vectors to the 
number of classes (Ronneberger et al., 2015). U-Net does not have any 
fully connected layers and only uses the valid part of each convolution 
that allows for the seamless segmentation of randomly large images. It 
uses an overlap-tile strategy replacing pooling operators with 
up-sampling operators. U-Nets can learn efficiently with low to medium 
quantities of training data and have recently been used for satellite 
image segmentation and object detection (Buslaev et al., 2018; Chhor 
and Aramburu, 2017; Rakhlin et al., 2018). The architecture and pa
rameters of the U-Net architecture used for field boundary detection are 
shown in Fig. 4 and Table 2. 

2.4.1.2. SegNet. SegNet (Badrinarayanan et al., 2017) is another sym
metrical encoder-decoder deep learning architecture. Unlike U-net, it 
uses all pre-trained convolutional layer weights like Visual Geometry 
Group (VGG) net (Simonyan and Zisserman, 2014) as pre-trained 
weights in the decoding steps. However, a SegNet encoder network is 
smaller (only 13 layers) than VGG-net. Similar to the U-Net architecture, 
each encoder involves several convolutional layers followed by a recti
fied linear unit (ReLU) and a 2 × 2 max pooling layer with stride 2. For 
the decoder part, it upsamples its input feature map using the memo
rized max-pooling indices from the corresponding encoder feature map. 
This step produces a sparse feature map (Badrinarayanan et al., 2017). 
In the last layer of the decoder part, the softmax classifier is utilized to 

predict the label for each pixel in the input image. Moreover, by reusing 
max-pooling indices in the decoding process, SegNet reduces the num
ber of parameters in the training process and performs well in boundary 
delineation and object detection from satellite images (Panboonyuen 
et al., 2017). The architecture and parameters of SegNet used for field 
boundary detection in our study are listed in Fig. 5 and Table 3. 

2.4.1.3. DenseNet. DenseNet (Huang et al., 2017) builds upon ResNet 
architecture (He et al., 2016) in which each layer connects to every other 
layer. The DenseNet is built from several dense blocks and other pooling 
operations like transition down and transition up. In the dense block, 
each layer concatenates outputs from all preceding layers and passes on 
its feature-maps to all the subsequent layers. The basic idea of the dense 
block is to build a dense connection among all previous layers with the 
later layers. Unlike traditional CNN, the input of each layer is not based 
on the output of a single layer rather depends on the outputs of all 
previous layers. The general architecture of DenseNet and dense block 
are displayed in Fig. 6 and Fig. 7. We used three different depths: 56, 67, 
and 103 in DenseNet architectures (Table 4) for our field boundary 
detection problem. The dropout layer is added after the last convolution 
layer of each dense block to address the overfitting problem. The 
dropout rate was set to 0.5. 

2.4.1.4. FCN-DKConv6. The FCN-DKConv6, with a dilated convolu
tional layer, which is developed from FCN-DKs (Persello et al., 2017), 
was used to detect agricultural field boundaries in northern Nigeria 
((Musyoka, 2018). The architecture is composed of six convolutional 
layers followed by batch normalizations and “Leaky Relu” non-linearity. 
A 1 × 1 convolutional filter is used in the classification layer to predict 
labels. The details about FCN-DKConv6 are listed in Table 5. 

2.4.2. Random forest (RF) 
Random forest developed by Breiman (2001), has recently been used 

for boundary detection in agricultural fields (Debates et al., 2016). The 
random forest method uses an ensemble of multiple iterations of deci
sion trees where each tree is made by bootstrapping of the original data 
set. It allows for robust error estimation with the remaining test set, the 
so-called Out-Of-Bag (OOB) sample. The excluded OOB samples are 
predicted from the bootstrap samples and by combining the OOB pre
dictions from all trees. We used an RF model with 600 trees and a 
maximum tree depth of 30 levels of nodes during the training phase. The 
local binary pattern and co-occurrence matrix features (including 
contrast, correlation, entropy, and so on) were extracted from the sat
ellite image as the input to train the random forest model. 

2.5. Training and precision assessment 

Before training, a hyper-parameter sensitivity analysis was done for 
learning rate, weight decay, patch size, sample size, and batch size. The 
details of the hyper-parameter sensitivity analysis and best parameter 
selection are listed in Table 6. For each F–CNN model, we selected the 

Fig. 5. The architecture of the proposed SegNet model for satellite image segmentation.  

Table 3 
Parameters of SegNet architecture (k: kernel size c: channel number).  

Layer Down-sampling Layer Up-sampling 

Conv1 k (3 × 3)/c (64) Upsampling1 k (2 × 2) 
Conv2 k (3 × 3)/c (64) Conv14 k (3 × 3)/c (512) 
Dropout1 0.5 Conv15 k (3 × 3)/c (512) 
Maxpool1 k (2 × 2) Conv16 k (3 × 3)/c (512) 
Conv3 k (3 × 3)/c (128)) Dropout6 0.5 
Conv4 k (3 × 3)/c (128)) Upsampling2 k (2 × 2) 
Dropout2 0.5 Conv17 k (3 × 3)/c (512) 
Maxpool2 k (2 × 2) Conv18 k (3 × 3)/c (512) 
Conv5 k (3 × 3)/c (256) Conv19 k (3 × 3)/c (512) 
Conv6 k (3 × 3)/c (256) Dropout7 0.5 
Conv7 k (3 × 3)/c (256) Upsampling3 k (2 × 2) 
Dropout3 0.5 Conv20 k (3 × 3)/c (256) 
Maxpool3 k (2 × 2) Conv21 k (3 × 3)/c (256) 
Conv8 k (3 × 3)/c (512) Conv22 k (3 × 3)/c (256) 
Conv9 k (3 × 3)/c (512) Dropout8 0.5 
Conv10 k (3 × 3)/c (512) Upsampling4 k (2 × 2) 
Dropout4 0.5 Conv23 k (3 × 3)/c (128) 
Maxpool4 k (2 × 2) Conv24 k (3 × 3)/c (128) 
Conv11 k (3 × 3)/c (512) Dropout9 0.5 
Conv12 k (3 × 3)/c (512) Upsampling5 k (2 × 2) 
Conv13 k (3 × 3)/c (512) Conv25 k (3 × 3)/c (64) 
Dropout5 0.5 Conv26 k (3 × 3)/c (64) 
Maxpool5 k (2 × 2) Dropout10 0.5   

Conv27 (softmax) k (1 × 1)/c (2)  
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hyper-parameter configuration with the highest boundary precision 
value. We used precision, recall, and F1-score (Dice Similarity Coeffi
cient) (Powers, 2011) to evaluate the model performance. The three 
metrics can be expressed as follows: 

Precision =
True Positive

True Positive + False Positive
(1)  

Recall =
True Positive

True Positive + False Negative
(2)  

F1 = 2 ×
Precision × Recall
Precision + Recall

(3) 

True positive is an outcome where the model correctly predicts the 
positive class. In our case, this is a boundary pixel that is identified as 
belonging to the boundary class. False-positive is a non-boundary pixel 
that is incorrectly identified as a boundary pixel. False-negative is a 
boundary pixel that is classified as non-boundary. All these parameters 
can be directly obtained from the confusion matrix in the python “scikit- 
learn” library (Garreta, 2013). 

Fig. 6. The architecture of the proposed DenseNet model.  

Fig. 7. A three-layer dense block. Each layer takes all preceding features as input.  
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We applied the dropout, L-2 regularization to address the over-fitting 
problem. All models were trained with 3-channels (blue, green, and red) 
and 4-channels (blue, green, red, and NIR2) images. To assess the per
formance, we used the receiver operating characteristic (ROC) curve and 
the related area under the ROC curve (AUC). 

All networks were trained with the Tensorflow-GPU 1.14.0, CUDA 
10.0 toolkit, and cuDNN 7.4 support on a Dell Alienware R8 desktop, 
which has 16 GB RAM, an 8 GB RTX 2080 super GPU. 

3. Results 

The training times for the F–CNN architectures and two baseline 
methods are shown in Fig. 8. For both the 3- and 4-channel images, the 
random forest model required less training time than all architectures, 

whereas DenseNet 103 needed the highest training time. On average, the 
3- channel images required around 15 min lesser time for training than 
4-channel images. Both training and validation log-loss, which is usually 
related to cross-entropy and measures the performance of a classifica
tion model, decreased to the point of stability and showed a small gap 
between the train and validation loss learning curves (Fig. 9), i.e., low 
“generalization gap” (Hoffer et al., 2017). The lowest “gaps” were 
observed for the DenseNet103 architecture indicating the lowest 
generalization error among all models. 

3.1. Model performance 

During the training stage, all F-CNNs models showed very high recall 
and F1-scores (>0.80) for both the 3- and 4-channels images (Tables 7 
and 8). The highest precision, recall, and F-scores in boundary detection 
were found with DenseNet103 for both the 3- and 4-channel images 
(Tables 7 and 8). The lowest values were obtained from the random 
forest model. 

The algorithms were tested on the hold-out test images to evaluate 
their performance. The random forest performed very poorly to detected 
field boundaries among all algorithms, and precisions were only <0.5 
for both 3-channel and 4-channel images (Tables 7 and 8). The precision 
of FCN-DKConv6 dropped from 0.88/0.85 at the training phase to 0.61/ 
0.56 at the testing phase resulted in a very high generalization error 
(29%) in boundary detection. Wheres, this error was only 15% for 
DenseNet103, resulted in the highest precision among all tested models 
in boundary detection from hold-out test images. The precision of two 
popular F-CNNs models, U-Net and SegNet, was around 0.68. The use of 
4-channels images showed a small improvement in precision boundary 
detection (Table 8). 

To further compare the performance of these architectures, we use 
the area under the ROC curves (AUC) metric. AUC is a standard metric 
for binary classification tasks that produces a single point in the ROC 
space. The AUC values < 0.5, 0.7 and >0.9 represent little, moderate 
and high usefulness of a model for classification tasks, respectively 
(Swets, 1988). In this study, DenseNet with deeper architecture had the 
highest AUC values (>0.85) among all models, and the lowest (0.51) 
was observed in the RF model followed by the FCN-DKConv6 model 

Table 4 
Parameters of three DenseNet architectures (DB: Dense Block TD: Transition 
Down TU: Transition Up).  

DenseNet56 DenseNet67 DenseNet103 

3 × 3 conv layer 3 × 3 conv layer 3 × 3 conv layer 
DB (4 layers) +TD DB (5 layers) +TD DB (4 layers) + TD 
DB (4 layers) +TD DB (5 layers) +TD DB (5 layers) +TD 
DB (4 layers) +TD DB (5 layers) +TD DB (7 layers) +TD 
DB (4 layers) +TD DB (5 layers) +TD DB (10 layers) +TD 
DB (4 layers) +TD DB (5 layers) +TD DB (12 layers) +TD 
DB (4 layers) DB (5 layers) DB (15 layers) 
TU + DB (4 layers) TU + DB (5 layers) TU + DB (12 layers) 
TU + DB (4 layers) TU + DB (5 layers) TU + DB (10 layers) 
TU + DB (4 layers) TU + DB (5 layers) TU + DB (7 layers) 
TU + DB (4 layers) TU + DB (5 layers) TU + DB (5 layers) 
TU + DB (4 layers) TU + DB (5 layers) TU + DB (4 layers) 
1 × 1 conv (softmax) 1 × 1 conv (softmax) 1 × 1 conv (softmax)  

Table 5 
Final implementation; FCN-DKConv6. BNorm: batch normalization; LRuLu: 
Leaky ReLu (Musyoka, 2018).  

Networks Layer weights Stride Pad Dilation  

Conv1 5 × 5 × 8 × 16 1 2 1 
FCN-DKConv1 BNorm1 – 1  –  

LReLu1 – 1  –  
Conv2 5 × 5 × 16 × 32 1 4 2 

FCN-DKConv2 BNorm2 – 1  –  
LReLu2 – 1  –  
Conv3 5 × 5 × 32 × 32 1 6 3 

FCN-DKConv3 BNorm3 – 1  –  
LReLu3 – 1  –  
Conv4 5 × 5 × 32 × 32 1 8 4 

FCN-DKConv4 BNorm4 – 1  –  
LReLu4 – 1  –  
Conv5 5 × 5 × 32 × 32 1 10 5 

FCN-DKConv5 BNorm5 – 1  –  
LReLu5 – 1  –  
Conv6 5 × 5 × 32 × 32 1 12 6 

FCN-DKConv6 BNorm6 – 1  –  
LReLu6 
Conv 

– 
1 × 1 × 32 × 2 

1 
1  

– 
1 

Classification Dropout      
Softmax      

Table 6 
Hyper-parameter sensitivity analysis for five F–CNN Models.  

Hyper-parameters Range of Tuning Best hyper-parameter 

U-Net SegNet Dense56 Dense67 Dense103 
Learning Rate 0.01,0.001,0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
Batch Size 1,2,5 1 1 1 1 1 
Image Size 100 × 100,192 × 192 192 × 192 192 × 192 192 × 192 192 × 192 192 × 192 
Patch Size 3 × 3, 5 × 5, 7 × 7 3 × 3 3 × 3 5 × 5 5 × 5 5 × 5 
Dropout Rate 0.2,0.3,0.4,0.5 0.5 0.5 0.5 0.5 0.5  

Fig. 8. Training times of seven models with 3-channel and 4-channel 
VHR images. 

R. Yang et al.                                                                                                                                                                                                                                    



Remote Sensing Applications: Society and Environment 20 (2020) 100413

8

Fig. 9. Learning curves of five F–CNN models and FCN-DKConv6 during the training and validation phase.  
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(Fig. 10). The classification precision and AUC slightly improved with 
the addition of the NIR2 band for all models. 

To visualize and compare the predictive performance of all models, 
predicted field boundaries with corresponding ground truth data of a 
sample of training, validation, and test images are shown in Fig. 11. The 
black and yellow lines represent ground truth and predicted field 
boundaries, respectively. All models except RF were able to detect most 
of the field boundaries from training and validation images. A signifi
cant number of pixels belonging to field boundaries in test images were 
classified incorrectly by all models. However, compared to five F-CNNs 
models, a large number of pixels in both 3- and 4-channel images were 
miss-classified by FCN-DKConv6. The performance of boundary detec
tion by RF was low and unable to detect most of the crop boundary from 
the test image. 

4. Discussion 

The classification of pixels in an image, also known as semantic 
classification, is a non-trivial task. Recently, data-driven machine 
learning methods, especially CNN, have found widespread success in 
image classification (Kayalibay et al., 2017; Tao et al., 2018; Buslaev 
et al., 2018). Shallow neural networks (lower number of layers) have a 
relatively small receptive field that can only learn local characteristics. 
On the other hand, deep networks have a relatively big receptive field 
that can learn more abstract features. These learned abstract features are 
not sensitive to the size, location, and direction of the object and help 
improve the quality of the recognition performance. Although deep CNN 
is very successful in object classification, its performance degrades when 
most of the deep CNN cannot recognize the specific contour of the ob
ject, which in our case, is the field boundary. 

The F–CNN models used in this study showed very high accuracies 
for detecting field boundaries. The area under ROC curve values during 
model evaluation with set-out test images ranged from 0.8 to 0.89. An 
AUC >0.7 for an algorithm serves as a threshold for usefulness in an 
application (Swets, 1988). Among all F–CNN models evaluated in this 
study, the DenseNet 103 showed the highest precision and AUC for 
detecting boundaries from test images. Since DenseNet includes dense 
blocks that build dense connections among all previous layers with later 
layers, it performed better than SegNet and U-Net. Besides, DenseNet is 
based on implicit deep supervision that can be described as individual 
layers receiving additional supervision from the loss function through 
the shorter connections (Lee et al., 2015). It can address the vanishing 
gradient problem by connecting every layer directly. U-Net and SegNet 
required less training time for the 3- and 4-channel images than Den
seNet, but they were also less precise. As Ronneberger et al. (2015) re
ported, U-Networks perform reasonably well with limited data sets. 
SegNet also requires fewer training parameters, which makes it one of 
the most memory-efficient models (Badrinarayanan et al., 2017). Our 
tests were performed in a challenging environment, where field 

Table 7 
Precision, recall, F1-scores of five F-CNNs models, and two baseline methods for 
detecting crop field and boundary from three channels (blue-green-red) high- 
resolution satellite images.   

Boundary Cropland 

Precision Recall F1- 
Score 

Precision Recall F1- 
Score 

Training 

Random 
Forest 

0.82 0.63 0.71 0.94 0.98 0.96 

FCN-DKConv6 0.85 0.85 0.85 0.96 0.97 0.96 
U-Net 0.84 0.85 0.84 0.97 0.97 0.97 
SegNet 0.84 0.84 0.84 0.96 0.96 0.96 
DenseNet56 0.93 0.93 0.93 0.98 0.98 0.98 
DenseNet67 0.93 0.94 0.93 0.99 0.99 0.99 
DenseNet103 0.94 0.95 0.94 0.99 0.99 0.99 
Test 
Random 

Forest 
0.48 0.21 0.29 0.87 0.96 0.91 

FCN-DKConv6 0.56 0.56 0.56 0.92 0.93 0.92 
U-Net 0.64 0.65 0.65 0.93 0.93 0.93 
SegNet 0.67 0.66 0.66 0.93 0.94 0.94 
DenseNet56 0.74 0.74 0.74 0.94 0.95 0.94 
DenseNet67 0.77 0.75 0.76 0.95 0.95 0.95 
DenseNet103 0.78 0.76 0.77 0.95 0.96 0.96  

Table 8 
Precision, recall, F1-scores of five F–CNN models, and two baseline methods for 
detecting crop field and boundary from four channels (blue-green-red-NIR2) 
high-resolution satellite images.   

Boundary Cropland 
Precision Recall F1- 

Score 
Precision Recall F1- 

Score 
Training 

Random 
Forest 

0.84 0.66 0.74 0.95 0.98 0.96 

FCN-DKConv6 0.88 0.86 0.87 0.95 0.95 0.95 
U-Net 0.83 0.83 0.83 0.97 0.97 0.97 
SegNet 0.84 0.84 0.84 0.97 0.97 0.97 
DenseNet56 0.92 0.91 0.92 0.96 0.96 0.96 
DenseNet67 0.93 0.92 0.92 0.98 0.98 0.98 
DenseNet103 0.94 0.94 0.94 0.99 0.99 0.99 
Test 
Random 

Forest 
0.49 0.22 0.30 0.87 0.96 0.92 

FCN-DKConv6 0.61 0.6 0.61 0.91 0.92 0.91 
U-Net 0.65 0.65 0.65 0.92 0.92 0.92 
SegNet 0.71 0.71 0.71 0.92 0.93 0.92 
DenseNet56 0.75 0.74 0.74 0.94 0.94 0.94 
DenseNet67 0.77 0.75 0.76 0.94 0.94 0.94 
DenseNet103 0.78 0.78 0.78 0.95 0.95 0.95  

Fig. 10. Receiver operating characteristic of five F–CNN models and two baseline methods with (a) 3-channel and (b) 4-channel VHR images.  
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boundaries were hard to discern, even by the naked eye. Thus, in less 
demanding environments, U-Net and SegNet might be good enough to 
meet the user’s requirements. 

We compared the performance of all F–CNN models with R-G-B and 
R-G-B-NIR2 bands to evaluate the NIR band (860–1040 nm) contribu
tions to the classification results. The combination of R-G-B with NIR 
showed slightly better classification results than the just the R-G-B 
bands. The result is in agreement with other studies, where the use of 
multispectral data led to better image classification and segmentation 
results in computer vision (Gavankar and Ghosh, 2018; Ishii et al., 2016) 
and remote sensing (Yang et al., 2018a) applications. The 
encoder-decoder F–CNN architectures performed better than o RF 
(Debats et al., 2016) and FCN-DKConv6 (Musyoka, 2018) for detecting 
agricultural field boundary in the smallholder farming system. Different 
from the proposed encoder-decoder based F–CNN model, the 
FCN-DKConv6 only consists of a dilated convolutional layer followed by 

batch normalizations and Leaky Relu non-linearity for the boundary 
detection. We found inferior predictive performance in RF for detecting 
the field boundary and acceptable precision (<0.90) of crop field 
detection. Debats et al. (2016) achieved high performance in detecting 
crop field by RF across different types of agricultural fields. However, 
the RF model needs manually extracted features (such as texture) as 
input for the training. On the contrary, segmentation based CNN models 
can discover the underlying patterns and automatically works out the 
most descriptive and salient features related to each image. 

The satellite images used in this study were from smallholder agri
cultural fields in Bangladesh, where the average field size is 0.105 ha 
with very narrow bunds, typically less than 0.2 m wide, separating the 
fields. The application of F–CNN based semantic segmentation tech
niques for detecting crop field boundaries in a complex landscape 
showed promising results. The precision of all F–CNN methods was 
around 0.9 during the training and validation stages. When models were 

Fig. 11. Ground truth and predicted field boundaries from a sample of training, validation, and test images. (a) three channels (blue, green, and red) and (b) four 
channels (blue, green, red, and NIR) VHR images. 
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evaluated with test images, we got around only 15% lower precision 
compared to the training stage by DenseNet103, indicating a low 
generalization error. A FCN-DKConv6 was recently applied by Musyoka 
(2018) to detect agricultural field boundaries in northern Nigeria, where 
farmers predominantly grow two or more crops simultaneously in the 
same field. Moreover, trees are present in nearly all fields. Whereas in 
Bangladesh, trees are mostly grown on the homesteads of the farmers, 
rural settlements, and cropland is clustered in separate, yet adjacent 
regions. Land elevation and drainage largely determine where and when 
the winter crops can be sown (Krupnik et al., 2017). Therefore, farmers 
tend to grow their winter crops in clusters, which results in zones with 
many adjacent fields of the same crop type, which makes the detection 
of field boundaries even more challenging. Almost similar precision was 
obtained by different F–CNN techniques to delineate field boundaries in 
small farms despite a lot of dissimilarities in land use between Nigeria 
and Bangladesh. The results of our study show the potential of using 
F–CNN based methods for developing automated field boundary 
detection algorithms to be used in smallholder farming systems. 

5. Conclusions 

Identification of useful computer vision algorithms is the first step in 
developing an online application for automatically detecting field 
boundaries of small-scale farms using imagery from mapping APIs. Re
sults generated by five proposed F–CNN models in this study identified 
the most effective and accurate algorithms for extracting functional 
agricultural field boundaries in a complex rice-based cropping system. 
Even though models were trained with a relatively small size of labeled 
data, a low generalization error was observed in all F–CNN models. The 
performance of the outlined F–CNN methods could be further improved 
with a more extensive set of labeled data. A post-processing technique 
such as the “Snakes” algorithm that addresses geometric and/or topo
logic constraints (Kass et al., 1988) needs to be incorporated with a 
F–CNN model for improving the geometric quality of detected field 
boundaries. 
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