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Abstract
Wheat quality improvement is an important objective in all wheat breeding pro-
grams. However, due to the cost, time and quantity of seed required, wheat qual-
ity is typically analyzed only in the last stages of the breeding cycle on a limited
number of samples. The use of genomic prediction could greatly help to select
for wheat quality more efficiently by reducing the cost and time required for
this analysis. Here were evaluated the prediction performances of 13 wheat qual-
ity traits under two multi-trait models (Bayesian multi-trait multi-environment
[BMTME] and multi-trait ridge regression [MTR]) using five data sets of wheat
lines evaluated in the field during two consecutive years. Lines in the second year
(testing) were predicted using the quality information obtained in the first year
(training). For most quality traits were found moderate to high prediction accu-
racies, suggesting that the use of genomic selection could be feasible. The best
predictions were obtained with the BMTME model in all traits and the worst
with the MTR model. The best predictions with the BMTME model under the
mean arctangent absolute percentage error (MAAPE) were for test weight across
the five data sets, whereas the worst predictions were for the alveograph trait

Abbreviations: ALV, average abscissa of rupture; ALVP, alveograph maximum overpressure; ALVPL, curve configuration ratio; ALVW, dough
deformation energy; APC, average Pearson’s correlation; BMTME, Bayesian multi-trait multi-environment; EYT, elite yield trial; FLRPRO, flour
protein; FLRSDS, sodium dodecyl sulfate flour sedimentation volume; GBS, genotyping-by-sequencing; GRNHRD, grain hardness; GRNPRO, grain
protein; GS, genomic selection; LOFVOL, bread loaf volume; MAAPE, mean arctangent absolute percentage error; MIXTORQ, mixograph torque;
MIXTIM, mixograph peak time; MTR, multi-trait ridge regression; NIRS, near-infrared reflectance spectroscopy; SKCS, single-kernel characterization
system; SNP, single nucleotide polymorphism; TESTWT, test weight; TKW, 1000-kernel weight; YT, first year yield trial.
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ALVPL. In contrast, under Pearson’s correlation, the best predictions depended
on the data set. The results obtained suggest that the BMTME model should be
preferred formulti-trait prediction analyses. Thismodel allows to obtain not only
the correlation among traits, but also the correlation among environments, help-
ing to increase the prediction accuracy.

1 INTRODUCTION

Wheat, the third most cultivated crop in the world, is
one of the major sources of energy and proteins in the
human diet in both developed and developing countries.
Its importance is undoubtedly related to the unique vis-
coelastic properties of wheat dough, which allows utiliz-
ing wheat to produce a plethora of food products such as
different types of bread, pizza, pasta and cookies. How-
ever, in order to produce all these products, specific quality
requirements are needed in terms of protein quantity, qual-
ity and kernel hardness (Peña, Trethowan, Pfeiffer, & van
Ginkel, 2002).
In recent years, wheat consumption has grown con-

tinuously, especially in countries undergoing urbaniza-
tion and industrialization. These factors, together with
globalization, have led to a gradual shift from household
production to the industrial production of wheat-based
foods (Shewry et al., 2015). With this shift, the impor-
tance of wheat quality also increased, since at the indus-
trial level, stricter and uniform processing and end-use
quality properties are required. However, in the context
of a breeding program, the analysis of wheat quality has
several limitations because the tests required are typically
expensive, time-consuming and require a relatively large
amount of seeds. For these reasons, screening for wheat
quality does not typically happen until late in the breed-
ing cycle, with the result that wheat lines with undesir-
able quality characteristics are often advanced (Battenfield
et al., 2016).
Genomic selection (GS) applied at different stages of

the breeding cycle could greatly facilitate the selection
accuracy for wheat quality, improve the overall quality of
advanced wheat lines and considerably reduce the cost
of the screening process. Briefly, GS consists of using the
phenotypic and genotypic data of a training population in
order to predict the phenotypic values of a testing popu-
lation that has only been genotyped. The two main fac-
tors affecting the efficiency of genomic selection are the
heritability of the phenotypes to be predicted and the
choice of the training population in terms of size, diver-
sity and relationship with the testing population (Crossa
et al., 2017).

In general, the heritability of a trait depends on the pro-
portion of that trait which is not determined by the envi-
ronment. Wheat quality traits mostly exhibit moderate to
high narrow-sense heritability (h2) values. For example,
gluten strength, as indicated by the alveograph deforma-
tion energy (W), exhibited h2 values ranging from 0.65
to 0.72 (Battenfield et al., 2016; Kristensen et al., 2019),
whereas h2 values ranging from 0.51 to 0.60 were identi-
fied for dough extensibility (Hayes et al., 2017; Kristensen
et al., 2019). In general, both grain and protein content
proved to be less heritable, with h2 values between 0.17 and
0.57 (Battenfield et al., 2016; Hayes et al., 2017), whereas
traits such as flour yellowness appeared to be almost com-
pletely genetically controlled (h2 = 0.93, Hayes et al., 2017).
Despite being relatively highly heritable, however, most
quality traits are polygenic (Jernigan et al., 2018), thus com-
plicating the use of marker-assisted selection for their rou-
tine analysis and representing, in contrast, an ideal target
for GS.
Another factor that influences the accuracy of GS is the

training population. In general, the size of the training pop-
ulation depends on the relationship between the training
and testing population: the more genetically distant the
two populations are, the bigger the size of the training pop-
ulation required to obtain accurate predictions. Also, the
use of a diverse training population typically increases the
reliability of the predictions (Edwards et al., 2019). The
importance of the training population for accurately pre-
dicting wheat quality traits became apparent in the study
of Battenfield et al. (2016), where greater prediction accu-
racy was gradually achieved by increasing the size of the
training population over the years (from 250 to 4095 lines).
However, obtaining a large training population that has
been characterized formulti-wheat quality traits is not easy
to achieve due to the cost of the analyses and the time and
seed quantity required to perform them. For these reasons,
only a few breeding programs have the capacity (and the
data) necessary to build solid genomic prediction models
for wheat quality.
Regarding genomic prediction models, researchers have

found that the genetic correlation between multi-traits is
the basis for the benefit of a multivariate analysis, because
the greater the relatedness between traits, the greater the
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benefit of multivariate analysis. The advantage of using a
multivariate analysis to estimate covariance parameters is
that it increases the precision of the parameter estimates
because it takes into account the genetic (and residual) cor-
relation between the traits and environments under study
(Montesinos-López et al., 2016, 2019a, 2019b). Although
Bayesian multivariate models are computationally inten-
sive, they are very effective in providing parsimonious
and informative analyses. The Bayesian multi-trait multi-
environment models proposed by Montesinos-López et al.
(2016) allows increasing prediction accuracy and parame-
ter estimates resulting in unbiased estimates of secondary
traits selected under indirect selection. Multivariate analy-
sis also allows predicting a trait when genotypes have been
measured for other traits.
Algorithms have been developed for fitting generalized

linearmodels including regression, logistic regression, and
multinomial regression problems (Friedman, Hastie, &
Tibshirani, 2010). These algorithms work well on large
genomic data sets and are implemented in an R pack-
age named glmnet. The glmnet allows implementing the
Multi-Trait Ridge regression (MTR) model for a Gaussian
response variable that contains a quadratic (ridge) penalty
on the coefficients for each variable. The MTR model was
implemented with the Lasso and Elastic-Net Regularized
Generalized Linear Models (glmnet) R package (Friedman
et al., 2010).
At the International Maize and Wheat Improvement

Center (CIMMYT), every year ∼1400 lines from the spring
bread wheat preliminary or first year yield trial (YT) are
fully characterized for the quality of their processing traits.
The information generated is then used by the breeders
to advance the highest yielding lines with the best qual-
ity to the next cycle. The selected lines (∼600) are then
analyzed a second year for their quality characteristics
and undergo a second selection by the breeders (Guzmán
et al., 2016). Thewheat qualitymulti-trait information gen-
erated every year can be used to develop solid predic-
tion models that could help reduce or fine-tune the selec-
tion of wheat lines for the second year quality analysis.
These models could greatly help reduce the cost of the
wheat quality analysis and its efficiency by discarding lines
that are predicted to have undesirable quality and analyz-
ing only the lines that are promising for their processing
characteristics.
In the present study, the quality data developed for the

∼1400 lines of the YT have been used to develop a forward
prediction model to estimate the quality characteristics
of the lines selected for the second year quality analysis.
The accuracy of the prediction model was then estimated
across five cycles in order to determine the efficiency
of introducing such a method for routine selection in a
wheat breeding program.

Core Ideas

∙ Wheat quality traits can be predicted with high
to moderate prediction accuracies

∙ Genomic selection could be implemented to
improve selection for wheat quality

∙ The Bayesian multi-trait multi-environment
model should be preferred for prediction

2 MATERIALS ANDMETHODS

2.1 Plant material

In the present study, the common spring wheat lines
selected for the quality analysis from the first year yield
trial (YT), were used as the training population to pre-
dict the quality of the wheat lines selected from the elite
yield trial (EYT) for a second year quality analysis. The
analysis was performed using five sets of data as reported
below:

- Data 1made up of 1345 lines from the 2013–2014 YT and
658 lines from the 2014–2015 EYT trial.

- Data 2made up of 1360 lines from the 2014–2015 YT and
686 lines from the 2015–2016 EYT trial.

- Data 3made up of 1384 lines from the 2015–2016 YT and
622 lines from the 2016–2017 EYT trial.

- Data 4made up of 1447 lines from the 2016–2017 YT and
614 lines from the 2017–2018 EYT trial.

- Data 5made up of 1522 lines from the 2017–2018 YT and
556 lines from the 2018–2019 EYT trial.

All the plant material was grown at the Campo Exper-
imental Norman E. Borlaug in Ciudad Obregon, Sonora,
Mexico, under full irrigation and planted following a lat-
tice design.

2.2 Phenotypic data

All quality analyses were performed according to the
AACCI International approvedmethods or other modified
methods described in Battenfield et al. (2016).
Specifically, 1000-kernel weight (TKW, g) was esti-

mated using the digital image system SeedCount
SC5000 (Next Instruments) for samples from years
2013–2014 to 2015–2016. However, starting from years
2016–2017, TKW was calculated using the Single-Kernel
Characterization System (SKCS, Perten Instruments,
Sweden). Test weight (TESTWT, kg hl−1) was measured
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using a 37.81-ml sample. Grain protein (GRNPRO) and
moisture content were determined by Near-Infrared
Reflectance Spectroscopy (NIRS) according to the
official methods AACC 39-10 and 39-00, respectively
(AACC, 2010). The GRNPRO was reported at 12.5%
moisture.
The grain hardness (GRNHRD) of the samples from

years 2013–2014 to 2015–2016 was estimated through NIR
calibrated according to particle size index values follow-
ing the AACCmethod 39-70A (AACC, 2010). Starting from
the year 2016–2017, the hardness of the grain samples was
analyzed using the SKCS following the AACC method 55-
31 (AACC, 2010). Depending on grain hardness and mois-
ture content, grain samples were optimally tempered to
13% (soft wheat) or 16.5% (hard wheat), and milled using
a Brabender Quadrumat Senior mill (C. W. Brabender
OHG).
The flour protein (FLRPRO) and moisture content were

then estimated by NIR calibrated according to AACC
Method 46-11A and AACC Method 44-15A, respectively
(AACC, 2010). The FLRPRO was reported at 14% mois-
ture content. Sodium dodecyl sulfate (SDS) sedimentation
(FLRSDS) was conducted as in Peña, Amaya, Rajaram,
and Mujeeb-Kazi (1990). A 35 g mixograph was used
to estimate the dough mixing and rheological proper-
ties, following the AACC method 54-40A (AACC, 2010).
The following parameters were recorded: time to peak
mixing strength (MIXTIM) and height at the midline
of peak mixing strength (MIXTORQ). Dough rheologi-
cal characteristics were also assessed using the Chopin
Alveograph (Tripette & Renaud) with a 60 g flour sam-
ple and according to the AACC method 54-30A (AACC,
2010). For this analysis, the following parameters were
recorded: dough deformation energy, indicative of the
overall gluten strength (ALVW); maximum overpressure,
indicative of dough tenacity (ALVP); average abscissa
of rupture, indicative of dough extensibility (ALVL);
and curve configuration ratio, indicative of the ratio
between dough tenacity and extensibility (ALVPL). Both
the mixograph and alveograph methods were adjusted
for unified optimum water absorption based on sol-
vent retention capacity, as reported by Guzmán, Posadas-
Romano, Hernández-Espinosa, Morales-Dorantes, and
Peña (2015). The lines were also assessed for yeast-
leavened bread quality following the AACC method 10-
09 (AACC, 2010) and using the Guzmán et al. (2015)
adjustment for optimal water absorption. Bread loaf vol-
ume (LOFVOL) was measured by rapeseed displacement
in accordance with AACC method 10-05.01 (AACC, 2010).
Correlation among the phenotypes was calculated using
SAS University Edition (SAS/STAT, SAS Institute Inc,
NC, USA).

2.3 Genotypic data

All the lines were genotyped using the genotyping-by-
sequencing approach (Poland, Brown, Sorrells, & Jan-
nink, 2012) at Kansas State University. The TASSEL v.5
(Trait Analysis byAssociationEvolution andLinkage)GBS
pipeline was used to call marker polymorphisms (Glaubitz
et al., 2014), and a minor allele frequency of 0.01 was used
for single nucleotide polymorphism (SNP) discovery. The
resulting 6,075,743 unique tags were aligned to the bread
wheat genome reference sequence (RefSeq v.1.0) (IWGSC
2018) with an alignment rate of 63.98%. After filtering for
SNPs with an inbred coefficient> 80%, p-value for Fisher’s
exact test < .001 and χ2 value lower than the critical value
of 9.2, we obtained 78,606 GBSmarkers that passed at least
one of those filters. These markers were further filtered
for less than 50% missing data, greater than 0.05 minor
allele frequency and less than 5% heterozygosity, in all the
datasets. Markers missing data were imputed using the
‘expectation-maximization’ algorithm in the ‘R’ package
rrBLUP (Endelman, 2011).

2.4 Genome-based statistical models

Twomultivariate models were fitted. The first model is the
Bayesian Multi-Trait Multi-Environment (BMTME) pro-
posed by Montesinos-López et al. (2016) and the second
model used in this study is the multi-trait ridge regression
(MTR) model (Friedman et al., 2010).

2.4.1 Bayesian multi-trait
multi-environment (BMTME)

The first model is the Bayesian Multi-Trait Multi-
Environment (BMTME) proposed by Montesinos-López
et al. (2016):

𝐘 = 𝐗𝐸𝐁 + 𝐙1𝐛1 + 𝐙2𝐛2 + 𝐞 (1)

where𝐘 is the phenotypic response matrix of order 𝑛 × 𝐿 ,
where each column corresponds to a trait and 𝐿 is the
number of traits, 𝐗𝐸 is design matrix for the environ-
ment effects of order 𝑛 × 𝐼, 𝐁 is a matrix of beta coef-
ficients of order 𝐼 × 𝐿, 𝐙1 is the design matrix of geno-
types of order 𝑛 × 𝐽, and 𝐙2 is the design matrix of geno-
type × environment interaction of order 𝑛 × 𝐽𝐼; 𝐛1 is the
matrix of genotypic random effects of order 𝐽 × 𝐿 that
we assume is distributed as 𝐛1 ∼ 𝑀𝑁(𝟎,𝐆, 𝚺𝑡) where𝑀𝑁

stands for matrix normal distribution with mean vector
𝟎 and within and between variance-covariance matrices
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𝐆 and 𝚺𝑡, respectively. 𝐆 is calculated as suggested by
Van Raden (2008) and assumed known. 𝚺𝑡 is an unknown
variance-covariance matrix of traits of dimension 𝐿 × 𝐿;
𝐛2 is the matrix of genotype × environment interaction
random effects of order 𝐽𝐼 × 𝐿 and we assume that it
is distributed as 𝐛2 ∼ 𝑀𝑁(0, 𝚺𝐸 ⊗ 𝐆, 𝚺𝑡); 𝐞 is a random
matrix of errors of order 𝑛 × 𝐿 distributed as𝑀𝑁(0, 𝐈𝑛, 𝐑𝑒)

(Montesinos-López et al., 2019a, 2019b).

2.4.2 The prior distributions of the
BMTME

The complete Bayesian specification of thismodel assumes
independent multivariate normal distributions for the
columns of 𝐁, that is, for the fixed effect of each trait
a prior multivariate normal distribution is adopted, 𝛃𝑡 ∼
𝑀𝑁(𝛃𝑡0, 𝚺𝛃𝑡 ); and for the variance-covariance components
of beta coefficients (𝚺𝛃𝑡 ), traits (𝚺𝑡), environments (𝚺𝐸)
and Residual (𝐑𝑒) were used inverse-Wishart (IW) distri-
butions.
The hyper-parameters for this variance-covariance

components were obtained partitioning the total variance-
covariance of the phenotypes into two components: (1)
the error and (2) the linear predictor and from this we
ended up with the following hyper-parameters (for details,
see Montesinos-López, Montesinos-López, Gianola,
Crossa, & Hernández-Suárez, 2018 [Appendix A]). For
this reason, for 𝚺𝛃𝑡 ∼ 𝐼𝑊(𝑑𝑓β𝑡, 𝐒β𝑡) with 𝑑𝑓β𝑡 = 𝐿 + 1,

𝐒β𝑡 =
𝑅2
1
𝐕𝑦 × (𝑑𝑓β𝑡+𝐿+1)

𝑀𝑆β𝑡
; 𝐕𝑦 is the computed pheno-

typic variance-covariance matrix, 𝑀𝑆β𝑡 =
∑𝑛

𝑖=1
𝑥𝑇
𝑖
𝑥𝑖∕𝑛.

𝑅2
1
= 0.25 is the proportion of variance-covariance that

is assumed is explained a priori by the traits in the
fixed effects. For 𝚺𝑇 ∼ 𝐼𝑊(𝑑𝑓𝑡, 𝐒𝑡), with 𝑑𝑓𝑡 = 𝐿 + 1,
𝐒𝑡 =

𝑅2
2
𝐕𝑦 × (𝑑𝑓𝑡+𝐿+1)

𝑀𝑆𝑏1
+

𝑅2
3
𝐕𝑦 × (𝑑𝑓𝑡+𝐿+1)

𝑀𝑆𝑏2
, 𝑅2

2
= 𝑅2

3
= 0.25,

are the proportion of variance-covariance that a priori
is explained by the traits in the genotype × trait and
genotype × environment × trait interaction terms;𝑀𝑆𝑏1 =

(
∑𝑛

𝑖=1
𝑧𝑇
1𝑖
𝐆𝑔𝑧1𝑖)∕𝑛 and 𝑀𝑆𝑏2 = (

∑𝑛

𝑖=1
𝑧𝑇
2𝑖
(𝚺𝐸 ⊗ 𝐆𝑔)𝑧2𝑖)∕𝑛.

For 𝚺𝐸 ∼ 𝐼𝑊(𝑑𝑓𝐸, 𝐒𝐸) with 𝑑𝑓𝐸 > 𝐼 + 1, with 𝐼 = 2,

𝐒𝐸 =
𝑅2
3
𝐕𝑦∗ × (𝑑𝑓𝐸+𝐼+1)

𝑀𝑆𝑏2∗
and with𝑀𝑆𝑏2∗ = 𝑡𝑟(

𝐒𝑡

𝑑𝑓𝑡+𝐿+1
⊗ 𝐆).

For 𝐑𝑒 ∼ 𝐼𝑊(𝑑𝑓𝑒, 𝐒𝑒) with 𝑑𝑓𝑒 > 𝐿 + 1 and 𝐒𝑒 =

(1 − 𝑅2
1
− 𝑅2

2
− 𝑅2

3
)𝐕𝑦 × (𝑑𝑓𝑒 + 𝐿 + 1) where 𝐿 denotes

the number of traits for this reason we used 11 and 13 since
in some data sets we have 11 and in the other 13 traits.

2.4.3 Multi-trait ridge regression (MTR)

The second multivariate model used in this study is
the multi-trait ridge regression (MTR) model for Gaus-

sian response variables that contains a quadratic (ridge)
penalty on the coefficients for each variable (Friedman
et al., 2010). The method minimized the following loss
function:

𝐁̂ (𝛌) = argmin
𝐁

|||
|||𝑌 − 1𝑛𝛃

𝑇
0
− 𝐗𝐁

|||
|||
2

+

𝑛𝑇∑
𝑡=1

λ𝑡||𝛃𝑡||2

= argmin
𝐁

|||
|||𝑌 − 1𝑛𝛃

𝑇
0
− 𝑋𝐵

|||
|||
2

+ tr
[
Diag (λ) 𝐁𝑇𝐁

]

where 𝛃0 = (β1, … , β𝐿)
𝑇 is the vector with the intercepts

for each trait. As input variables (𝐗 = {𝑥𝑖𝑝}, i = 1,2,..,n;
p = 1,2,.., 𝑁1) for the proposed MTR model, we concate-
nated the information of environments, the information
of markers through the Cholesky decomposition of the
genomic relationship matrix and the information of the
genotype × environment (𝐺 × 𝐸) interaction.
Due to the above reasons, we built the design matrices

of environments (𝐙𝐸), genotypes (𝐙𝐺) and 𝐺 × 𝐸 (𝐙𝐺𝐸);
then we obtained the Cholesky decomposition of the
genomic relationship matrix (𝐆). Then we post-multiplied
the design matrix of genotypes by the transpose of the
upper triangular factor of the Cholesky decomposition
(𝐐𝑇),𝐙∗

𝐺
= 𝐙𝐺𝐐

𝑇 , and finally the𝐺 × 𝐸 termwas obtained
as the product of the design matrix of the 𝐺 × 𝐸 term post-
multiplied by the Kronecker product of the identity matrix
that is equal to the number of environments and𝐐𝑇, that is,
𝐙∗
𝐺𝐸

= 𝐙𝐺𝐸(𝐈𝐼 ⊗ 𝐐𝑇). Finally, thematrixwith input covari-
ates used for implementing themulti-trait ridge regression
model was equal to 𝐗 = [𝐙𝐸, 𝐙

∗
𝐺
, 𝐙∗

𝐺𝐸
]. 𝐁 = [𝛃1, … , 𝛃𝐿]

is the matrix with the coefficient effects and each col-
umn corresponds to each trait, 𝛃𝑡 = (β𝑡1, … , β𝑡𝑝)

𝑇 , 𝑡 =
1, … , 𝐿, and 𝛌 = (λ1, … , λ𝐿)

𝑇 is the vector containing the
regularization parameters of all the traits.
To estimate the hyperparameter 𝛌 for each outer train-

ing set, we implemented a 10-fold inner cross-validation
evaluating 100 values of lambda and used them as met-
rics for selecting the optimal hyperparameter (𝛌), themean
square error of prediction. Then with the optimal 𝛌 the
model was refitted with the whole outer training set and
the trained model was used to predict the outer testing
set. This MTRmodel was implemented with the Lasso and
Elastic-Net Regularized Generalized Linear Models (glm-
net) R package (Friedman et al., 2010).

2.5 Evaluation of genomic-enabled
prediction accuracy

Evaluation of the genomic-enabled prediction accuracy
was performed with cross-validation in order to avoid
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using the same data set for training and testing and thus
obtaining overoptimistic predictions. There are several
strategies that can be used for cross-validation, but here we
used one that mimics the sparse testing conducted in plant
breeding programs. The data used in this study comprise:
(1) Data 1, which has lines evaluated in year 2013–2014 as
the training set to predict most individuals observed in the
field in year 2014–2015; (2) Data 2, which comprises lines
from year 2014–2015 as training used to predict the major-
ity of lines evaluated in year 2015–2016; (3) Data 3, which
included lines evaluated in year 2015–2016 to predict the
majority of lines evaluated in 2016–2017; (4) Data 4, which
had lines evaluated in 2016–2017 and used as training to
predict most of the lines evaluated in 2017–2018; and (5)
Data 5, which included lines tested in 2017–2018, which
were used to predict most of the lines of 2018–2019.
Since we had the same lines evaluated in two consecu-

tive years, we used as the testing set 90% of the lines of the
second year and as the training set the remaining informa-
tion (full information of the first year plus 10% of the lines
in the second year). We repeated this sampling process five
times and each time the samples of the 90% (for testing)
and 10% (for training) were obtained randomly. Finally, we
reported as prediction accuracy Pearson’s correlation and
the mean arctangent absolute percentage error (MAAPE)
calculated as the average of the five repetitions. This type of
cross-validationmimics a problem that plant breeding pro-
grams face when they predict genotypes for the next year,
given that they have information from the previous years
for some genotypes. All analyses were implemented in the
R statistical software (R Core Team, 2019); in Supplemen-
tal File S1 we provide the key elements for implementing
both multi-trait models.
The main reasons to leave 10% of the observations in the

training set are that (1) we should make a reference of the
year and site to be predicted; that is, not any unspecified
year wanted to be predictive but rather the following year
from the previous yearwhere the trainingwas collected; (2)
to be able to estimate the effect of environments that is in
the model; if one wants to predict 100% of the information
of lines of future environment (Year 2) we are unable to
estimate the beta coefficients of this environment for the
lack of information.

2.6 Data availability and software

The following link: http://hdl.handle.net/11529/10548423
contains the Supplemental Information. Supplemental
File S1 has the R code for implementing the MRT and
BMTMEmodel and Supplemental Table S2 has the average
Pearson’s correlation (APC) andmean arctangent absolute
percentage error (MAAPE) for the testing sets for each

data and trait. In addition, the link has the 5 phenotypic
and genotypic data from years 2013–2014, 2014–2015, 2015–
2016, 2016–2017, 2017–2018.

3 RESULTS

3.1 Quality trait means

Each year, the lines selected from the yield trial and elite
yield trial were fully characterized for their quality charac-
teristics. All the analyzed traits followed an approximately
normal distribution (data not shown). On average, wide
phenotypic variation could be observed for all the qual-
ity tests, especially for mixograph, alveograph and bread
loaf volume values (Table 1). However, no great differences
could be observed for the average values of the different
phenotypes across the trials and data sets (Table 1).
As expected, when analyzing the correlation among

the phenotypes across the different years and data sets,
high correlation values were identified between grain and
flour protein content. Similarly, relatively high correlation
was also identified among the traits indicative of gluten
strength such as SDS-sedimentation volume, mixograph
peak time, mixograph torque, alveograph W and alveo-
graph P values. Loaf volume appeared to be relatively
highly and positively correlated not only with flour pro-
tein content and SDS-sedimentation, but also with the
alveograph parameter L, indicative of dough extensibility
(Table 2).

3.2 Genomic prediction

The results of the genomic prediction analysis are given in
five sections, one for each data set created, and the pre-
diction performance of each is reported in terms of aver-
age Pearson’s correlation and MAAPE. The results used
to generate all five data figures are given in Supplemental
Table S2.

3.3 Data 1 (lines from year 2013–2014)

Figure 1a shows the prediction performance of all traits
under study under both models (BMTME and MTR). This
figure indicates that the best predictions were obtained
with the BMTME model and that the largest difference
between the BMTME and MTR (multi-trait ridge regres-
sion) was observed for GRNHRD where the BMTME
model outperformed the MTR model by 147.6%. Under
the BMTME model, the lowest prediction was 0.444 (trait
GRNHRD), whereas the highest prediction was 0.652 (trait

http://hdl.handle.net/11529/10548423
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TABLE 2 Correlations among the phenotypes across all years and datasets

TESTWT TKW GRNHRD GRNPRO FLRPRO FLRSDS MIXTIM MIXTORQ ALVW ALVPL ALVP ALVL
TKW 0.11
GRNHRDa

−0.46 0.00
GRNPRO −0.15 0.06 0.32
FLRPRO 0.04 −0.05 −0.14 0.78
FLRSDS 0.18 −0.05 −0.22 0.26 0.40
MIXTIM −0.10 −0.20 0.06 −0.06 −0.06 0.34
MIXTORQ −0.08 −0.16 0.10 0.04 0.03 0.41 0.97
ALVW 0.05 −0.12 −0.07 0.18 0.24 0.60 0.81 0.87
ALVPL 0.01 0.17 0.34 0.01 −0.19 −0.03 0.17 0.25 0.25
ALVP 0.07 0.11 0.24 0.11 −0.03 0.30 0.50 0.60 0.70 0.83
ALVL −0.01 −0.26 −0.40 0.10 0.37 0.39 0.21 0.17 0.24 −0.78 −0.46
LOFVOL 0.11 −0.23 −0.45 0.22 0.55 0.53 0.25 0.26 0.43 −0.43 −0.08 0.71

†TESTWT, test weight (kg hl−1); TKW, 1000-kernel weight (g); GRNHRD, grain hardness (PSI and SKCS); GRNPRO, grain protein (%, at 12.5% moisture basis);
FLRPRO, flour protein (%, at 14% moisture basis); FLRSDS, flour sodium-dodecyl-sulfate sedimentation volume (ml); MIXTIM, mixograph mixing time (min);
MIXTORQ, torque at the integral of themidline peak (-); ALVW, alveograph (J); ALVPL, ratio betweenALVP andALVL; ALVP, alveographmaximumoverpressure
(mm); ALVL, alveograph average abscissa of rupture (mm); LOFVOL, pup loaf volume (cm3).
aGRNHRD is expressed as Particle Size Index up to years 2015–2016. Starting from the years 2016–2017 it is expressed as Single Kernel Characterization System
Hardness Index units.

F IGURE 1 (a) Average Pearson’s correlation (APC) and (b)
Mean arctangent absolute percentage error (MAAPE) of testing sets
for the five partitions for Data 1. The testing set is composed of 90%
of the lines of the second year (testing), while the training set com-
prises all the information of the first year and 10% of the same lines
evaluated in the second year

TKW). Similar to the BMTMEmodel, GRNHRDwas asso-
ciated with the lowest prediction also under the MTR
model (0.128). The highest prediction accuracy using MTR
was associated with MIXTIM (0.503). When comparing
the two models for the MAAPE (Figure 1b), the BMTME
model again outperformed the MTR model for all traits.
In this case, the largest difference in terms of prediction
between both models was observed for traits MIXTIM and
MIXTORQ, where the BMTME model outperformed the
MTR model by 45.7% and 55.4%, respectively. Under the
BMTME model, the worst prediction was for trait ALVPL
with a MAAPE value of 0.227, while the best was for trait
TESTWTwith aMAAPEvalue of 0.009.On the other hand,
under the MTR model, the best predictions were for trait
TESTWT (MAAPE = 0.014) and the worst for trait ALVW
(MAAPE = 0.297).

3.4 Data 2 (lines from year 2014–2015)

Using the lines from Data 2, the BMTME model overall
appeared to be better than the multi-trait ridge regres-
sion model. As shown in Figure 2a, the best predictions
were obtained with the BMTME model for all traits and
the largest difference between both models (BMTME and
MTR) was obtained for TKW where the BMTME model
outperformed theMTRmodel by 98.5%.Using the BMTME
model, the lowest prediction accuracy was for TESTWT,
which was equal to 0.607, whereas the best prediction
was for TKW (0.851). Interestingly, TESTWT was associ-
ated with the lowest prediction accuracy also using the
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F IGURE 2 (a) Average Pearson’s correlation (APC) and (b)
Mean arctangent absolute percentage error (MAAPE) of testing sets
for the five partitions for Data 2. The testing set is composed of 90%
of the lines of the second year (testing), while the training set is com-
posed of all the information of the first year and 10% of the lines of
the second year

MTR model (0.331), whereas the alveograph parameter
ALVW reported the best prediction (0.601). When ana-
lyzing the MAAPE (Figure 2b), the best predictions were
again obtained under the BMTME model for all 13 traits.
In this case, the largest difference between the two mod-
els was for ALVPL, where the MTR model appeared to
be worse than the BMTME model by 125.4%. Under the
BMTME model, the worst prediction was for ALVPL with
a MAAPE value of 0.259, whereas the best was for trait
TESTWTwith aMAAPEvalue of 0.007.On the other hand,
under the MTR model the best predictions were for trait
TESTWT (MAAPE= 0.0237) and the worst for trait ALVW
(MAAPE = 0.585).

3.5 Data 3 (lines from years 2015–2016)

When using the lines fromData 3, the BMTMEmodel also
appeared to outperform the MTR model. In fact, for all
13 traits, the BMTME model gave greater prediction accu-
racies compared to the MTR model (Figure 3a). Among
the traits, the greatest difference in prediction accuracy

F IGURE 3 (a) Average Pearson’s correlation (APC) and (b)
Mean arctangent absolute percentage error (MAAPE) of the testing
sets for the five partitions for Data 3. The testing set is composed of
90% of the lines of the second year (testing), while the training set is
composed of all the information of the first year and 10% of the lines
of the second year

was for TESTWT, where the prediction of the BMTME
model appeared to be 267.7% better than the one obtained
using the MTR model. Using the BMTME model, the best
prediction was for trait ALVW (0.788), whereas the low-
est was associated with the alveograph parameter ALVL
(0.584). Under the MTRmodel, the best prediction was for
trait MIXTORQ (APC = 0.577), whereas the worst was for
TESTWT, which was associated with an average Pearson’s
correlation equal to 0.174. As expected, the APC values
associated with grain hardness (GRNHRD) obtained with
both models were extremely low (BMTME, −0.186; MTR,
0.108). These results may be explained by the fact that
the grain hardness of the lines grown in 2015–2016 (train-
ing population) and the lines grown in 2016–2017 (test-
ing population) was analyzed using two differentmethods.
When analyzing using the MAAPEmetric (Figure 3b), the
BMTME model appeared to outperform the MTR model
for all traits. Theworst performance of theMTRmodel was
for trait GRNHRD and the BMTMEmodel was superior to
the MTR model by 652.9%. The worst and best predictions
under the BMTME model were 0.212 and 0.009, respec-
tively, corresponding to traits ALVPL and TESTWT. With-
out taking into consideration grain hardness, under the
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F IGURE 4 (a) Average Pearson’s correlation and (b) Mean arc-
tangent absolute percentage error (MAAPE) of the testing sets for the
five partitions for Data 4. The testing set is composed of 90% of the
lines of the second year (testing), while the training set is composed of
all the information of the first year and 10% of the lines of the second
year

MTR model the worst prediction was for ALVPL, which
was associated with a MAAPE = 0.343. The best predic-
tion was observed for TESTWT, which was associated with
a MAAPE = 0.035.

3.6 Data 4 (lines from years 2016–2017)

The results obtained using the three previous datasetswere
confirmed when using the lines from the fourth dataset.
In this case, the BMTME model also outperformed the
MTR model for all traits, as indicated by both the APC
and MAAPE values (Figure 4). Specifically, the BMTME
model was associated with greater APC values for all traits
(Figure 4a) and the largest gain (129.516%) of the BMTME
model over the MTR model was observed for FLRPRO.
The best prediction under the BMTME model was for
ALVW, which was associated with an average Pearson’s
correlation equal to 0.760. In contrast, the alveograph trait
ALVPL obtained the worst prediction performance with
an average Pearson’s correlation equal to 0.528. Under the
MTR model, trait ALVW was also the one better predicted

F IGURE 5 (a) Average Pearson’s correlation (APC) and (b)
Mean arctangent absolute percentage error (MAAPE) of the testing
sets for the five partitions for Data 5. The testing set is composed of
90% of the lines of the second year (testing), while the training set is
composed of all the information of the first year and 10% of the lines
of the second year

(APC= 0.538), whereas the worst correlation value was for
trait TESTWT (0.259). The BMTME model outperformed
the MTR model in all traits also under the MAAPE met-
ric (Figure 4b), and specifically for the mixograph mixing
time (MIXTIM), the BMTME model was better than the
MTR model by 48.5%. However, interestingly, using both
the BMTME and the MTR model, the worst MAAPE val-
ues were associated with ALVPL (0.246 and 0.301, respec-
tively), whereas the best MAAPE values were associated
with TESTWT (0.009 and 0.015, respectively).

3.7 Data 5 (lines from years 2017–2018)

As for the other datasets, using the lines from the 2017–
2018 cycle (Data 5), the BMTME model appeared to be
superior to the MTR model. As described in Figure 5a,
the BMTME model outperformed the MTR model in all
traits in terms of average Pearson’s correlation. Specifi-
cally, the largest difference between the BMTME andMTR
models was for trait ALVPL, where the BMTME outper-
formed the MTR model by 169.6%. The minimum average
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Pearson’s correlation under the BMTME model was for
trait ALVPL (0.661), whereas themaximumAPC valuewas
for GRNHRD (0.884). In contrast, under the MTR model,
theminimumaverage Pearson’s correlationwas 0.245 asso-
ciated with the alveograph parameter ALVPL, whereas the
maximum value was 0.510 associated with the other alveo-
graph parameter ALVW.When analyzing theMAAPE, the
BMTME model again outperformed the MTR model for
all traits (Figure 5b). In this case, the largest difference
between the two models was for trait ALVW for which the
BMTME model outperformed the MTR model by 61.8%.
Under the BMTMEmodel, the best andworstMAAPE val-
ueswere associatedwith traits TESTWTandALVPL (0.007
and 0.265, respectively). Similarly, when using the MTR
model, the best and worst percentage errors were associ-
ated with TESTWT (0.010) and ALVPL (0.300).

4 DISCUSSION

In this paper, we evaluated the feasibility of implement-
ing genomic selection for the selection of wheat process-
ing and end-use quality traits. Genomic selection applied
to wheat quality would in fact be very useful, since wheat
quality evaluation usually happens only in the last stages of
the breeding cycle and is expensive and time-consuming.
Using two statisticalmodels (BMTMEandMTR) to predict
13 different wheat quality traits, we showed that it is pos-
sible to accurately predict the quality of 90% of the lines
grown in the second year using as training population the
lines grown in the first year and 10% of the lines grown
in the second year. As expected, the prediction correlation
values and accuracies differed depending on the statistical
model, the trait to be predicted and the dataset used to train
the statistical models.
When performing genomic selection, multi-trait anal-

ysis is typically preferred over univariate analysis when
the degree of correlation between traits is moderate or
high (Calus & Veerkamp, 2011; He, Kuhn, & Parida, 2016;
Jia & Jannink, 2012; Jiang et al., 2015; Montesinos-López
et al., 2016; Schulthess, Zhao, Longin, &Reif, 2017). For this
reason, the BMTME generalizes conventional multi-trait
analysis (which takes into account the correlation between
traits) to also take into account the correlation between
environments. In the context of deep learning, there are
applications of multi-trait deep learning for genomic selec-
tion such as those published by Montesinos-López et al.
(2018) andMontesinos-López et al. (2019c, 2019d), inwhich
a small gain in terms of prediction performance is obtained
with regard to univariate deep learning prediction.
Of the two statistical models used in the present study,

the BMTME proved to be consistently better compared to
the MTRmodel (implemented with glmnet). The large dif-

ference in terms of prediction performance between the
two models can be mainly attributed to three factors: (1)
the BMTME model provides a separate penalization for
environment, for the genotypes (lines) and for genotype
× environment interaction, whereas the MTR model only
provides one penalization for the whole set of indepen-
dent variables (environment, genotypes and genotype ×
environment interaction); (2) the training process used for
the two models is different, since the BMTME model was
trained using both the training set (with genotype and phe-
notypic information) and the genotypic information of the
testing set, whereas theMTRmodel was trained using only
the information of the training set (with genotype and phe-
notypic information); (3) the BMTME, being a Bayesian
model, used weak prior information during the training
process, which helped to improve the prediction process,
whereas the MTR model did not use any prior informa-
tion. However, it must be noted that the BMTME is quite
costly in terms of implementation time compared to the
MTR, which is very fast. For this reason, more research is
necessary to be able to reduce the implementation time of
the BMTME model, which will help to routinely use this
method in GS programs.
Regardless of the model adopted for prediction, in the

present study the mean arctangent absolute percentage
error (MAAPE) was also used as a method to evaluate
the models’ prediction accuracy. The MAAPE has several
advantages over similar methods. It is in fact: (1) easy to
interpret (the lower the value, the better the prediction
performance); (2) it can be used to compare the predic-
tion accuracy among traits measured in different scales,
which is not possible using the mean square error of pre-
diction; (3) and finally, unlike Pearson’s correlation, it does
not require calculating other metrics such as the intercept
(the best: close to zero) and slope (the best: close to 1) to
make sure that the results obtained are notmisleading. For
these reasons, we encourage using the MAAPE metrics to
evaluate the prediction accuracy of continuous and count
traits in plant breeding.
When analyzing the prediction accuracies associated

with each quality trait, we found that the results obtained
in the present study exceeded (Battenfield et al., 2016; Kris-
tensen et al., 2019) orwere comparable to (Haile et al., 2018;
Juliana et al., 2019) the results reported in previous studies.
With respect to the predicted quality traits, in general,

the traits associated with grain morphological characteris-
tics (TESTWT and TKW) and with protein content (GRN-
PRO and FLRPRO) under both the BMTME and MTR
models and across the datasets, had relatively high Pear-
son’s correlation values associated with low MAAPE val-
ues (high prediction accuracy). Specifically, r values as
high as 0.69 and 0.85 were identified for TESTWT weight
and TKW, which appeared to be greater than the results
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reported by Battenfield et al. (2016) (TESTWTmax r= 0.34
and TKWmax r= 0.48) and Juliana et al. (2019) (TESTWT
r = 0.45–0.52 and TKW r = 0.62–0.56) possibly because of
both the different statistical model used and the popula-
tion set analyzed. In all cases, TKW appeared to be more
highly predictable than TESTWT.
Similarly, protein content in both flour and grain could

be effectively predicted with relatively high prediction
accuracies (r from 0.57 to 0.79). These results are compara-
ble to the ones reported by Haile et al. (2018) in a durum
wheat breeding population, and by Juliana et al. (2019),
but higher than the results reported by Battenfield et al.
(2016). Protein content is a very important trait that is nec-
essary to better understand and interpret the results from
the other quality tests. However, even though protein con-
tent is highly influenced by the environment (Mahjouri-
majd et al., 2016), the prediction accuracies obtained in the
present studywould suggest that it is possible to accurately
predict protein content, thus improving the overall selec-
tion for wheat quality.
In contrast, a marked difference in GRNHRD predic-

tive ability could be observed over the datasets and the
years (Data 1 r = 0.44 vs Data 5 r = 0.88). As reported
in the previous sections, the lines of the first two datasets
were analyzed for grain hardness using NIR, whereas the
hardness of the lines in the last two datasets was analyzed
using the SKCS. These results confirm the superiority of
the SKCS for analyzing grain hardness but also stress the
importance of an accurate phenotypic characterization to
obtain an efficient and reliable prediction. Using datasets 4
and 5, Pearson’s correlation values for grain hardness were
much greater compared to the results reported by Batten-
field et al. (2016) (r = 0.32, year 2015) and Juliana et al.
(2019) (r = 0.45–0.55), where this trait was also measured
using NIR.
The traits indicating gluten strength, such as SDS-

sedimentation volume, the two mixograph parameters
MIXTIM and MIXTORQ and the alveograph parameters
ALVW and ALVP, were all associated with relatively high
average Pearson’s correlation values but also with higher
MAAPE values when compared to the other traits. Simi-
lar results were reported by Battenfield et al. (2016), Kris-
tensen et al. (2018), 2019) and Juliana et al. (2019), where
among the quality traits analyzed, the ones associatedwith
gluten strength appeared to be associated with high Pear-
son’s correlation values compared to the other analyzed
traits. As reported in the literature, gluten strength is, in
fact, a relatively highly heritable trait (h2 > 0.6, Battenfield
et al., 2016; Kristensen et al., 2019) being influencedmainly
by the variation of the gluten-forming proteins (Shewry,
Halford, & Lafiandra, 2003). In contrast, the two alveo-
graph parameters ALVL and ALVPL indicative of dough
extensibility and of the balance between dough extensibil-

ity and strength, respectively, were more difficult to pre-
dict and were also associated with greater MAAPE values
(lower prediction accuracy). Similar results were reported
in the study of Battenfield et al. (2016) and Juliana et al.
(2019), where the parameter ALVPL was associated with
the lowest correlation values, and by Kristensen et al.
(2019), where ALVL was associated with the lowest pre-
dictive ability among the alveograph parameters. Together,
the results reported here and in previous studies suggest
that dough extensibility, as expressed by the alveograph
parametersALVL andALVPL, is hard to predict and highly
affected by several factors other than genetics. Interest-
ingly, loaf volume, which is a very important but also
expensive test for the characterization of the end-use qual-
ity of a bread wheat line, was predicted quite efficiently
using the BMTMEmodel (APC ranging from 0.63 to 0.74),
as also reported by Juliana et al. (2019).
Given the results obtained in the present study, it

appears to be feasible to implement genomic selection in
the breeding cycle for predicting the majority of the wheat
quality parameters. Following the scheme adopted here, it
would be theoretically possible to reduce by 90% the num-
ber of lines to be analyzed for quality in the second year,
thus dramatically reducing the cost and the time required
for the wheat quality analyses. The cost of genotyping each
sample through GBS is in fact around 10–20 USD per sam-
ple, which is approximately ten times lower than the cost
of a full quality characterization of a single wheat line
(around 100 to 200 USD per sample). Also in terms of effi-
ciency, genotyping appears to be preferable compared to
phenotyping for wheat quality since it can be performed at
the early stages of the plant cycle and on a greater num-
ber of samples in a shorter time. At CIMMYT, it is in fact
possible to analyze through GBS around 9,000 wheat lines
in a period of three months, whereas in the same time no
more than 2,000 lines could be completely characterized
for wheat quality.
However, it is important to highlight that successful pre-

diction is inextricably associated with robust and reliable
phenotypic characterization, which by no means can be
substituted or eliminated but could be limited to a lower
number of samples. As also reported by Battenfield et al.
(2016), genomic selection applied to wheat quality cannot
be considered an absolute replacement for the quality char-
acterization of a wheat line, but rather a tool for improv-
ing selection efficiency throughout the breeding cycle. In
this respect, genomic prediction could have a great poten-
tial for backward selection. For example, the quality data
generated each year for a selected number of wheat lines
could be used to predict the quality of the rest of the lines
grown in the same year but not included in the wheat
quality analysis for different reasons (limited budget, lim-
ited quantity of seed etc.). In this way, decisions regarding
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the advancement of different wheat lines along the breed-
ing cycle could be made more consciously and the genetic
potential of a breeding program for wheat quality could be
better exploited.

5 CONCLUSIONS

In this paper we evaluated the prediction performance of
two multi-trait models (BMTME and MTR) using 13 qual-
ity traits of wheat. We found that it is feasible to imple-
ment genomic selection for identifying the lines to be
advanced in the breeding cycle using the data from the cur-
rent year, since moderate to good prediction performances
were identified for most traits. We also found that the
best predictions were obtained under the BMTME model,
which is expected when the correlation among traits and
among environments is moderate to large. The data con-
sidered in this study is fromoptimumenvironments; there-
fore, further research is needed to assess the genomic-
enabled prediction accuracy of these wheat quality traits
under differential environmental conditions as drought,
heat, late heat, etc. Also, in this study we predicted the
quality traits across years rather than across generations.
Application of genomic selection for the prediction of the
quality of the first-year untested material could be at least
twice more efficient compared to the selection efficiency
obtained here, both in terms of cost and genetic gain. More
studies will be performed to verify the improvement in the
selection efficiency obtained from the implementation of
GS at different stages of the breeding process.
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