On September 24, 2013, the newly formed United Nations (UN) High-level Political Forum on Sustainable Development held its first meeting. At the Rio+20 Conference, Member States also agreed to launch a process to develop a set of Sustainable Development Goals (SDGs), which were to build upon the Millennium Development Goals (MDGs) that were established in 2000 and expired in 2015.

Of the 17 individual goals, 10 relate directly to CGIAR activities and to CIMMYT’s mandate. The SDGs have set the pathway for the next 15 years of agricultural, social, and economic development. Likewise, CGIAR has transformed its approach to ensure that its work aligns with the ambitious goals.

CIMMYT, through its research for development activities, is working toward a world free of poverty, hunger, and environmental degradation. CIMMYT and CGIAR efforts help bring the world closer to reaching the goals, such as the empowerment of women, the reduction of greenhouse gas emissions, and the improvement of health and nutrition for the world’s poorest people.

CIMMYT’s work contributes to the following SDGs:

- **SDG 1**: No poverty
- **SDG 2**: Zero hunger
- **SDG 3**: Good health and wellbeing
- **SDG 4**: Quality education
- **SDG 5**: Gender equality
- **SDG 6**: Clean water and sanitation
- **SDG 7**: Affordable and clean energy
- **SDG 8**: Decent work and economic growth
- **SDG 9**: Industry, innovation and infrastructure
- **SDG 10**: Reduced inequalities
- **SDG 11**: Sustainable cities and communities
- **SDG 12**: Responsible consumption and production
- **SDG 13**: Climate action
- **SDG 14**: Life below water
- **SDG 15**: Life on land
- **SDG 16**: Peace and justice, strong institutions
- **SDG 17**: Partnerships for the goals

CIMMYT - the International Maize and Wheat Improvement Center - is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies.

CIMMYT’s work uncovers the wide-ranging impact of our global work.
The year 2019 was the third of CIMMYT’s Strategic Plan 2017-22 and saw the continued successful delivery of its research and partnerships outcomes for the benefit of tens of millions of smallholder farmers.

The Board of Trustees was privileged to observe multiple examples of that impact and to engage with a range of stakeholders before, during, and after its fall board meeting in Kenya.

CIMMYT’s strategic priorities continue to gravitate towards improved food systems supporting healthy diets that are sustainably produced and climate change-resistant. Both national and regional policymakers are emphasizing the diversified production of stress- and disease-resistant crops on less land and with fewer inputs, with a particular focus on improving the livelihoods of women and youth. The Center’s responses are being continuously adjusted to address these priorities. Its vast maize and wheat genebanks are a rich source of genetic diversity and a critical element of its solutions.

The threat of pests and diseases continued unabated in 2019. CIMMYT continued to play a key role in the transboundary coordinated response to threats such as maize lethal necrosis, fall armyworm, and wheat blast.

CIMMYT was closely involved in the debate leading to the One CGIAR recommendations that were endorsed by the CGIAR System Council in November 2019 and looks forward to the implementation of this momentous change over the 2020-21 period.Aligned with the One CGIAR initiative, CIMMYT also continued to modernize and enhance its resource mobilization efforts, with pleasing success in a challenging funding environment.

The Board was also pleased to note ongoing progress in the upgrade of business processes and systems, both at headquarters and in the regional offices. In 2019 this included improved workstreams, enhanced financial management reporting, and a major overhaul of business continuity and disaster recovery planning.

Prudent stewardship of the Center’s financial resources has preserved CIMMYT’s strong financial position despite funding uncertainties.

CIMMYT’s Board of Trustees acknowledges another year of sustained effort and strong achievements on the part of the Center’s staff, management, and worldwide partners.

In 2019, CIMMYT marked the end of a decade of achievements and the beginning of a decade of opportunities to improve peoples’ livelihoods.

Groundbreaking crop research and partnerships offer opportunities for innovations in human and plant health to tackle global issues, such as COVID-19, wheat rusts, or the insatiable fall armyworm.

Many technologies are available to improve agri-food systems – and the converging challenges from climate change, population growth, environmental degradation, and persistent poverty require that humanity acts with urgency and that it integrates collective wisdom and technologies to build a better future. On behalf of the CIMMYT community, I would like to thank our funding and research partners for selecting us to work with them to improve livelihoods through maize and wheat science.

Achieving food security under current, EAT-Lancet, or a more likely intermediate diet scenario, will require new crop varieties that yield more grain per unit land area, that do so in ecologically sustainable cropping systems, and that increasingly meet desired nutritional and end-use qualities. In a nutshell, the world needs maize and wheat science more than ever before.

All over the globe, agricultural leaders have challenged CIMMYT to help them increase maize and wheat yields. But not simply increase: improve and stabilize production by making it more sustainable and resilient with more efficient resource use, while making space for other crops in order to diversify farmers’ fields and diets.

In 2019, African policymakers called for an increased use of science to achieve food security in the face of ever-increasing population and erratic climate. Bill Gates spoke about the “essential role of CGIAR research centers in feeding our future” and together with other stakeholders urged us to “do even better.” In his Gates Notes blog, he highlighted the great example of CIMMYT’s drought-tolerant maize.

In 2019, the CGIAR System decided that the new decade deserves a more united CGIAR. One that offers the opportunity for a paradigm shift and new solutions for the world’s poor and food insecure as we work toward achieving the Sustainable Development Goals.

As CIMMYT moves into One CGIAR, we will build on the strengths in the systems, programs, and projects that currently provide excellence in science and impact through the CGIAR Research Programs (CRPs) and Platforms. CIMMYT is committed to contribute to defining and transitioning to a One CGIAR that integrates the collective wisdom and technologies of the 15 current CGIAR Centers and works with partners to build a better future.

I hope you enjoy reading this report and finding out more about how CIMMYT adds to the development of a world with healthier and more prosperous people and with more resilient agri-food systems.

I look forward to your feedback and invite you to work with us in the new decade of opportunities.
Examples of CIMMYT’s Impact in 2019

More than 15,000 farmers attended field days and activities that promote sustainable agricultural practices in Mexico.

As a result of CIMMYT’s Green Initiative, staff used 39,000 fewer PET bottles at HQ and disposable food containers are now biodegradable.

CIMMYT researchers published 386 peer-reviewed journal articles and the CIMMYT publications repository registered more than 1.7M downloads.

CIMMYT distributes more than 1,500 maize and wheat seed shipments annually, to as many as 800 recipients in over 100 countries. Shipments contain over 500,000 individual seed packets.

CIMMYT is the largest depositor at the Svalbard Global Seed Vault with 173,779 accessions from 131 countries. The most recent deposit included 15,231 samples of wheat and 332 samples of maize.

CIMMYT organized 936 trainings and capacity development activities for 14,017 participants.

CIMMYT researchers published 1.2M website views

National partners released 50 unique CGIAR-derived wheat varieties across Africa, Asia, and Latin America.

National partners released 82 unique CGIAR-derived maize varieties across Africa, Asia, and Latin America.

CIMMYT organized trainings and capacity development activities for 14,017 participants.

More than 15,000 farmers attended field days and activities that promote sustainable agricultural practices in Mexico.

As a result of CIMMYT’s Green Initiative, staff used 39,000 fewer PET bottles at HQ and disposable food containers are now biodegradable.

CIMMYT researchers published 386 peer-reviewed journal articles and the CIMMYT publications repository registered more than 1.7M downloads.

CIMMYT distributes more than 1,500 maize and wheat seed shipments annually, to as many as 800 recipients in over 100 countries. Shipments contain over 500,000 individual seed packets.

CIMMYT is the largest depositor at the Svalbard Global Seed Vault with 173,779 accessions from 131 countries. The most recent deposit included 15,231 samples of wheat and 332 samples of maize.

CIMMYT organized 936 trainings and capacity development activities for 14,017 participants.

More than 108.6K followers on social media and 201.6K views on YouTube.

579 media mentions, including The Economist, The Telegraph, and Reforma.

More than 108.6K followers on social media and 201.6K views on YouTube.

579 media mentions, including The Economist, The Telegraph, and Reforma.
CIMMYT researchers have been testing alternative technologies for seed drying in the highlands of northwestern Guatemala.

In 2019 they began experimenting with the use of drying beads in community seed reserves in three maize producing communities, where humidity levels in storage areas can be as high as 100%. When stored with seed inside a hermetically-sealed flask, these marble-sized ceramic beads act as desiccators, absorbing moisture from the container.

Results from initial testing showed that seeds stored with the beads typically had a near 100% germination rate, and seedlings were more uniform. Seeds stored without the beads – whether in a traditional mesh bag or a hermetic flask – were significantly less likely to be viable, as they were exposed to outside elements or trapped humidity within the flasks.

Following the publication of results, the team hopes to scale out the use of this technology across all seed reserves in the area.
As hotter weather, droughts, and depleting aquifers threaten food crop yields in South Asia, scientists have successfully tested a greener and more profitable way for India’s farmers to manage water-stressed rice-wheat rotations.

Based on two years of field trials comparing innovative versus established practices, the best system for the rice-wheat rotation turned out to feature underground drip irrigation with fertilizer in the water, or “fertigation,” as well as conservation agriculture practices—such as sowing both crops without tillage, keeping a crop residue mulch on the soil, and growing rice without flooding.

“A suite of these methods raised overall farm profitability by nearly 30%, while requiring 70% less irrigation water than the conventional approaches of intensive soil preparation for rice and wheat, flood irrigation, and growing rice in puddled paddies,” said M.L. Jat, a cropping systems agronomist at CIMMYT and co-author of a 2019 Nature Scientific Reports article on the study.

Variants of the rice-wheat rotation are practiced on about 13.5 million hectares in South Asia, sustaining hundreds of millions of people but also draining water reserves, generating greenhouse gases, and churning out deadly smoke from farmers’ custom of burning crop residues.

“Fertigation in our study reduced nitrogen fertilizer needs by 20% while increasing crop yields,” explained Harminder S. Sidhu, a principal research engineer at the Borlaug Institute for South Asia (BISA) and co-author of the Nature Scientific Reports paper. “In medium textured soils, non-flooded rice yielded about 14% less than flooded rice, but the total system productivity of the rice-wheat rotation was higher and growing rice-wheat with fertigation saved labor, time, water, and energy—all of which means costs savings for farmers,” Sidhu explained. “It can also help reduce yearly paddy rice emissions of methane—a greenhouse gas with 25 times the global warming potential of carbon dioxide—which are as high as 4.9 million tons in South Asia.”

Retaining crop residues as mulch, instead of burning them, improves long-term soil health and crop yields, saves water and mitigates extreme pollution in cities such as New Delhi, according to Sidhu.

Given the mounting challenges in northwest India for flooded rice production—including depletion of water tables, soils being degraded from puddling, and the shortage of labor—researchers and policymakers are exploring more sustainable alternatives. Maize, which is grown elsewhere in India and imported to the northwest to feed poultry, offers an option.

In this study, when maize was substituted for rice in rotation with wheat under sub-surface drip fertigation and the conservation agriculture suite of practices, the result was 20% higher system productivity, 49% greater farmer profits, and 85% savings in irrigation water, over the conventional rice-wheat system. “There is also space for quick-growing legumes in our system, adding to profits and nutrition,” said P.C. Sharma, Director of the Central Soil Salinity Research Institute (CSSRI) and co-author of the Nature Scientific Reports paper.

National and state policies in India support practices that save water and avoid residue burning, as well as promoting technologies such as sub-surface drip irrigation systems, said Balwinder Singh Sidhu, Commissioner of Agriculture in the Government of Punjab.

Partners and funders

Funding was provided by the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR), the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) and the Government of Punjab, India. We acknowledge the CGIAR Fund Council, the Australian Centre for International Agricultural Research (ACIAR), Irish Aid, the European Union, the International Fund for Agricultural Development (IFAD), the Netherlands, New Zealand, Switzerland, the United Kingdom, USAID, and Thailand for their funding to CCAFS. The basic infrastructure for the study provided by ICAR’s Central Soil Salinity Research Institute (CSSRI) is thankfully acknowledged. BISA and CIMMYT field staff in Karnal, Haryana state, and Ludhiana, Punjab state, greatly contributed to the research.
You've probably never heard of CGIAR, but they are essential to feeding our future." In a 2019 blog discussing the essential role the CGIAR System plays in feeding the world, Bill Gates highlighted CIMMYT's efforts to develop and spread the use of drought-tolerant and disease-resistant improved maize varieties, which he described as "a leading example of the amazing work the CGIAR System does to help smallholder farmers."

These varieties are more necessary than ever before. Climate change is affecting food production in every corner of the globe and making it harder to meet rising global food demand.

"We will need CGIAR's research to help supply farmers with a steady stream of climate-smart crop varieties," said Gates, pointing to drought-tolerant maize as an example of an innovation helping smallholder farmers adapt to climate change.

Farmers are struggling to cope with increasing climate risks, such as more frequent and extreme droughts and flooding, and severe pest and disease outbreaks among crops and livestock. Rainfed, smallholder farming families in sub-Saharan Africa are disproportionately affected, as their livelihoods depend on unpredictable rainfall patterns. It is estimated that by 2030 drought and rising temperatures could render 40% of the continent's maize-growing areas unsuitable for current varieties.

More than 200 million households in sub-Saharan Africa depend on maize for their livelihoods. However, maize productivity on the continent is currently the lowest in the world, and as weather patterns become more erratic, farmers are at greater risk of having smaller maize harvests – or sometimes no harvest at all.

In response to this challenge, CIMMYT has partnered with the International Institute for Tropical Agriculture (IITA) and national partners in 12 sub-Saharan African countries under the Stress Tolerant Maize for Africa (STMA) project to develop over 200 new maize varieties capable of withstanding drought conditions. These varieties are expected to give farmers 25-30% greater yields under drought stress at the flowering stage, as well as help them fight devastating maize diseases.

In Zimbabwe, for example, farmers in drought-stricken areas using drought-tolerant maize were able to harvest up to 600 kilograms more maize per hectare than those using conventional varieties. The additional harvest was enough to feed a family of six for nine months. For farming families who chose to sell their harvests, it was worth US$240 in extra income, giving them much-needed cash to send their children to school and meet other household needs.

In response to this challenge, CIMMYT has partnered with the International Institute for Tropical Agriculture (IITA) and national partners in 12 sub-Saharan African countries under the Stress Tolerant Maize for Africa (STMA) project to develop over 200 new maize varieties capable of withstanding drought conditions. These varieties are expected to give farmers 25-30% greater yields under drought stress at the flowering stage, as well as help them fight devastating maize diseases.

In Zimbabwe, for example, farmers in drought-stricken areas using drought-tolerant maize were able to harvest up to 600 kilograms more maize per hectare than those using conventional varieties. The additional harvest was enough to feed a family of six for nine months. For farming families who chose to sell their harvests, it was worth US$240 in extra income, giving them much-needed cash to send their children to school and meet other household needs.

In Zimbabwe, for example, farmers in drought-stricken areas using drought-tolerant maize were able to harvest up to 600 kilograms more maize per hectare than those using conventional varieties. The additional harvest was enough to feed a family of six for nine months. For farming families who chose to sell their harvests, it was worth US$240 in extra income, giving them much-needed cash to send their children to school and meet other household needs.

In response to this challenge, CIMMYT has partnered with the International Institute for Tropical Agriculture (IITA) and national partners in 12 sub-Saharan African countries under the Stress Tolerant Maize for Africa (STMA) project to develop over 200 new maize varieties capable of withstanding drought conditions. These varieties are expected to give farmers 25-30% greater yields under drought stress at the flowering stage, as well as help them fight devastating maize diseases.

In Zimbabwe, for example, farmers in drought-stricken areas using drought-tolerant maize were able to harvest up to 600 kilograms more maize per hectare than those using conventional varieties. The additional harvest was enough to feed a family of six for nine months. For farming families who chose to sell their harvests, it was worth US$240 in extra income, giving them much-needed cash to send their children to school and meet other household needs.

In response to this challenge, CIMMYT has partnered with the International Institute for Tropical Agriculture (IITA) and national partners in 12 sub-Saharan African countries under the Stress Tolerant Maize for Africa (STMA) project to develop over 200 new maize varieties capable of withstanding drought conditions. These varieties are expected to give farmers 25-30% greater yields under drought stress at the flowering stage, as well as help them fight devastating maize diseases.

In Zimbabwe, for example, farmers in drought-stricken areas using drought-tolerant maize were able to harvest up to 600 kilograms more maize per hectare than those using conventional varieties. The additional harvest was enough to feed a family of six for nine months. For farming families who chose to sell their harvests, it was worth US$240 in extra income, giving them much-needed cash to send their children to school and meet other household needs.

In response to this challenge, CIMMYT has partnered with the International Institute for Tropical Agriculture (IITA) and national partners in 12 sub-Saharan African countries under the Stress Tolerant Maize for Africa (STMA) project to develop over 200 new maize varieties capable of withstanding drought conditions. These varieties are expected to give farmers 25-30% greater yields under drought stress at the flowering stage, as well as help them fight devastating maize diseases.
When a caterpillar munched through Muhammad Hasan Ali’s maize field in 2018, he was stumped as to what it was or how he could manage the voracious pest. All this Bangladeshi farmer knew was that his harvest and family’s income security were at risk.

“I had never seen this type of insect in previous seasons, but I soon learned from agricultural extension workers it was the fall armyworm,” he explained.

Researchers from CIMMYT anticipated its spread from sub-Saharan Africa and had proactively begun to prepare coordinated action with public and private institutions across South Asia.

Hasan Ali joined one of the many CIMMYT-facilitated training courses for extension workers and farmers, where he learned how to identify, monitor and control the destructive pest.

The fall armyworm’s preferred host is maize—a crop expanding faster than any other cereal in South Asia. The spread of the pest is a major threat to farmers’ livelihoods, as many rely on maize crops for their household income by selling it as feed grain for the growing poultry and fish sectors.

“Asia’s tropical climates are highly conducive for fall armyworm to be endemic almost throughout the year,” explained B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE).

“Farmers need to be made aware of the significant environmental and ecological hazards caused by indiscriminate application of highly toxic synthetic pesticides to control the pest,” he said. “We are promoting an integrated pest management strategy, including low-cost agronomic practices, environmentally safer pesticides, biological control, biopesticides, and varieties with tolerance to the pest, working closely with both public and private partners.”

JOINING FORCES TO DEFEND ALL FRONTs

In early 2019, CIMMYT partnered with international research funders and nonprofits to plan a regional response to the pest. This initiative brought together over 100 agricultural decision-makers from Bangladesh, Cambodia, India, Myanmar, Nepal, Sri Lanka and Thailand.

As a result, governments created national task forces to mobilize resources, create awareness about fall armyworm, and establish pest surveillance and management protocols.

In South Asia, CIMMYT has helped national partners to address their institutional needs for an efficient response. Another key area of work has been the development of educational and training programs on integrated pest management.

“It is imperative that governmental extension agents are educated on evidence-based and sustainable ways to control the pest, and pass these methods to farmers,” said Tim Krupnik, a CIMMYT senior scientist based in Bangladesh.

“CIMMYT developed fact sheets, videos and radio jingles to promote integrated pest management strategies, which have been translated into multiple local languages and distributed to farmers across the region.”

CIMMYT researchers have also shared insights and experiences on local and national media.

“In Nepal, CIMMYT partnered with the Plant Quarantine and Pesticide Management Centre to broadcast a fall armyworm management video on national television, reaching an estimated audience of one million,” said AbdulRahman Beshir, CIMMYT’s maize seed systems specialist based in Nepal.

PEST WATCH

CIMMYT researchers designed an online pest surveillance application which uses crowdsourced data, in collaboration with Bangladesh’s Department of Agricultural Extension and the national fall armyworm task force.

Extension officers in the field enter fall armyworm information using handheld smart devices. The online tool stores the data, aggregates it and produces weekly incidence warnings, on a local, district and national scale.

“Working with farmers and agricultural agencies to collect information on pest population and crop damage helps agricultural extension agents and farmers to make data-driven pest management decisions,” said Krupnik, whose research team led the app and website development.

Efforts towards establishing similar early warning systems have begun in Laos, Myanmar and Nepal, where CIMMYT researchers are working with governments, nonprofits and farmers to conduct surveys and build reliable networks.

BREEDING FOR RESISTANCE

CIMMYT researchers in Kenya have identified maize germplasm with resistance to fall armyworm and have used these traits to develop improved maize inbred lines and hybrids that are currently being tested in field trials.

“These efforts and the resulting resistant varieties will be distributed across Africa and Asia in the fight against the pest,” Prasanna said.

Biological control, including biopesticides, is another important component of integrated pest management strategies. In addition to supporting research by national partners on parasitoids, CIMMYT has engaged with the private sector to develop systems through which proven biopesticides can reach farmers in Asia quickly and effectively, Krupnik said.

Partners and funders

This work is funded by the United States Agency for International Development (USAID), Michigan State University, and the CGIAR Research Program on Maize (MAIZE).
DNA fingerprinting is a method used to identify individual plants by looking at unique patterns in their genome. It can be used to identify wheat varieties, bringing state-of-the-art research into farmers’ fields.

THE RESULTING HIGHLY ACCURATE DATA HELP:

- National breeding programs adjust their seed production to meet demand, and national extension agents focus on areas that need better access to seed.

- Breeders, scientists, and development organizations track their impact, which affects funding, support, and the direction of future research.

- Researchers understand – and protect – the diversity of the varieties being grown.

- Farmers get access to seed that improves their production and incomes.

In Afghanistan, CIMMYT researchers went to 4 different provinces, and selected 560 samples from farmers’ fields.

They shipped the seed to Mexico, where CIMMYT molecular geneticist Susanne Dreisigacker and her team DNA fingerprinted the samples.

Meanwhile, research colleagues carried out the traditional farmer survey.

CIMMYT’s team found that many more Afghan farmers than previously reported grow modern varieties. Most were derived from CIMMYT lines.

Funder:
Australian Centre for International Agricultural Research (ACIAR).

CIMMYT has conducted DNA fingerprinting in Afghanistan and Ethiopia and plans to continue in Egypt, India, and Kyrgyzstan.

FARMERS AND CONSUMERS IN LOW- AND MIDDLE-INCOME COUNTRIES CAN BENEFIT FROM WORLD-CLASS BREEDING PROGRAMS, ACCORDING TO A DETAILED VISION DEVELOPED BY THE CGIAR EXCELLENCE IN BREEDING PLATFORM (EIB). THROUGHOUT 2019, THE EIB TEAM DEVELOPED THIS VISION IN CLOSE CONTACT WITH RESEARCHERS FROM CGIAR AND NATIONAL AGRICULTURAL RESEARCH SYSTEMS, FUNDER, AND PRIVATE SECTOR PARTNERS.

IN PARALLEL, EACH CGIAR BREEDING PROGRAM DEVELOPED A PLAN FOR STRATEGIC IMPROVEMENTS TO BREEDING, IN CLOSE COLLABORATION WITH EIB STAFF AND IN ALIGNMENT WITH THE EIB VISION FOR CGIAR BREEDING.

EIB HAS ALSO SUPPORTED ALL CGIAR BREEDING PROGRAMS TO DEVELOP PRODUCT PROFILES, WHICH IDENTIFY MARKET-DRIVEN OBJECTIVES. EDUARDO COVARRUBIAS JOINED TO LEAD THE EIB MODULE ON BREEDING SCHEME OPTIMIZATION TO SUPPORT DELIVERY ON THOSE OBJECTIVES. INITIATIVES UNDERWAY INCLUDE THE PRODUCTION OF IN-DEPTH BREEDING SCHEME OPTIMIZATION GUIDELINES FOR PUBLICATION ON THE EIB TOOLBOX AND A COMPUTER SIMULATION PLATFORM IN COLLABORATION WITH THE ROSLIN INSTITUTE AT THE UNIVERSITY OF EDINBURGH.
CIMMYT is using data from nearly 200,000 plots to offer Mexican farmers site-specific recommendations to make their farming systems more productive, resilient, and sustainable. In 2019, 483 field technicians and farmer leaders collected data from 632 demonstration modules and 2,437 extension areas, covering more than 26,000 hectares across the country. This initiative is part of MasAgro, Mexico’s integrated development partnership with CIMMYT, funded by the Secretariat of Agriculture and Rural Development (SADER).

Data collectors can register up to 500 data variables from each plot monitored, describing management practices and important moments of the crop cycle. These records are fed into the MasAgro Electronic Field Book, a monitoring system that CIMMYT and its partners developed in 2012 to standardize data collection and management practices in Mexico. Since then, more than 218,000 logs have been entered into the system.

CIMMYT collaborates with the International Center for Tropical Agriculture (CIAT) and the International Institute for Applied Systems Analysis (IIASA) to look for correlations and patterns in the datasets, to identify possible limiting factors and best management practices for each plot monitored. The resulting analytics feed a multi-platform application called AgroTutor that assists farmers’ decisions by offering recommended agricultural practices, ideal periods or windows of opportunity for performing specific activities, historic yield potential records, commodity price forecasts, and historical data for local benchmarks.

In addition to increased productivity and profitability for farmers, applying these insights has contributed to the sustainable use of natural resources and has led to more informed and effective public policies and projects.

The United Nations (UN)-sponsored Counting on the World to Act report by the Sustainable Development Solutions Network (SDSN) and the Thematic Research Network on Data and Statistics (TReNDS) describes CIMMYT’s data management systems and tools as examples of “frontier technologies” that effectively contribute to sustainable farming in Mexico and respond to the Sustainable Development Goals.

“As part of the data revolution, efficiencies are being derived from lower-tech approaches such as using citizen-generated data and smartphones to speed up existing survey-based approaches,” reads the introduction to CIMMYT’s sidebar story in Chapter 4 of the report, Incentives for Innovation, presented in September 2019 during the 74th Session of the UN General Assembly.
Pioneering research on our three most important cereal grains — maize, rice, and wheat — has contributed enormously to global food security over the last half century, chiefly by boosting yields and making these crops more resilient in the face of drought, floods, pests and diseases. But with more than 800 million people living in chronic hunger and many more suffering from inadequate diets, much remains to be done.

The importance of transforming food systems is the message of the 2019 EAT-Lancet Commission report, which defines specific actions to achieve a “planetary health diet” enhancing human nutrition and keeping resource use of food systems within planetary boundaries. With major cereals still supplying about one-third of calories required in the proposed diet, the way they are produced, processed, and consumed must be a central focus of global efforts to transform food systems. There are three main reasons for this imperative.

1. SCALE AND ECONOMIC IMPORTANCE

The critical importance of these crops in global food systems can be seen in the sheer extent of major cereal production and its value. According to 2017 figures, maize is grown on 197 million hectares and rice on more than 167 million hectares, mainly in Asia and Africa. Wheat covers 218 million hectares worldwide, and the total annual harvest of these three crops amounts to about 2.5 billion tons of grain.

Global production had an estimated annual value averaging more than US$500 billion in 2014-2016. The prices of the major cereals are especially important for poor consumers. In recent years, the rising cost of bread in North Africa and tortillas in Mexico, as well as the rice price crisis in Southeast Asia, imposed great hardship on urban populations in particular, triggering major demonstrations and social unrest. Reducing dependence on cereal imports to avoid such troubles, many countries in Africa, Asia, and Latin America have made staple crop self-sufficiency a central element of national agriculture policy.

2. CRITICAL ROLE IN HUMAN DIETS

In developing countries, maize, rice, and wheat together provide 48% of total calories consumed and 42% of total protein. As staple foods, maize and wheat make up close to two thirds of the world’s food energy intake. In every developing region except Latin America, cereals provide people with more protein than meat, fish, milk, and eggs combined, making them an important protein source for over half the world’s population.

These cereals also serve as a rich source of dietary fiber and nutrients. CGIAR research has documented the important contribution of wheat to healthy diets, linking the crop to reduced risk of Type 2 diabetes, cardiovascular disease, and colorectal cancer.

3. ENCOURAGING PROGRESS TOWARD BETTER NUTRITIONAL QUALITY

In recent years, cereals have improved in nutritional quality through a conventional crop breeding approach called ‘biofortification,’ which boosts the content of essential vitamins or micronutrients. Dietary deficiencies of this kind harm children’s physical and cognitive development, and leave them more vulnerable to disease. This is believed to cause about one-third of the 3.1 million annual child deaths attributed to malnutrition. Diverse diets are the preferred remedy, but the world’s poorest consumers often cannot afford more nutritious foods.

While not a replacement for diverse diets, ‘biofortified’ crop varieties developed by CGIAR help address hidden hunger by providing higher levels of zinc, iron and provitamin A carotenoids as well as better protein quality. These offer an immediate solution for the many subsistence farmers and rural consumers who depend on locally produced foods and lack access to industrially fortified products.

TOWARD A SUSTAINABLE DIETARY REVOLUTION

Compared to other crops, cereal production has relatively low environmental impact. However, it is both necessary and feasible to further enhance the sustainability of cereal cropping systems. Any improvement in resource use efficiency will have a major impact on greenhouse gas emissions and water conservation, while also freeing up vast amounts of land for natural vegetation and other crops to allow for diversified diets and farmer incomes.

Future-proofing global food security requires bold steps. Policy and research need to support a double transformation centered on nutrition and sustainability, and this requires greater investment in cereals as well as smaller crops. Agriculture, from farm to fork, creates more than 25% of global GDP but attracts less than 5% of global investments in research and development (R&D).

The impact of our work depends on the growing resolve of countries to promote these themes through strong policies and programs, as well as global investments in R&D. If agriculture is not prioritized, it is unlikely that future demand for sustainable, affordable, and more diversified diets will be met.
While many consumers are only familiar with white or yellow maize, native maize from Mexico and Latin America can come in a dazzling array of colors, including blue, red, or purple colored kernels. These deeper-hued varieties are gaining popularity around the world for their delicious taste and added health benefits, but are cultivated mainly by smallholder farmers on small plots of land, making it difficult to meet large-scale consumer demand.

Unlike white and yellow maize, which have many high-yielding hybrid varieties, most of the blue maize planted by farmers today are landraces, or native maize varieties passed down from generation to generation. These varieties contain important genetic diversity and play an important role in local culture and cuisine, but have lower yields compared to modern varieties. Moreover, these varieties have greater variation in grain types between farmers, making it undesirable for large-scale market use. As native maize varieties were selected by indigenous people for local adaptation over thousands of years, they are still grown throughout Mexico but often perform poorly when moved to another region.

Researchers at CIMMYT are now working to develop the Center’s first subtropical blue maize hybrids and improved open-pollinated varieties (OPVs), a move that will provide more options for Mexican farmers and contribute to better nutrition for consumers.

“These blue maize hybrids and OPVs will give farmers and consumers more choices on what they can plant and what they can eat, while also preserving the cultural diversity of Mexico and improving health and nutritional benefits,” said Terence Molnar, a maize breeder at CIMMYT leading this project. “We’re also bringing in and preserving a lot of new genetic diversity, as all of these hybrids and OPVs are derived from traditional landraces from Guatemala, Mexico, and Peru.”

Trials have shown that the new blue maize hybrids can potentially yield over 12 tons per hectare under optimum conditions – triple the average yield of landrace varieties. They are also resistant to leaf diseases and ear rots, and thus show significant reduction in the accumulation of harmful
In addition to many other factors, feel satiated for longer, and in the digestive process, causing you to glucose in the body and breaks that does not immediately become phenolic content.

Higher amounts of resistant starch, maize landraces have also shown lowering cholesterol. Some blue maize landraces have associated with their pigments and phenolic content.

“Resistant starch is a form of fiber that does not immediately become glucose in the body and breaks down more slowly,” says Natalia Palacios, CIMMYT maize quality specialist. “This reaction occurs in the colon rather than earlier in the digestive process, causing you to feel satisfied for longer, and in the long run can help to prevent obesity, in addition to many other factors, although more research is needed.”

PLenty of Choice
For farmers who want to continue planting their native maize varieties, CIMMYT’s maize landrace improvement coordinator Martha Willcox has worked to help facilitate the creation of a new civil association, ProMaiz Nativo, and a collective trademark, Milpaiz, to help farmers demonstrate the authenticity of their native landrace maize and receive fair prices for their work.

“We are trying to get a fair price for these farmers, as these native maize seeds are their inheritance, their own variety passed down through generations,” she said.

Willcox has found that smallholder farmers’ incomes have increased substantially under the fair-trade pricing scheme, allowing farmers to continue preserving the invaluable genetic diversity in their heirloom maize varieties.

“In addition to improving nutrition and increasing yields, CIMMYT’s work in blue maize is about giving farmers choices—so that they can choose to keep growing their native maize variety, or move to an OPV for greater stability, while other farmers may want hybrids. This is about giving farmers options that suit their needs,” said Molnar.

A field day for farmers, seed companies and end users was held in November 2019 in Jalisco, Mexico, to introduce the subtropical blue maize hybrids under development. The participants were very impressed with the varieties on display and expressed their interest in planting them as soon as they are available. “I think there will be a lot of demand. It is hard to get blue maize in this region and it tends to sell out quickly,” said Marta Palacios, maize breeder at CIMMYT.

In the Fertile Crescent—what is now Afghanistan, Iran, and Turkey—farmers have been breeding wheat for more than 8,000 years. The work of countless generations of farmers resulted in traditional wheat varieties, or landraces, with unique traits suited for local conditions and for baking nutritious foods.

When agriculture became more intensified, most farmers switched to modern, higher-yielding varieties. But some landraces still survive, carefully cultivated by farmers in remote communities.

Realizing the value and potential of this genetic diversity, a team of CIMMYT scientists and wheat breeders embarked on a treasure hunt for these ‘lost’ varieties, with support from the UN Food and Agriculture Organization’s International Treaty on Plant Genetic Resources for Food and Agriculture.

In partnership with the Bahri Dagdas International Agricultural Research Institute in Turkey and the Agricultural Research Institute of Afghanistan, the CIMMYT team collected 162 landraces in Turkey and 25 in Afghanistan. They planted the seeds in research fields and selected the best performing varieties, with input from local farmers. Researchers found that some Afghan landraces were resistant to prevalent rusts and could yield up to 90% as much as modern commercial varieties.
FOUR WAYS to strengthen gender equality in agriculture in the MENA region

When it comes to labor markets, the Middle East and North Africa (MENA) is one of the most gender-unequal regions in the world. Although agriculture is the largest employer of women in the region, they still face significant challenges accessing land, benefiting from technologies, and enjoying equitable labor conditions.

Drawing on research in Egypt and Morocco funded by the CGIAR Research Program on Policies, we present four ways of strengthening gender equality in agriculture in the MENA region.

1. Recognize women as workers, not helpers

In Egypt, research shows that women in agriculture are widely categorized as ‘helpers’ to male workers rather than workers in their own right. Listed as ‘housewives’ on their national ID cards, while men are listed as ‘agricultural workers,’ women farmers are often marginalized from social protection and development programs.

Legally and socially recognizing women as workers is therefore a key first step towards gender equality.

2. Change perceptions of land ownership

The MENA region has the lowest share of women landholders in the world, at just 5%. Research in Egypt shows that women tend to identify land officially owned solely by themselves as belonging to themselves and their husbands – although more recently land distribution quotas have been introduced to encourage land ownership among women.

Policy change on its own is not enough to tackle these low landownership rates – changing perceptions of land ownership must be part of the solution.

3. Enforce legislation for equal pay and zero tolerance for sexual harassment

In Egypt and Morocco, women are designated lower paid and more time-consuming tasks, and are systemically paid less than men, even for the same tasks. Women agricultural workers face high levels of sexual harassment and have limited bargaining power.

Moroccan legislation includes equal pay and zero tolerance for sexual harassment, but enforcement remains weak.

Enforcing existing proactive legislation must be a priority.

4. Revitalize agriculture as a valuable and necessary occupation in society

Much of the world sees agriculture as an occupation of last resort. When surveyed, men and women in Morocco complained about agricultural work being an unstable and unreliable way of making a living. In both Egypt and Morocco, women who worked as wage workers were associated with a tarnished reputation and had difficulty marrying.

To shift how agriculture is viewed and rebrand it as an important and respected occupation, it needs to be reformed as a safer, more equal and respectable space for both women and men.

WOMEN FIND BUSINESS OPPORTUNITIES with mechanization

Tools make it easier to operate farm machinery and inspire entrepreneurial women

Social norms and the physical effort required to operate heavy farm machinery can exclude women from agriculture and related business opportunities.

Through mechanization solutions, CIMMYT is helping women to overcome these challenges and become successful entrepreneurs.

In Nepal, women head more and more farming households, as their partners and young men have left to work abroad. However, women are not always familiar with farming practices, especially heavy equipment. Through the Cereal Systems Initiative for South Asia (CSISA), CIMMYT introduced farmers in Nepal to the precision spreader, a hand-operated device that is easy and convenient to use for all. It also distributes fertilizer evenly, so farmers use the right amount and save money.

Starting two-wheel tractors can also pose a challenge for women entrepreneurs. Halima Begum, a farmer in Bangladesh’s Chuadanga district, wanted to provide mechanization services for other farmers in the area, to increase her income. However, cranking to start up the tractor required a lot of strength and she had to rely on others for help.

Now, using an electronic self-starter, she can start the tractor with the flick of a lever. This device reduces the risk of accidents and encourages women and youth to become entrepreneurs of agricultural mechanization services. CIMMYT, through the CSISA project, is manufacturing these self-starter attachments for two-wheel tractors in Bangladesh.

Similarly, in Zimbabwe, Agatha Dzvengwe and Marianne Jaji have become successful entrepreneurs as two-wheel tractor service providers. One of the key outcomes of the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project, funded by the Australian Centre for International Agricultural Research (ACIAR), is to increase awareness among women and youth of the business opportunities related to small-scale mechanization.

‘We have been freed from the burden of toiling in the field. Now that I own a two-wheel tractor, the society respects me more,’ said Jaji.

Partners and funders

The MENA region has the lowest share of women landholders in the world, at just 5%. Research in Egypt shows that women tend to identify land officially owned solely by themselves as belonging to themselves and their husbands – although more recently land distribution quotas have been introduced to encourage land ownership among women.

Policy change on its own is not enough to tackle these low landownership rates – changing perceptions of land ownership must be part of the solution.

2. Change perceptions of land ownership

The MENA region has the lowest share of women landholders in the world, at just 5%. Research in Egypt shows that women tend to identify land officially owned solely by themselves as belonging to themselves and their husbands – although more recently land distribution quotas have been introduced to encourage land ownership among women.

Policy change on its own is not enough to tackle these low landownership rates – changing perceptions of land ownership must be part of the solution.

2. Change perceptions of land ownership

The MENA region has the lowest share of women landholders in the world, at just 5%. Research in Egypt shows that women tend to identify land officially owned solely by themselves as belonging to themselves and their husbands – although more recently land distribution quotas have been introduced to encourage land ownership among women.

Policy change on its own is not enough to tackle these low landownership rates – changing perceptions of land ownership must be part of the solution.

2. Change perceptions of land ownership

The MENA region has the lowest share of women landholders in the world, at just 5%. Research in Egypt shows that women tend to identify land officially owned solely by themselves as belonging to themselves and their husbands – although more recently land distribution quotas have been introduced to encourage land ownership among women.

Policy change on its own is not enough to tackle these low landownership rates – changing perceptions of land ownership must be part of the solution.

2. Change perceptions of land ownership

The MENA region has the lowest share of women landholders in the world, at just 5%. Research in Egypt shows that women tend to identify land officially owned solely by themselves as belonging to themselves and their husbands – although more recently land distribution quotas have been introduced to encourage land ownership among women.

Policy change on its own is not enough to tackle these low landownership rates – changing perceptions of land ownership must be part of the solution.
STRESS-TOLERANT MAIZE, sustainable intensification and integrated pest management to improve food security

The CGIAR Research Program on Maize (MAIZE) is an international collaboration led by CIMMYT and the International Institute of Tropical Agriculture (IITA) that seeks to mobilize global resources in maize research for development to achieve greater impact on maize-based farming systems.

In 2019, MAIZE made great advances in the development of improved, stress-tolerant maize varieties with enhanced genetic gain, and novel genetic diversity and tools. National partners released 82 unique CGIAR-derived maize varieties across Africa, Asia and Latin America. In addition to high yield, these varieties are stacked with multiple traits needed by smallholder farmers to protect their crops from drought and diseases. These MAIZE varieties also included nine nutritionally enriched varieties with improved protein quality, provitamin A, and high zinc.

MAIZE and partners have continued the battle against fall armyworm in Africa and Asia on several fronts, including stakeholder workshops and capacity development on integrated pest management, besides intensive research on developing maize varieties with native genetic resistance to the pest.

From research on value chains and improved nutrition to conservation agriculture and scale-appropriate mechanization, MAIZE in 2019 continued to focus on sustainable intensification of maize-based cropping systems in Latin America, South Asia, and sub-Saharan Africa, where maize plays a critical role in the food and nutritional security and livelihoods of millions of resource-constrained consumers.

For more information, visit maize.org

Partners and funders
The CGIAR Research Program on Maize (MAIZE) receives Windows 1 & 2 support from the governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Mexico, the Netherlands, New Zealand, Norway, Sweden, Switzerland, the United Kingdom, the United States, and the World Bank.

Bill & Melinda Gates Foundation
United States Agency for International Development (USAID)
Mexico’s Secretariat of Agriculture and Rural Development (SADER)
Cornell University, through contributions from the Bill & Melinda Gates Foundation and the United Kingdom
Australian Centre for International Agricultural Research (ACIAR)
HarvestPlus, through contributions from the Bill & Melinda Gates Foundation, the CGIAR Research Program on Agriculture for Nutrition and Health, the European Commission, the John D. and Catherine T. MacArthur Foundation, the United Kingdom, and the United States (Feed the Future Initiative)
Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH
Walmart Foundation
Biotechnology and Biological Sciences Research Council (BBSRC)

In 2019, the CIMMYT-led CGIAR Research Program on Wheat (WHEAT) capitalized on advanced technology to deliver improved wheat varieties and support to wheat farmers worldwide.

Many of the world’s more than 2.5 billion wheat consumers are benefitting from added climate resilience and genetic diversity, thanks to CIMMYT’s breeding strategy incorporating traits from wild wheat relatives. Using the wheat genome map, this year WHEAT scientists and partners identified new chromosomal regions that will further speed progress.

State-of-the-art tools – such as DNA fingerprinting and a mobile phone early warning system for wheat rust – are helping resource-poor farmers in their fields.

A team of experts confirmed the health benefits of whole grain and refined wheat products, and more than 12 biofortified high-zinc varieties have been released to date.

For more information, visit wheat.org

Partners and funders
The CGIAR Research Program on Wheat (WHEAT) receives Windows 1 & 2 support from the governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Mexico, the Netherlands, New Zealand, Norway, Sweden, Switzerland, Turkey, the United Kingdom, the United States, and the World Bank.

Bill & Melinda Gates Foundation
United States Agency for International Development (USAID)
Mexico’s Secretariat of Agriculture and Rural Development (SADER)
Netherlands, Norway, Sweden, Switzerland
Australia’s Department of Agriculture, Water and the Environment
Australian Centre for International Agricultural Research (ACIAR)
HarvestPlus, through contributions from the Bill & Melinda Gates Foundation, the CGIAR Research Program on Agriculture for Nutrition and Health, the European Commission, the John D. and Catherine T. MacArthur Foundation, the United Kingdom, and the United States (Feed the Future Initiative)
Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH
Walmart Foundation
Biotechnology and Biological Sciences Research Council (BBSRC)

CIMMYT gratefully acknowledges the countries, organizations, partners and individuals that supported its agricultural research for development in 2019. We also thank all funders that support this work through their contributions to the CGIAR System.

TOP FUNDERS
CGIAR Research Programs and Platforms, through contributions from Australia, Belgium, Canada, China, France, the Global Crop Diversity Trust, India, Ireland, Japan, the Republic of Korea, the Netherlands, New Zealand, Norway, Sweden, Switzerland, Thailand, the United Kingdom, the United States, and the World Bank
Bill & Melinda Gates Foundation
United States Agency for International Development (USAID)
Mexico’s Secretariat of Agriculture and Rural Development (SADER)
Cornell University, through contributions from the Bill & Melinda Gates Foundation and the United Kingdom
Australian Centre for International Agricultural Research (ACIAR)
HarvestPlus, through contributions from the Bill & Melinda Gates Foundation, the CGIAR Research Program on Agriculture for Nutrition and Health, the European Commission, the John D. and Catherine T. MacArthur Foundation, the United Kingdom, and the United States (Feed the Future Initiative)
Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH
Walmart Foundation
Biotechnology and Biological Sciences Research Council (BBSRC)

CIMMYT concluded the 2019 financial year with an overall deficit of US$1.8 million, compared to a surplus of US$0.9 million in 2018. Total grant income decreased by 11.6%, from US$119.7 million in 2018 to US$108.8 million in 2019.

In 2019, a reduction in bilateral funding and cautious research spending led to lower indirect cost recovery than expected. This lower indirect recovery, in combination with several crucial investments in institutional functions, the effect of actuarial losses as a result of lower interest rates, and financing costs related to employee termination provisions, were large contributing factors to this deficit. However, through mitigation and adaptation to major funding cuts, CIMMYT has successfully limited the operating loss to only US$1.1 million.

For 2019, CIMMYT maintained a strong CGIAR Research Program Windows 1, 2 & 3 funding portfolio within a complex environment. At the time of preparing this report, COVID-19 is impacting the global landscape in which CIMMYT operates. Working within these boundaries, CIMMYT and its partners will continue to deliver on research-for-development commitments, while closely monitoring the financial impact of the crisis throughout 2020, as part of the risk management framework.

CIMMYT’s 2020 grant portfolio is strong and increasing, and funders have been outspoken in their ongoing support and acknowledgment of CIMMYT’s impact and its support to the One CGIAR transformation process.

Strong financial health, built up conservatively over previous years, will support CIMMYT to overcome this challenging period and will allow the organization to continue operating to support the 500 million smallholder farmers worldwide with incomes of less than two dollars a day.

To download the full financial report for 2019, visit cimmyt.org/about/funders

FUNDERS
FINANCIAL OVERVIEW

INNOVATIONS AND HIGH-TECH TOOLS
help farmers battle climate change, pest and disease challenges

In 2019, the CIMMYT-led CGIAR Research Program on Wheat (WHEAT) capitalized on advanced technology to deliver improved wheat varieties and support to wheat farmers worldwide.

Many of the world’s more than 2.5 billion wheat consumers are benefitting from added climate resilience and genetic diversity, thanks to CIMMYT’s breeding strategy incorporating traits from wild wheat relatives. Using the wheat genome map, this year WHEAT scientists and partners identified new chromosomal regions that will further speed progress.
ACRONYMS

AGAR
Australian Centre for International Agricultural Research

AGROSAVA
Colombian Agricultural Research Corporation (Corporación Colombiana de Investigación Agropecuaria)

ATA
Agricultural Transformation Agency

BISA
Biorag Institute in South Asia

BrAPI
Breeding Advanced Programming Interface

CCAF
CGAR Research Program on Climate Change, Agriculture, and Food Security

CIAT
International Center for Tropical Agriculture

CIMMYT
International Maize and Wheat Improvement Center

CRP
CGAR Research Program

CSISA
Cereal Systems Initiative for South Asia

CSSRI
Central Soil Salinity Research Institute

EIAR
Ethiopian Institute of Agricultural Research

EIB
CGAR Excellence in Breeding Platform

FAO
Food and Agricultural Organization of the United Nations

ICAR
Indian Council of Agricultural Research

ICARDA
International Center for Agricultural Research in the Dry Areas

IFPRI
International Food Policy Research Institute

IASA
International Institute for Applied Systems Analysis

IITA
International Institute for Tropical Agriculture

INIFAP
Mexico’s National Forestry, Crops and Livestock Research Institute (Instituto Nacional de Investigaciones Forestales, Agrícolas y Pesqueras)

IRRI
International Rice Research Institute

IRE
International Rice Research Institute

MAIZE
CGAR Research Program on Maize

MENA
Middle East and North Africa

MDGs
Millennium Development Goals

ODK
Open Data Kit

OPV
Open-pollinated variety

PET
Polyethylene terephthalate

PIM
CGAR Research Program on Policies, Institutions, and Markets

R&D
Research and Development

SADER
Mexico’s Secretariat of Agriculture and Rural Development (Secretaría de Agricultura y Desarrollo Rural)

SDGs
Sustainable Development Goals

SDSN
Sustainable Development Solutions Network

SMS
Straw Management System

STMA
Stress Tolerant Maize for Africa

TReNDs
Thematic Research Network on Data and Statistics

UN
United Nations

USAID
United States Agency for International Development

WHEAT
CGAR Research Program on Wheat

CREDITS

Editors-in-chief
Rodrigo Ordóñez, Geneviève Renard

Project coordination
Alison Doody, Emma Orchardson

Art directors
Clyde R. Beaver III, Alfonso Cortés, Nancy Valtierra

Layout and design
Nancy Valtierra

Graphics and illustrations
Ángel Eduardo Aguilar, Clyde R. Beaver III, Alfonso Cortés, Marcelo Ortiz, Elliott Sánchez, Nancy Valtierra

Writers and editors
Ricardo Curiel, Leslie Dominguez, Mary Donovan, Alison Doody, Jennifer Johnson, G. Michael Listman, Marcia MacNeil, Marta Millere, Matthew O’Leary, Emily Orchardson, Samuel Storr

Contributors
Ricardo Ampudia, Lone Badstue, Hans Braun, Johanna Braun, José Juan Caballero Flores, Denise Costich, Susanne Densigacker, Andrea Gardeazabal Monsalve, Elias Garcia, Bram Govaerts, Filippo Guzzo, Jesús Herrera, M.L. Jat, Victor Komenennel, Timothy J. Krupnik, Jean-Flavien Le Besque, Joshua Masinde, Terence Molnar, Dina Najar, Natalia Palacios, Thomas Payne, Kevin Reidy, B.M. Prasanna, Michael Quinn, Rajiv Kumar Sharma, H.S. Sohoo, José Luis Torres, Martha Wilcox

Photography
Alfonso Cortés, Georg Goergen/IITA, Uttam Kumar, Peter Lowe, Johnson Siamachira, Love Kumar Singh/BISA, Sam Storr, CIMMYT Archives

ISSN
0188-9214

AGROVOC descriptors:
Maize; Wheat; Plant breeding; Genetic resources; Innovation adoption; Plant biotechnology; Seed production; Food security; Sustainability; Research policies; Economic analysis; Cropping systems; Agricultural research; Organization of research; Developing countries. Additional Keywords: CIMMYT. AGRIS category codes: A50 Agricultural Research; A81 Agriculture–General Aspects. Dewey decimal classification: 630

© International Maize and Wheat Improvement Center (CIMMYT), 2020. All rights reserved. The designations employed in the presentation of materials in this publication do not imply the expression of any opinion whatsoever on the part of CIMMYT or its contributory organizations concerning the legal status of any country, territory, city, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. CIMMYT encourages fair use of this material. Proper citation is requested.

Hand-made ceramic representations of Mexican dishes, part of the world food displays at the Genetic Resources Visitors Center at CIMMYT’s global headquarters in Mexico.