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Article history: On the basis of growing environment, maize can largely be classified into temperate and
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consisting of 410 inbred lines phenotyped in three representative experiments in different
latitudes. Selective signature analysis revealed 106 selective-sweep regions containing 423
candidate genes involved mainly in biological regulation and biosynthesis pathways.
Among these genes, 25 overlapped with known genes governing flowering time and
photoperiod sensitivity and 37 were also detected by GWAS for days to tassel, anthesis-silk
interval, and photoperiod sensitivity measured by days to silking. Only two of the candidate
genes governing flowering time overlapped selective signals. Most haplotype alleles within
significant haplotype loci showed the same direction of effect on flowering time and
photoperiod sensitivity. The inbred lines carrying GATT at HapL499 (haplotype locus 499) on
chromosome 1 had relatively short flowering times. Lines carrying CA at HapL4054 on
chromosome 10, TA at HapL4055 on chromosome 10, and GTTGT at HaplL978 on
chromosome 2 were less sensitive to photoperiod than lines carrying other haplotype
alleles. Haplotype loci associated with flowering time and photoperiod sensitivity explained
respectively 17.5%-18.6% and 11.2%-15.5% of phenotypic variation. Candidate genes and
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favorable haplotypes identified in this study may support the more efficient utilization of
maize germplasm groups.
© 2019 Crop Science Society of China and Institute of Crop Science, CAAS. Production and
hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Archaeological and genetic evidence reveals that maize (Zea
mays ssp. mays L.) was domesticated approximately 10,000 B.P.
in the Balsas River basin of southwest Mexico, under high
temperature and short day length [1-3]. Following the largely
unconscious process of domestication, maize was subjected
to targeted improvement, and became adapted to tropical
environments mainly through development of landraces,
synthetics, and open-pollinated cultivars. More recently,
maize has been selected for performance in temperate
environments and adapted to modern agro-ecosystems
through the development and commercialization of hybrid
cultivars. Domestication and post-domestication selection
have contributed to large differences between tropical and
temperate maize groups, the former showing much richer
genetic diversity and more rapid LD (linkage disequilibrium)
decay than the latter [4].

Several studies [5-7] have suggested that tropical maize
with favorable alleles for resistance to biotic and abiotic
stresses should be used to increase genetic diversity for
breeding programs. Temperate germplasm with high yield
potential can be used as a source of several tolerance-related
traits, including high density tolerance and functional stay-
green, that can be exploited to improve tropical maize.
However, gene introgression between temperate and tropical
maize groups has been hindered, mainly by their differences
in response to day-length and photoperiod. Flowering time
and photoperiod sensitivity are complex, showing a wide
range of phenotypic variation influenced by many minor
genes, which determine the adaptation of plants to their
ecological environments and influence the exchange of
germplasm resources across regions with different latitudes
[8,9]. Photoperiod sensitivity is usually considered to be a
prerequisite for crop survival and reproduction under various
environments [10], and is indirectly evaluated by comparing
QTL (quantitative trait locus) for flowering time identified
under multiple regions in different latitudes [11,12]. Studies of
days to heading (DTH) [13] and to flowering (DTF) [14] in
response to photoperiod and temperature of rice showed that
QTL for DTH and DTF did not coincide with QTL for photo-
thermo sensitivity, indicating that photoperiod sensitivity
and flowering time were independent. Maize is a wind-
pollinated outcrossing species that grows in a range of
environments from tropical southwestern Mexico to the
Andean highlands and has been widely introduced into
tropical and temperate regions [15]. Natural and artificial
selection, especially continuous selection over the past
century, of key genes affecting flowering time have led to
the photoperiod sensitivity of tropical maize and reduced the
photoperiod sensitivity of temperate maize [16], such that the
time required for maize landraces to mature ranges from 2 to
11 months [17]. Some phenotypic traits of maize have been

discovered to be highly associated with photoperiod sensitiv-
ity, in particular number of leaves, plant height, and flowering
time including days to pollen shed, silking, and anthesis
[16,18,19]. These traits can thus be used as efficient indicators
of photoperiod sensitivity.

Selective signals and associated genomic regions and
candidate genes can be identified and studied using high-
density molecular markers such as single nucleotide poly-
morphisms (SNPs). Although theoretically there are up to
four different alleles per SNP locus in a population, SNP
arrays can detect only two of them [20,21]. Haplotypes
derived from a set of SNPs within a single LD block can be
used as markers with more alleles [22]. Haplotype construc-
tion compresses multiple SNPs into a haplotype locus and
optimizes the design of genomic selection (GS) and
genomewide association studies (GWAS) [23]. Haplotype
analysis provides two further advantages. The association
between a trait and a specific allele depending on cis
interactions with other loci may not be recognized by SNP-
based analysis until the functional haplotypic unit is used in
GWAS. Differences in haplotype diversity and frequency
across populations may be valuable for identifying variants
that are the most likely determinants of phenotypic traits
[24,25].

Natural and artificial selection of favorable mutations
associated with adaptation leads to reduced polymorphism,
increased LD, and increased allele frequency [26-28]. When
selection for a beneficial mutation occurs, the genetic
variation in the neighboring region will be homogeneous,
leaving selective signals in the genome and ultimately
shaping the phenotype. With the rapid development of chip
technology and high-throughput sequencing technology,
selective signals can be identified at the whole-genome
level. Selective signatures identification can be divided into
three categories according to the source of genomic informa-
tion and the algorithm employed. (i) Potential selection
signatures are identified based on population differentiation,
including Fsr [29] and di [30], by comparison of their allele
frequencies among different subgroups. (ii) Potential selection
signatures are identified based on LD, including EHH (ex-
tended haplotype homozygosity) [31], iHS (integrated ex-
tended haplotype homozygosity score) [32] and XP-EHH
(cross-population extended haplotype homozygosity) [33],
which describes the homozygosity of the extended haplotype
shaped by the “hitchhiking effect”. (iii) Potential selection
signatures are identified based on allele frequency patterns,
including Tajima’s D statistic [34] and the methods related to
Tajima’s D, by distinguishing the difference between 6, and 6y,
that indicates a signature of low-frequency mutation. In
addition, emerging approaches commonly employ XP-CLR
(cross-population composite likelihood ratio), which is used
to reveal historical selection by comparing allele frequency
spectrum at linked loci [35], and the combination of the 6,
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ratio (0,domesticated/0mimproved) @nd Fgr, which involves an
empirical procedure employing sliding windows with both
significantly low or high 60, ratios and significantly high Fsr
values to identify potential regions affected by long-term and
intensive selection over the whole genome [36-38]. However,
small sample sizes weaken the power to detect association of
selective signatures with domesticated and improved traits.
Recently, large samples have been used to detect selective
signals, with respectively 115, 278, and 302 lines included in
selective signature analyses of cucumber [39], maize [40], and
soybean [41].

Identifying genetic determinants of flowering time and
photoperiod sensitivity is usually considered to be a
prerequisite for successful exchange of germplasm re-
sources across regions adapted to different latitudes. It is
thus desirable to discover selective signatures regulating
flowering time and photoperiod sensitivity that distinguish
temperate from tropical maizes. In this study, we sought to
identify genomewide changes between temperate and
tropical maize groups by selective signature analysis and
GWAS.

2. Materials and methods
2.1. Plant materials and data generation

The diverse maize germplasm panel used in the study (Table
S1), consisted of 410 maize inbred lines. Of these, 238 were
temperate inbred lines selected from breeding programs and
germplasm collections to represent maize germplasm im-
proved for and adapted to temperate environments and 172
were tropical inbred lines selected from CIMMYT to represent
maize germplasm with high genetic diversity but less
improved and more adapted to the original environment
where maize was domesticated.

The panel had been genotyped with the Maize 55 K SNP
Affymetrix Axiom Genotyping Array [42]. From this SNP
dataset, 39,350 SNPs were selected as high-quality SNPs
with minor-allele frequency (MAF) greater than 0.05 and
maximum missing rate less than 20%. They were evenly
distributed across the maize genome, with chromosomes
carrying 2850 (chromosome 10) to 6050 (chromosome 1)
SNPs.

2.2. Field trial and phenotyping

The diverse maize panel was planted in 2014 in three
locations, Shunyi, Beijing (40°13'N; summer), Xinxiang,
Henan (35°18'N; summer) and Sanya, Hainan (18°09'N; win-
ter), with different environments that affect maize flowering,
using a randomized block design with two replications. Each
two-row plot was 3 m long with 60 cm between rows and 25
cm between plants. The number of days from planting to the
time at which more than 50% of the plants in a plot displayed
tasseling, silking, and anthesis was measured as days to
tassel (DTT), days to silk (DTS), and days to anthesis (DTA),
respectively. The interval between DTA and DTS for the plot
was calculated as anthesis-silk interval (ASI). Photoperiod

sensitivity was measured as the relative difference index (RD)
[43,44], calculated for each flowering trait phenotyped in pairs
of environments (Shunyi vs. Sanya; Xinxiang vs. Sanya) as
follows:

RD;(%) = [(Li=S;)/Si] x 100%

where L; is the mean performance of a trait under long-day
conditions (Shunyi or Xinxiang) and S; is the mean perfor-
mance of a trait under short-day conditions (Sanya, Hainan).
The RDs for DTT, DTS, and DTA are abbreviated as RD_DTT,
RD_DTS, and RD_DTA, respectively.

2.3. Population structure analysis

Using TASSEL software [45], a SNP array of 410 maize
accessions was constructed and used to construct a clado-
gram of SNPs across the whole genome using genetic
distances between inbred lines. The online toolkit iTOL
(https://itol.embl.de/) [46], was then applied to generate the
neighbor-joining tree which displayed the genetic distance
gained above. Principal component analysis (PCA) was con-
ducted using TASSEL.

2.4. Linkage disequilibrium analysis

Squared correlation coefficients () were calculated with
PLINK software [47]. The parameters were set to “-ld-
window-r2 0 -ld-window 999999 MAF > 0.05”. The mean r?
was computed for pairs of SNPs within 20-kb intervals across
the genome.

2.5. Calculation of Fsr, 6, and Tajima’s D statistic

The genetic parameter population-differentiation statistic
Fsr was used to measure genetic distance or population
differentiation using genetic polymorphism data [29]. Nucle-
otide diversity (0,) was employed to measure the degree of
diversity within a population [48]. Tajima’s D statistic was
computed to distinguish random from non-random evolu-
tion of DNA sequences [34]. To identify selective signals
across the whole genome between temperate and tropical
maize groups, Fsr, 0, and Tajima’s D were calculated as
indicators of selective signatures by a sliding window
method (including 10 SNPs per sliding window in steps of 2
SNPs). Fst was calculated for high quality SNPs as follows
[49]:

F TlBetween —TWithin
ST = —ooween TWithin
TlBetween
where mpetween represents genetic differences across popula-
tions and mwimin represents genetic differences within
populations.
6. was calculated according to Nei and Li [48], using

n

i-1
0 = Z XiXjmij = 2 % Z XiXjij
ij

i=2 j=1

where x; and x; are the frequencies of the ith and jth
sequences, respectively, m; is the number of nucleotide


https://itol.embl.de/

230 THE CROPJOURNAL 8 (2020) 227-242

differences at each site between the ith and jth sequences,
and n is the number of sequences over all samples.
Tajima’s D was calculated as follows [34]:

the number of segregating sites, V denotes the variance of
T and = is the sum of the pairwise differences per site
between sequences.

The 6, ratio (0, wopical/0xtemperate) Was calculated and used to
evaluate the direction of selection. ,, Fst, and Tajima’s D statistic
were calculated using the PopGenome package in R [50].

41
where a; =Y 117, n denotes the number of samples, S denotes

2.6. Identification of putative selective regions

To identify putative selective signatures associated with the
temperate maize group, selective signature analysis using
temperate and tropical maize groups was performed to
identify selective signatures over the genome. The allele
frequencies of SNP loci were used to identify selective sweep
regions that were probably shaped by continuous selection.
The top 5% values of 6, ratio were adopted to identify putative
selective regions. Likewise, the top 5% values of Fsr were
adopted to confirm highly differentiated regions. The inter-
sections of windows based on Fsr and 6, ratio were assigned
as potential selective regions.

2.7. Functional enrichment analysis of candidate genes

To identify biological functions of candidate genes associated
with selection, annotation and enrichment analysis were
performed by submitting gene information to Gene Ontology
(GO) using the agriGO online platform (http://bioinfo.cau.edu.
cn/agriGO/) [51]. A hypergeometric distribution adjusted by
false discovery rate (FDR) was employed to check the
relationship of different genes in identical GO terms and
return a P-value for each term. GO terms with P-value < 0.05
were taken as those in which candidate genes were signifi-
cantly enriched.

2.8. SNP-based GWAS

GWAS was performed with TASSEL for seven traits associated
with flowering time and photoperiod sensitivity, including
DTT, DTS, DTA, ASI, RD_DTT, RD_DTS, and RD_DTA. SNP loci
were selected for identification of candidate genes based on a
threshold of P < 0.0001. To correct false positives, a mixed
linear model (MLM, PCA + K) was applied in GWAS for both
temperate and tropical maize groups together. The population
structure was determined by PCA. Thus, kinship matrix (K)
was treated as a random effect in MLM.

2.9. Haplotype construction and haplotype-based GWAS

Haplotype loci were identified from the high quality SNP set
with 39,350 SNPs using Haploview’s interpretation to define

haplotype loci as recommended by Gabriel S [52], using PLINK.
The parameters were set to “-allow-extra-chr -blocks no-
pheno-req -blocks-max-kb 1000 —geno 0.2 -blocks-strong-
lowci 0.8 -out -vcf ”, which means that two sites are
considered to be in a block of LD if the bottom of the
confidence interval of r? is greater than 0.8. The R package
GHap was employed to call haplotypes and identify haplotype
alleles across all inbred lines. A haplotype genotype matrix,
generated by the ghap.haplotyping program, was transformed
to PLINK format with the ghap.hap2tped program, and con-
verted to VCF format for haplotype-based GWAS. Phenotypic
variation explained was estimated for both SNPs and haplo-
types using marker R?, which takes genetic background and
population structure into account [53,54]. Taking traits related
to flowering time and photoperiod as dependent variable,
multiple regression analysis was carried out with significantly
associated haplotype loci, respectively.

3. Results

3.1. Genetic variation in flowering time and photoperiod
sensitivity

Table 1 shows phenotypic means for maize flowering time (DTT,
DTS, DTA, and ASI) and photoperiod sensitivity (relative differ-
ence index traits, RD_DTT, RD_DTS, and RD_DTA). Tropical
inbreds had relatively long flowering times. With decreased
latitude, the number of days to flowering was shortened for both
temperate and tropical inbred lines. Compared with temperate
maize, tropical maize was relatively sensitive to photoperiod as
revealed by both comparisons, Shunyi vs. Sanya and Xinxiang vs.
Sanya, and temperate maize showed a greater difference in
longer days and lower temperature during the crop season (Fig.
S1, Fig. S2). The broad-sense heritability estimates of flowering
time and photoperiod sensitivity were moderate to high except
for ASI (Table 1). Both flowering time and photoperiod sensitivity
showed wide genetic variation for GWAS and associated
analyses.

3.2. Phylogenetic relationship and LD revealed by SNPs

The inbred lines could be clearly divided into two major
groups, temperate and tropical, although a few lines were
mismatched in the neighbor-joining tree (Fig. S3). PCA
visualization using the first three eigenvectors shows a
similar classification result (Fig. S4). The levels of LD were
attenuated to half of their maximum values at 40 kb for the
tropical and 120 kb for the temperate group (Fig. S5). The
mean distance of LD decay in the temperate group was thus
three times that in the tropical group, supporting that tropical
maize underwent intensive recombination with more genetic
diversity.

3.3. Selective signatures and associated candidate genes
revealed by GO analysis

Fsr, 0, ratio, and Tajima’s D across the whole maize genome
are shown in a circus plot (Fig. S6). A total of 106 putative
selective-sweep regions were identified (Fig. 1), each
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Table 1 - Phenotypic means and heritability for flowering time and photoperiod sensitivity.

Flowering time per se (day) Photoperiod sensitivity-RD (%)

DTT DTS DTA ASI RD_DTT RD_DTS RD_DTA

TEM TRO TEM TRO TEM TRO TEM TRO TEM TRO TEM TRO TEM TRO

Shunyi 65.88  79.08 7018 84.0f 6805 8207 248 434
Xinxiang 57.06 6455 6228  693) 6228 693) 062 0.54
Sanya 5548  62.84 59.88 6794 580 6628 208 2.08

Shunyi vs. Sanya
Xinxiang vs. Sanya
Heritability 0.86 0.81 0.85

1938 2632 1778 2654  17.78 2424
3250  3.44p 255 4417 5308 7.61%
0.26 0.84 0.75 0.80

TEM, temperate maize group; TRO, tropical maize group. Uppercase letters represent significance between temperate and tropical maize groups
at P < 0.05 for a given trait in a given environment and lowercase letters represent significance at P < 0.05 for a given trait across environments

using the least significant difference (LSD) test.

consisting of four genes in a region of mean size 208.7 kb,
covering in total 1.07% of the maize genome. These regions
were validated by a significantly lower level of Tajima’s D (P-
values 2.2x107') in the temperate maize group.

The identified selective-sweep regions contained 423
protein-coding genes, linked with only 53 gene models.
Taking a maize genome annotated with GO as background
reference, 37 significant GO terms were detected in the
candidate genes of selective-sweep regions, of which 30

function, and 1 as cellular component (Fig. 2). GO enrichment
analysis indicated that candidate genes from selective-sweep
regions in temperate maize were significantly enriched in
biosynthesis and regulation of biological process pathways.
Specifically, three genes identified for flowering in previous
studies [55,56] were overrepresented in multiple GO terms.
Both GRMZM2G124421 and GRMZM2G129034 displayed over-
representation in GO:0003700 (transcription factor activity),
G0:0005634 (nucleus), GO:0006355 (regulation of transcrip-

were categorized as biological process, 6 as molecular tion), while GRMZM2G180555 showed a  strong
500 100 =
%) ! =
2 3751 | r75 T
p=3
3 2501 : Lso §
Q o |
125 A . r25 £
L..__ | ©
0 O 7 cumulative(%)
0 25 50 75 100
5
i

0 125 250 375 500
Counts

1
071,' ratio (en,tropical/gﬂ-, temperate)

Fig. 1 - Genome-wide selective sweep analysis of the temperate maize group. Distribution of the 6, ratio (6, ropical/6m temperate)
and Fst values were calculated in 10-SNP sliding windows with 2-SNP steps. The horizontal and vertical lines represent
threshold lines of the top 5% of the Fst and 6, ratio values, respectively. Points (red) located in the top right sector represent
selective signatures of the temperate maize group. Blue and red bins in the histograms of Fsr (right) and 6, ratio (top) represent
levels respectively higher and lower than the threshold line.
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Fig. 2 - GO enrichment analysis of candidate genes of selected regions in temperate group. Blue, green, and red bars indicate
biological process, molecular function, and cellular component, respectively.

overrepresentation in GO:0005634 (nucleus) and GO:0003677
(DNA binding). The identification of candidate genes within
selective signatures and the enrichment analysis of the
candidate genes show that candidate genes associated with
biological regulation and biosynthesis pathways, especially
for regulation of flowering time, experienced more selection
in the process of differentiation between temperate and
tropical maize groups.

3.4. Selective-sweep regions associated with flowering time
and photoperiod sensitivity

Previous studies have shown that the process of maize
improvement and adaptation is not strictly sequential, but
overlapped [57]. Several genes associated with flowering time
have been reported in recent studies [55,56]. Comparison with
the physical loci of previously identified flowering-time genes
revealed that 25 known flowering genes overlapped the
selective sweep regions identified in this study (Fig. 3, Table S2).

A 160-kb genomic region around each significant SNP from
the 63 moderate GWAS signals was analyzed for DTT, DTS, DTA,
and ASI (Fig. S7). A total of 16 genes involved in flowering time
were found to overlap with previously reported genes identified
in GWAS (Table S3). Comparison of each GWAS-identified locus
with selective-sweep regions as described for soybean [41], cotton
[58], and sesame [59] revealed 35 candidate genes that may
regulate flowering time, of which 27 were associated with ASI and
eight with DTT, and two (GRMZM2G015384 and
GRMZM2G031447) overlapped known flowering-time genes (Fig.
3a, Table 2). The allele frequency distribution and nucleotide
diversity at the significant GWAS-identified loci showed similar

results that these loci identified by selective signatures and
GWAS signals have undergone selection.

A previous study [60] suggested that several traits (DTS,
DTT, DTA, ASI, plant height and ear height) reliably reflects
the photoperiod sensitive characteristics of different maize
groups, so that these traits can be employed as a reliable
indicator for photoperiod sensitivity measured by their
relative difference under different day lengths. Diverse
ecological types and various traits in maize germplasm have
different levels of photoperiod sensitivity, indicating its
complexity. In the present study, RD_DTT, RD_DTS, and
RD_DTA measured for temperate maize under two contrast-
ing day-length conditions, in Shunyi and Sanya, were
significantly lower than those for tropical maize (Welch’s t-
test with P-values of 7.051x10723, 2.828x10713, and 1.296x1071,
respectively). However, no significant difference was found
between temperate and tropical maize groups under the other
pair of contrasting conditions, Xinxiang, Henan and Sanya.
Under the Shunyi vs. Sanya contrast, 6, 5, and 7 candidate loci
were identified by GWAS to be associated with RD_DTT,
RD_DTS, and RD_DTA, respectively (Fig. S8a). In the Xinxiang
vs. Sanya contrast, however, only 1, 2, and 3 SNPs were
identified for RD_DTT, RD_DTS, and RD_DTA, respectively
(Fig. S8b). Yet no significant SNPs were shared between the
two sets of GWAS. When a 160 kb window around each
significant SNP was used to identify candidate genes, two
candidate genes were identified by both GWAS and selective
sweep regions (Table 2). These results can be used to
functionally characterize candidate genes in association
with flowering time and photoperiod sensitivity for improve-
ment of tropical maize.
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Table 2 - Selected key genes shared by GWAS signals and selective-sweep regions identified in this study.

Gene ID Annotation Position Identified by®
GRMZM2G015384* arp4 (actin related protein like4) Chr1:2874117-2894252 SK and SG_ASI
GRMZM2G0314472 Carboxyesterase 17 Chr9:141795429-141797022 SK and SG_ASI
GRMZM2G085691 Transducin/WD40 repeat-like superfamily protein Chr1:2683790-2690223 SG_ASI
GRMZM2G388684 (XTH32) xyloglucan endotransglucosylase/hydrolase 32 Chr1:2690772-2692141 SG_ASI
GRMZM2G085827 4/'-Phosphopantetheinyl transferase superfamily Chr1:2725603-2734211 SG_ASI
GRMZM2G085872 CemA-like proton extrusion protein-related Chr1:2734521-2739053 SG_ASI
GRMZM2G085885 Cyclophilin-like peptidyl-prolyl cis-trans isomerase family protein Chr1:2739479-2748501 SG_ASI
GRMZM2G086242 CemA-like proton extrusion protein-related Chr1:2740244-2744906 SG_ASI
GRMZM2G086269 Plant protein of unknown function (DUF827) Chr1:2751021-2753499 SG_ASI
GRMZM2G042552 SNF7 family protein Chr1:2781765-2783974 SG_ASI
GRMZM2G042539 Expressed protein Chr1:2784642-2785721 SG_ASI
GRMZM2G042250 Homeobox-leucine zipper family protein Chr1:2791599-2798512 SG_ASI
GRMZM2G041881 btf3 (BTF3 homolog) Chr1:2798951-2801848 SG_ASI
GRMZM5G802392 Expressed protein Chr1:2839338-2840257 SG_ASI
GRMZM2G006673 Nuclear matrix protein-related Chr1:2856655-2869296 SG_ASI
GRMZM2G007025 Peptidoglycan-binding LysM domain-containing protein Chr1:2871385-2874062 SG_ASI
GRMZM2G436286 Phosphoprotein phosphatase inhibitors Chr1:2919564-2920987 SG_ASI
GRMZM2G137366 met7 (DNA methyl transferase7) Chr1:2930055-2935014 SG_ASI
GRMZM2G137352 Remorin family protein Chr1:2949522-2951161 SG_ASI
GRMZM2G137329 Bifunctional inhibitor/lipid-transfer protein Chr1:2993011-2993734 SG_ASI
GRMZM2G137236 Adaptor protein complex AP-2 alpha subunit Chr1:3002518-3020918 SG_ASI
GRMZM2G436226 Nucleic acid binding; zinc ion binding; DNA binding Chr1:3022700-3026815 SG_ASI
GRMZM2G091586 Cyclin-like family protein Chr7:143551162-143557193 SG_DTT
GRMZM5G852968 No specific description Chr7:143560266-143564142 SG_DTT
GRMZM2G390109 Clathrin adaptor complexes medium subunit family protein Chr7:143565828-143566639 SG DTT
GRMZM2G135782 PIN domain-like family protein Chr7:143666299-143668769 SG_DTT
GRMZM2G085948 RING/U-box superfamily protein Chr7:143729195-143733595 SG_DTT
GRMZM?2G449901 No specific description Chr7:143781954-143783080 SG_DTT
GRMZM2G150674 Expressed protein Chr7:143783551-143785398 SG_DTT
GRMZM?2G449875 (RHA3A) RING-H2 finger A3A Chr7:143786008-143786918 SG_DTT
GRMZM2G031394 Regulator of Vps4 activity in the MVB pathway protein Chr9:141804747-141806396 SG_ASI
GRMZM2G068613 Regulator of Vps4 activity in the MVB pathway protein Chr9:141837577-141839240 SG_ASI
GRMZM2G068647 Regulator of Vps4 activity in the MVB pathway protein Chr9:141853092-141854752 SG_ASI
GRMZM2G177610 Regulator of Vps4 activity in the MVB pathway protein Chr9:141900811-141902435 SG_ASI
GRMZM2G177599 LYR family of Fe/S cluster biogenesis protein Chr9:141902891-141903466 SG_ASI
GRMZM2G130379 Rubredoxin-like superfamily protein Chr2:224257152-224258761 SG_RD_DTS
GRMZM2G410567 (GH3.17) Auxin-responsive GH3 family protein Chr2:224301336-224307757 SG_RD_DTS

2 Lietal. [55].

® SK, known genes located in selective-sweep regions; SG denotes selective signature analysis and genome-wide association study and RD

denotes relative difference. ASI, anthesis-silk interval; DTT, days to tassel; DTS, days to silk.

3.5. Haplotype-based GWAS and favorable haplotypes
identified

the data collected in three locations. Using a Q+K model, we
consistently identified 16 different haplotype loci surpassing
the significance threshold (-1g P > 4). Of 159 candidate genes
within the significant haplotype, only eight overlapped known
genes associated with flowering time (Table S3).

Multiple regression revealed that significant haplotype loci
explained 18.6%, 17.5%, and 17.7% of phenotypic variation at

From 39,350 SNPs, 4166 haplotype loci were constructed, each
containing 2 to 75 SNPs with a means of 3.5 SNPs and 2.8 alleles
per haplotype. Haplotype-based GWAS was performed for four
flowering traits and three photoperiod sensitivity traits using

Table 3 — Multiple regression models for DTT, DTS, and DTA determined by haplotype loci significantly associated with

flowering time.

Trait HapL499 HapL797 HapL1153 HapL3588 HapL3743 HapL3824 Adjusted R? (%) P-value
Chr. 1 2 3 9 9 S

DTT -0.05 0.05 0.15 -0.14 0.10 0.09 18.6 2.5x107*°
DTS -0.05 0.05 0.06 -0.12 0.07 0.09 17.5 1.2x107°
DTA -0.05 0.05 0.07 -0.13 0.07 0.10 17.7 8.9x107*°

DTT, days to tassel; DTS, days to silk; DTA, days to anthesis; HapL, haplotype locus.




THE CROPJOURNAL 8 (2020) 227-242 235

Table 4 - Multiple regression models for RD_DTT, RD_DTS, and RD_DTA determined by haplotype loci associated with

photoperiod sensitivity.

Trait HapL524 HapL978 HapL1994 HapL2939 HapL4054 HapL4055 Adjusted R? (%) P-value
Chr. 1 2 5 7 10 10
RD_DTT -0.10 0.08 -0.10 -0.09 0.45 -0.29 14.8 1.2x1077
RD_DTS -0.09 0.20 -0.13 -0.03 0.38 -0.40 11.2 1.3x107°
RD_DTA -0.15 0.14 -0.10 -0.05 0.47 -0.26 15.5 4.5x1078

RD_DTT, relative difference for days to tassel; RD_DTS, relative difference for days to silk; RD_DTA, relative difference for days to anthesis; HapL,

haplotype locus.

the 0.01 significance level for DTT, DTS, and DTA, respectively
(Table 3). For photoperiod sensitivity, however, significant
haplotype loci explained 14.8%, 11.2%, and 15.5% of the
phenotypic variation for RD_DTT, RD_DTS, and RD_DTA,
respectively (Table 4).

No significant haplotype loci were shared between
flowering time and photoperiod sensitivity, indicating that
haplotype loci associated with the two trait types were
independent of one another. For seven haplotype loci signif-
icantly associated with at least two traits of flowering time
and photoperiod sensitivity, the great majority of haplotype
alleles showed the same effect direction (Table 5).

For the four haplotype loci that were identified using
multi-location data for multiple traits, HapL499 on chromo-
some 1, significantly associated with flowering time,
contained one gene (Fig. 4a) while HapL978 on chromosome

2, significantly associated with photoperiod sensitivity,
contained five genes (Fig. 4b), which have not been reported
previously except for GRMZM2G166337 annotated as a
transcription factor. No candidate genes were found within
HapL4054 and HapL4055 on chromosome 1 to be signifi-
cantly associated with photoperiod sensitivity. The inbred
lines carrying GATT at HapL499 had relatively short DTT,
DTS, and DTA compared to other three haplotype alleles
(Table 5). HapL4054 and HapL4055 were significantly asso-
ciated with RD_DTT, RD_DTS, and RD_DTA. CA and CG at
HaplL4054 and TA and TG at HapL4055 showed opposite
effects on photoperiod sensitivity. Inbred lines carrying CA
and TA were less sensitive to photoperiod than other
haploytype alleles in same haplotype locus (Fig. 5). Thus,
haplotype alleles GATT, GTTGT, CA, and TA, which had
negative effects on flowering time and photoperiod

Table 5 - Significant haplotype loci associated with flowering time and photoperiod sensitivity.

HapL # Position Haplotype Haplotype Haplotype effect
frequency
TEM TRO DTT/RD_DTT DTS/RD_DTS DTA/RD_DTA
499 Chr1:248429068-248500131 GAGC 71.0 54.7 1.12 1.0° il
TGGC 10.5 19.2 0.6% 1.12 0.9%
TAGC 76 17.4 0.03* -0.22 -0.12
GATT 10.5 8.7 -3.3° -3.5° -3.5°
797 Chr2:78709142_79647071 CTTTAGCGGACC 3.4 133 40? 1.6% 4.2?
TTTTAGCGGACC 135 1.7 0.2° 1.42 0.5°
CTCCAGCGGGAT 23.9 23.3 0.3° 0.5% 0.2°
CCTCAGGAAGCC 8.4 2.0 -0.1° -0.72 =1.7°
CTCCAACGGGAT 36.1 459 -1.6° -0.9% -1.6°
3588 Chr9:33138398_33151443 CGGAATGT 28.6 11.1 252 0.72 2.6%
CCAAATGT 2.1 11.6 ONES 0.4° @2
TGGAGTCT 2.1 20.9 NV 0.9 Sz
CCACACCC 65.5 38.4 -1.6° B OYa 48
3743 Chr9:118450394_118455442 TCA 10.9 8.7 3.42 1.72 2.62
GAG 71.8 70.3 -0.8° -0.8% -0.5°
GCA 15.1 18.6 —AL5P -0.12 =11.2°
978 Chr2:205953303_205953528 GTTGC 40.0 64.5 1.6 1.0 1.32
ACCAC 10.9 2.3 0.6* -1.2% 3.8*
GTTGT 37.8 26.1 -5.3° -1.52 -5.0°
4054 Chr10:92518663_92535315 CG 55.1 71.3 5.1% 4.8 5.3%
CA 31.9 16.8 -4.4° -4.3° -4.8°
4055 Chr10:92731794_92736229 TG 26.5 46.5 3.4° 5.0° 3.8%
TA 45.4 31.3 -4.2° -4.8° -4.3°

HapL, haplotype locus; DTT, days to tassel; DTS, days to silk; DTA, days to anthesis; Haplotype loci significantly associated with flowering time
and photoperiod sensitivity are shown in plain and bold fonts, respectively. Different lowercase letters represent significant differences at P <
0.05 by LSD test.
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Fig. 4 - Identification of candidate genes as shown by the peaks on chromosomes in GWAS for DTA in HapL499 on
chromosome 1 (a) and RD_DTT in HapL978 on chromosome 2 (b). Local Manhattan (top), candidate gene structures and names
located in the haplotype locus (middle) and LD heatmap (bottom).

sensitivity, can be considered as favorable haplotypes for
shortening flowering time and reducing photoperiod sensi-
tivity. The temperate group showed a higher frequency of
the haplotype alleles GATT, GTTGT, CA, and TA than the
tropical group.

Also, as described by the result of GWAS for DTT,
haplotype-based GWAS increased the proportion of pheno-
typic variation explained in comparison with SNP-based
GWAS (Fig. 6). Similar results were found for the other traits
(Fig. S9). Haplotype-based GWAS provides some favorable
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Fig. 5 - Boxplots for RD_DTT, RD_DTS, and RD_DTA based on haplotypes for HapL4054 (left) and HapL4055 (right). Box edges
represent 25% quantile (top) and 75% quantile (bottom) while the black bold line represents median value. Statistical

significance was determined by Welch’s t-test.
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Fig. 6 - Comparison of powers (phenotypic variation explained) in GWAS based on single SNP markers (right) and haplotype

loci (left).

haplotype alleles for introducing into tropical maize and
might identify specific haplotypes associated with phenotypic
traits by detecting associations between traits and alleles that
depend on cis interactions with other loci.

4. Discussion
4.1. Importance of tropical germplasm resources

Maize is one of the most diverse plants at both genetic and
morphological levels [61-63]. Previous studies have re-
vealed that the genetic diversity of the breeding pool of
elite temperate maize germplasm has declined over the
past century [64]. However, the decline of genetic diversity
can be mitigated by use of untapped sources, including
landraces and wild relatives [65]. Tropical and subtropical
maize germplasm resources with a wide range of genetic
variation in biotic and abiotic stress tolerance are valuable
for maize improvement, particularly for temperate maize.
However, the introduction and cultivation of tropical maize
has been hindered by its lack of adaptability to temperature
and photoperiod [5]. In this study, we identified candidate
genes and favorable haplotypes using selective signature
analysis and GWAS, which can be applied to molecular
breeding for using germplasm resources in different
regions.

4.2. Photoperiod sensitivity as a barrier for the use of tropical
germplasm

Teosinte, a presumed ancestor of maize, probably evolved
ecotypes with photoperiod sensitivity to coordinate its
reproductive stages to water, short-day environmental con-
ditions [66,67]. Maize reduced its photoperiod sensitivity to
adapt to long-day conditions when dispersing from its
original area to temperate latitudes [68]. Thus, photoperiod
sensitivity is an important factor for widening the planting
area of diverse maize varieties. A study [13] of rice response to
temperate and photoperiod showed that four genome regions
associated significantly with DTH had much lower likelihood
of odds (LOD) scores for photo-thermo sensitivity (PTS) than a

threshold line, while a PTS QTL region similarly showed a
much lower LOD score for DTH than the threshold line. This
result indicates that the PTS QTL is independent of DTH QTL.
Mining candidate genes associated with photoperiod sensi-
tivity will help to understand the genetic changes during
domestication and improvement and contribute to reducing
the barriers to use of tropical germplasm [5,69,70]. In the
present study, SNP- or haplotype-based GWAS identified 11, 9,
and 15 significant loci for RD_DTT, RD_DTS, and RD_DTA,
respectively. Candidate genes within significant signal re-
gions could be deployed to overcome the barrier of photope-
riod sensitivity and improve temperate maize using tropical
germplasm resources.

4.3. Combined use of Fsyr and O, ratio to detect selective
signatures

XP-EHH, an algorithm based on haplotype, was developed [33]
to identify recently fixed or high allele frequency in selective
sweep regions via across-population comparison. The XP-EHH
procedure is insensitive to background selection and thus
constitutes a less confusing method for systematic detection
of positive selection in a genome [71]. In comparison with Fgr,
however, the XP-EHH algorithm requires a denser set of SNP
markers. Both XP-CLR and Fsr identify signatures of domesti-
cation and improvement by comparing allele frequency
between two or more populations. However, the XP-CLR
algorithm was developed [72] to reveal “ancient” selective
signatures from several thousand years ago. The combined
use of Fst and 0, ratio has been shown [36,73] to be an effective
method for identifying selective signals, especially when
functional regions responsive to specific environmental
conditions are being sought. In the present study, Fsr, and 6,
ratio were employed to investigate genome variation between
temperate and tropical maize groups. By comparing the 106
selective sweep regions identified for temperate maize in this
study with previously reported features (466 involved in
maize domestication and 573 involved in maize improve-
ment) [74], we found that 15 selective sweep features
overlapped domestication features and eight overlapped
improvement features (Table S4), supporting the reliability of
our study.


Image of Fig. 6
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4.4. Advantages of haplotype-based GWAS

The power of association analysis for detecting positive
associations between SNPs and traits can be shown by
explained phenotypic variation within a population [16].
Phenotypic variance of a specific trait is determined by
phenotypic effect and frequency differences among different
allelic variants in the test population. SNPs afford a limited
number of alleles per locus, in turn limiting the polymor-
phism information content at each locus [75-77] whereas
haplotype data contains multiple haplotypes (2-9) at each
haplotype locus and a higher level of allele diversity.
Accordingly, in this study the use of haplotypes increased
the amount of phenotypic variation explained, as indicated by
GWAS for DTT, supporting the advantages of haplotype-based
association analysis. SNP-based GWAS identified 87 signifi-
cant SNPs above threshold for seven traits, many more than
the 16 significant haplotype loci identified by haplotype-based
GWAS at the same threshold. This result is due largely to the
fact that haplotype data have fewer loci, requiring a lower
threshold value. In addition, haplotype length was probably
underestimated for the temperate maize group but
overestimated for the tropical maize group when haplotype
loci were identified using the entire sample. In selecting an
improved threshold of linkage disequilibrium (r* > 0.8), we
expected that bias, if any, would be greatly reduced. A
previous report [4] recommended that the combination of
SNP- and haplotype-based GWAS is a better option to identify
associated signals than either alone.

4.5. Combined use of selective signature analysis and GWAS
in genetic studies

In the process of domestication and improvement, long-term
natural and artificial selection in maize has resulted in high
genetic variation associated with yield, plant type, flowering
time, and photoperiod sensitivity, and also left differential
footprints on the genome across germplasm groups. Selective
signature analysis focuses on detecting signatures of positive
natural and artificial selection and mining candidate genes
[78]. Although several studies [37,72,79] have searched for
selective signatures using diverse algorithms, few candidate
genes associated with specific traits have been identified
accurately. Given that the selective signatures identified have
spanned several or even dozens of kilobases, it may not be
possible to identify all candidate genes within selective
signatures. GWAS provides a powerful tool to reconnect
phenotypic traits back to their underlying genetic factors
[75]. Although GWAS is a sensitive means of identifying
candidate genes that have experienced selection, selective
signature analysis is preferred and can be used to overcome
the limitation. In the present study, both selective signature
analysis and GWAS were used, with candidate genes identi-
fied, of which 35 genes were associated with flowering time
and two with photoperiod sensitivity.

4.6. Rapid LD decay in tropical maize

Generally, the process of domestication and improvement
reduces effective population size and levels of genetic

diversity [80,81]. However, we found that the genetic diversity
of temperate maize group (r = 5.0x10™°) was slightly higher
than that of tropical maize group (r = 4.7x107°), a finding
inconsistent with our PCA result. In the PCA plot analysis,
only the top two or three principal components could be
selected for visualization, and the cumulative interpretation
rate was less than 15%, possibly resulting in biased estimates
of genetic diversity. Additionally, the temperate maize group
included diverse materials from multiple breeding programs,
whereas the tropical maize group was selected largely from
CIMMYT. LD decay, usually described by decay distance,
which indicates the extent of domestication and the intensity
of selection, differed between the two groups. When the
threshold of r* was set to 0.1, the decay distance in temperate
germplasm increased to 380 kb, compared to 80 kb in tropical
germplasm, indicating that much faster LD decay was
detected in tropical maize. Thus, the extent of selection in
temperate maize was much greater than that in tropical
maize, a finding consistent with the reality that temperate
maize has undergone stronger artificial selection in modern
breeding. Also, LD decayed to 0.1 within the physical distance
of 160 kb, a greater distance than found in an earlier study
[82]. The difference between the two LD decay distances may
be ascribed to the difference in genome coverage of markers.
LD decay varies from group (population) to group (population),
especially under different levels of selection intensity. For
example, the extents of LD decay in maize landraces, maize
cultivars with extensive source and elite maize inbreds are 1
kb [83], 1.5 kb [84], and 100 kb [82], respectively. Commonly, LD
decay is expected to be higher in outcrossing than in self-
pollinated species. Accordingly, LD decay distances in two
self-pollinated species, Arabidopsis thaliana and rice (Oryza
sativa L.), were 50 kb [85] and 100 kb [86], respectively.

4.7. Prospects for improving adaptability of tropical maize

Concerns about the reduction of genetic diversity in commer-
cial hybrids and the depletion of genetic diversity in gene
banks make it imperative to introduce exotic germplasm to
broaden germplasm resources [87]. Compared with conven-
tional backcrossing and phenotypic selection, rapid-cycle
genome-wide marker-assisted selection strategies, such as
GS and marker-assisted recurrent selection (MARS), have been
shown to be faster and more effective in incorporating
favorable alleles and haplotypes [88]. Furthermore, the
development of sequencing technology has greatly reduced
the cost and time required for genotyping, making it possible
to implement MARS and GS on a large scale. Favorable
haplotypes for flowering time and photoperiod sensitivity
identified in the present study might provide a basis for
introducing tropical maize to temperate regions.

5. Conclusions

An understanding of the genetic determinants of flowering
time and photoperiod sensitivity is usually considered to be a
prerequisite for successful exchange of germplasm resources
across regions adapted to different latitudes. We identified
selective signatures, candidate genes, and favorable
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haplotypes influencing flowering time and photoperiod sen-
sitivity using selective signature analysis and GWAS in large
populations. These genes and haplotypes with different allele
distributions across germplasm groups or populations provide
a resource for understanding genetic differences in the
genome and for improving both temperate and tropical
maize. Also, the rapid LD decay in the tropical group suggests
that the tropical group might contain more rare alleles and
undergo more recombination. GO enrichment analysis
showed that these genes were mainly enriched in GO
categories associated with biological regulation and biosyn-
thesis pathways, indicating that genetic changes between
temperate and tropical maize groups have occurred mainly in
genomic regions influencing biological regulation and
biosynthesis.
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