Gene editing for accelerated breeding in cereals

Kanwarpal S. Dhugga
Principal Scientist and Head, Biotechnology for Agricultural Development
International Maize and Wheat Improvement Center (CIMMYT)
Mexico

April 9, 2019
Gene editing for accelerated breeding

Modified from Wulff and Dhugga, Science (2018)
Challenge in recovering elite genetic background via backcrossing

it is not only the time

<table>
<thead>
<tr>
<th>Generation</th>
<th>Genome (%) recurrent parent</th>
<th>Genome (%) donor parent</th>
<th>Donor genes (maize)</th>
<th>Donor genes (wheat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>50.0</td>
<td>50.0</td>
<td>20,000</td>
<td>50,000</td>
</tr>
<tr>
<td>BC1</td>
<td>75.0</td>
<td>25.0</td>
<td>10,000</td>
<td>25,000</td>
</tr>
<tr>
<td>BC2</td>
<td>87.5</td>
<td>12.5</td>
<td>5,000</td>
<td>12,500</td>
</tr>
<tr>
<td>BC3</td>
<td>93.8</td>
<td>6.2</td>
<td>2,500</td>
<td>6,250</td>
</tr>
<tr>
<td>BC4</td>
<td>96.9</td>
<td>3.1</td>
<td>1,250</td>
<td>3,125</td>
</tr>
</tbody>
</table>

Proportion of recurrent genome = \((2^{n+1}-1)/2^{n+1}\)
Three scenarios for gene editing: SDN1, SDN2, and SDN3

Figure 1. Different site-directed nuclease (SDN) techniques (SDN-1, 2, and 3). An SDN complex is shown at the top in association with the target sequence. The repair can take place via nonhomologous end-joining (NHEJ) or homologous recombination (HR) using the donor DNA. SDN-1 can result in site-specific random mutations by NHEJ. In SDN-2, a homologous donor DNA is used to induce specific nucleotide sequence changes by HR. In SDN-3 DNA is integrated in the plant genome via HR.
CRISPR-edited waxy trait demonstrates rapid product development (Corteva Agriscience)

- Editing: May 2015
- ~42 months
- Product development complete fall 2018
- Breeding
- Transgenic
- 1st commercial sales in year 9
- 1st commercial sales in year 13-20
Traits for gene alteration at CIMMYT

- **Maize**
 - Resistance to maize lethal necrosis (MLN)
 - Biofortification
 - Increase provitamin A by down-regulating CCD genes
 - Fe and Zn availability via phytate downregulation

- **Wheat**
 - Disease resistance
 - Leaf rust (*Lr34, Lr67*)
 - Powdery mildew (*MLO*)
 - Plant height reduction by alternative mechanisms from Rht genes
 - Biofortification
 - Phytate downregulation for increased Fe and Zn availability
Genotypes resistant (L) or susceptible (R) to MLN

Naivasha, Kenya
When a drought-tolerant commercial hybrid becomes susceptible to MLN

- Commercial hybrid grown in Kenya and Uganda
- High yielding under drought and optimal conditions
- Turned out to be susceptible to MLN after the disease emerged

Kiboko: No MLN pressure

Naivasha: Artificial MLN inoculation

Beyene, Olsen

CML312/CML395//CML566
An exotic line is resistant to MLN
MLN resistance (MLN$_R$) maps to a single QTL
Kenya

Three populations under field conditions

Mike Olsen
MLN\textsubscript{R} locus alone explains half of the variation for MLN resistance

<table>
<thead>
<tr>
<th>Disease score (1-5, R-S)</th>
<th>CML494</th>
<th>CZL03018</th>
<th>CML545</th>
<th>CZL00025</th>
<th>SUSCEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent in cross</td>
<td>CML068</td>
<td>KS23-6</td>
<td>KS23-5</td>
<td>KS23-5</td>
<td>KS23</td>
</tr>
</tbody>
</table>

Parents in cross (KS23-6 as common donor)

Olsen
Effect of MLN_R allele (KS23-6) on resistance

- KS23-6 allele
+ KS23-6 allele

Mike Olsen
Transformation of CIMMYT lines

These four lines form two, 3-way cross commercial hybrids

- Obtained more than 100 T0 plants for each line
- Transformation frequency: 100%
MLO resistance: inactivate all three copies (A, B, and D)

Sequence identity of:
TaMlo-A1 and B1 = 95%
TaMlo-A1 and D1 = 96%
TaMlo-B1 and D1 = 97%

>3 kb
<table>
<thead>
<tr>
<th>CIMMYT</th>
<th>Corteva Agriscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoseph Beyene</td>
<td>Mark Jung</td>
</tr>
<tr>
<td>Mike Olsen</td>
<td>Alyssa DeLeon</td>
</tr>
<tr>
<td>Veronica Ogugo</td>
<td>Bob Meeley</td>
</tr>
<tr>
<td>L.M. Suresh</td>
<td>Kevin Simcox</td>
</tr>
<tr>
<td></td>
<td>Jeff Sander</td>
</tr>
<tr>
<td></td>
<td>Ajit Nott</td>
</tr>
<tr>
<td></td>
<td>Amy Sigmund</td>
</tr>
<tr>
<td>Heidi Cline</td>
<td>Jeff Farrell</td>
</tr>
<tr>
<td>Lucero Gutierrez</td>
<td>Todd Jones</td>
</tr>
<tr>
<td>Miguel Noguera</td>
<td>Kay Snopek</td>
</tr>
<tr>
<td>Mario Pacheco</td>
<td>Emily Wu</td>
</tr>
<tr>
<td>Ravi Singh</td>
<td>Bill Gordon-Kamm</td>
</tr>
<tr>
<td></td>
<td>Keith Lowe</td>
</tr>
<tr>
<td></td>
<td>Victor Llaca</td>
</tr>
<tr>
<td></td>
<td>Stephane DeSchamps</td>
</tr>
<tr>
<td></td>
<td>Kevin Fengler</td>
</tr>
<tr>
<td></td>
<td>Shawn Thatcher</td>
</tr>
<tr>
<td></td>
<td>Barbara Mazur</td>
</tr>
<tr>
<td></td>
<td>Neal Gutterson</td>
</tr>
</tbody>
</table>

Funding: CRP-Maize, CRP-Wheat, and Bill & Melinda Gates Foundation
Accelerated breeding

• Reconstitution of original genetic background after backcrossing is time consuming yet suffers from linkage drag.

• Maize hybrids in Africa have long lifespans, lasting decades. When popular hybrids go out of production, for example, because of disease susceptibility, smallholder farmers encounter major disruptions.

• Corteva has revolutionized genetic transformation so the tropical maize lines from Africa can be directly edited.

• Edit target gene directly in elite lines.

• Future edits could be stacked onto the previous one.

• These steps will save years worth of time and eliminate linkage drag.

• Significantly contribute toward alleviating poverty and hunger.