# **INTRO TO TRIAL PREPARATION**

Suchismita Mondal & Leonardo Crespo

### **Checklist for planning an experiment**

- ✓ Define the objectives
- $\checkmark\,$  Identify the sources of variation
- ✓ Experimental design
- ✓ Specify the measurements
- ✓ Run a pilot experiment?

- ✓ Specify the model
- $\checkmark$  Outline the analysis
- ✓ Review/revise the above decisions



### **Purpose of the trial**

- Why to conduct a trial?
- Objective of the trial?
- Selection/availability of resources:
  - Germplasm
  - Machinery
  - Inputs

- Design
- Management
- Analysis
- Learning



- When we design an experiment there are three components that should carefully be taken
  - Treatment design
  - Error-control design
  - Sampling/observation design

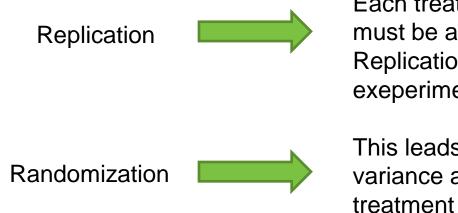
#### Treatment design

Which treatment factors should be included?

- How many levels of each factor?
- Will there be combination of the factors?
- What will be the range of factor levels?

Error-control design

 What is the actual arrangement of the treatments in the experimental plan? (CRD, RCBD, IBD, etc)


 Depending on the availability of experimental units, the structure of those units, precision of estimation desired.

Sampling and observation design

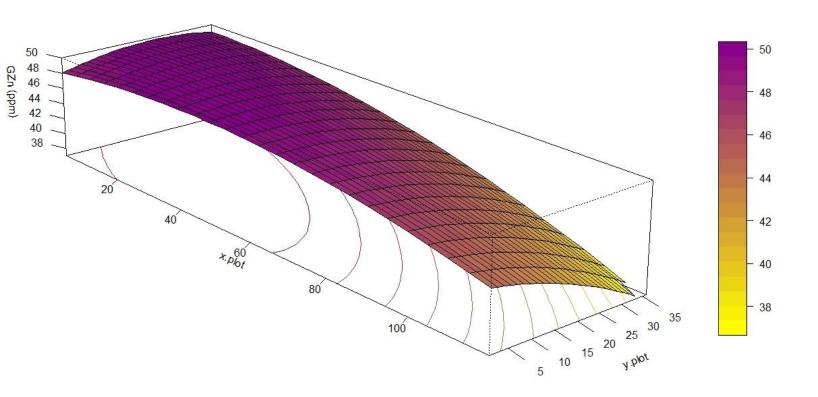
- What kind of observations will be taken?
- Are the observational units the same as the experimental units?

CIMMYT

#### The three principles of experimental design



Each treatment (or some of the treatments) must be applied to several EU. Replications will allows to estimate the exeperimental error.


This leads to an unbiased estimate of variance as well as unbiased estimate of treatment differences.

Local control (blocking)

The partition of the total set of experimental units into subsets (blocks) that are as homogeneous as possible.



RCBD



Perhaps the most known & used block design

Experimental units (EUs) are blocked

Each block (*b*) with *t* (treatments) EU  $\therefore$  Each block is complete

Big variability between blocks makes it more efficient

 $\alpha$ —Lattice (Incomplete block design)

Plots/Block < # genotypes (*t*)

Lattices can revert to complete blocks  $\therefore$  are never less efficient than a RCBD t = 0, 1, ..., t-1

t = ks; k = b size & s = number of b in each replicate (r)

α array = **k** x **r** with a(p,q) elements; p = 0, 1, 2, ..., k-1; q = 1, 2, ..., r

Develop the  $\alpha^*$  intermediate array **k** x rs cyclically



α—Lattice (Incomplete block design)

Construction

- *t* = 0, 1, ..., *t*-1
- t = ks; k = b size & s = number of b in each replicate (r)
- $\alpha$  array =  $k \times r$  with a(p,q) elements in the set of residues mod s;  $p = 0, 1, 2, \dots k-1; q = 1, 2, \dots, r$
- Develop the  $\alpha^*$  intermediate array **k x rs** cyclically
- Add s to all elements in row 2, 2s in row 3, and so on

|   |    |   |     |   | mo         | d s     |         |                                      |                                     |
|---|----|---|-----|---|------------|---------|---------|--------------------------------------|-------------------------------------|
|   | v  | k | r   | 5 | p (1, K-1) | q (1,r) | α array | α* = kxrs                            | α** (final array)                   |
| 1 | 20 | 5 | 3 4 | 1 | 1          | 1       | 000     | 0 1 2 3 0 1 2 3 0 1 2 3              | 0 1 2 3 0 1 2 3 0 1 2 3             |
| 2 |    |   |     |   | 2          | 2       | 0 1 2   | 0 1 2 3 1 2 3 0 2 3 0 1              | 4 5 6 7 5 6 7 4 6 7 4 5             |
| 3 |    |   |     |   | 3          | 3       | 0 2 3   | 0 1 2 3 2 3 0 1 3 0 1 2              | 8 9 10 11 10 11 8 9 11 8 9 10       |
| 4 |    |   |     |   | 0          |         | 0 3 1   | 0 1 2 3 3 0 1 2 1 2 3 0              | 12 13 14 15 15 12 13 14 13 14 15 12 |
| 5 |    |   |     |   |            |         | 0 3 2   | 0 1 2 3 <mark>3 0 1 2 2</mark> 3 0 1 | 16 17 18 19 19 16 17 18 18 19 16 17 |
|   |    |   |     |   |            |         |         |                                      | Rep 1 Rep 2 Rep 3                   |
|   |    |   |     |   |            |         |         |                                      | 1 2 3 4 1 2 3 4 1 2 3 Block         |

#### 

Hinkelman & Kempthorne, 2005

#### α—Lattice (Incomplete block design)

Construction R Example

library(agricolae)

trt<-1:30 t <- length(trt) # size block k k<-5 # Blocks s s<-t/k # replications r r <- 2 outdesign<- design.alpha(trt,k,r,serie=1) book<-outdesign\$book book plots<-book[,1] dim(plots)<-c(k,s,r) for (i in 1:r) print(t(plots[,,i])) outdesign\$sketch



\$rep1 [,1] [,2] [,3] [,4] [,5] [1,] "23" "1" "6" "15" "2" [2,] "28" "25" "19" "22" "30" [3,] "13" "11" "4" "24" "10" [4,] "7" "26" "14" "3" "5" [5,] "18" "9" "20" "8" "27" [6,] "12" "29" "21" "16" "17"

\$rep2
[,1] [,2] [,3] [,4] [,5]
[1,] "2" "28" "29" "11" "3"
[2,] "17" "22" "9" "4" "23"
[3,] "14" "10" "1" "18" "12"
[4,] "21" "26" "25" "6" "8"
[5,] "19" "24" "16" "20" "5"
[6,] "15" "27" "30" "7" "13"

#### $\alpha$ —Lattice (Incomplete block design)

Construction R Example plots cols block trt replication book<-outdesign\$book</pre> book 1 1 



 $\alpha$ —Lattice (Incomplete block design): The model

$$Y_{ijk} = \mu + R_j + SB_k(R_j) + G_i + \varepsilon_{ijk}$$

 $\mu$  = general mean,  $G_i$  = effects of the genotypes,  $R_j$  = effects of the replicates  $SB_k$  = effects of the sub-blocks  $\epsilon_{ijk}$  = random residual

#### α—Lattice (Incomplete block design): Analysis

#### Analysis in R

```
m1 = lmer(tons.ha ~ t.occ + (1|t.occ:Rep:Sub block) + (1|GID/t.occ),
   library(lmerTest)
                                                                             38
 8
                                                                             39
    library(tidyr)
                                                                                            data = d
 9
                                                                             40
                                                                                 summary (m1)
    library(reshape2)
10
                                                                             41
11
                                                                             42
    wd = "C:/Users/LCRESPO/Documents/CIMMYT/BPAT review/TPE response"
12
                                                                             43
13
    setwd(wd)
                                                                             44
                                                                                 d.list = split(x = d, f = d$t.occ)
14
                                                                             45
15
                                                                             46
16
    d = read.csv("TPEs yield data ESWYT 34-38 INDIA & MEXICO.csv")
                                                                                v trial.analysis.single = function(df = df) {
                                                                             47
    mv = read.csv("env-covsFinal 24-38 eswytV2.csv")
17
                                                                             48
                                                                                      lmm.s = lmer(tons.ha ~ 1 + (1|GID) + (1|Rep) + (1|Rep:Sub block),
18
                                                                             49
                                                                                                   data = df
    locs = unique(d$Loc no)
19
                                                                             50
    mv.locs = mv[mv$Loc no %in% locs,]
20
                                                                             51
    rownames(mv.locs) = mv.locs$t.occ
21
                                                                             52
    mv.locs = mv.locs[, c(4, 17:ncol(mv.locs))]
22
                                                                                 l.s.random = lapply(d.list, trial.analysis.single)
                                                                             53
23
                                                                             54
    d = d[order(d$Loc no, d$Cycle, d$Occ),]
24
                                                                             55
    d$tons.ha = as.numeric(levels(d$tons.ha))[d$tons.ha]
                                                                             56 v stats.list = lapply(l.s.random, function(x) {
25
                                                                             57
    d$Rep = as.factor(d$Rep)
26
                                                                                     h2.single(lm = x, df = d, varg = "GID", reps = 2)
                                                                             58
27
    d$Sub block = as.factor(d$Sub block)
                                                                                      })
                                                                             59
    d$GID = as.factor(d$GID)
28
    d$Gen no = as.factor(d$Gen no)
                                                                             60
29
                                                                                 stats.df = as.data.frame(stats.list)
    d$TPE = as.factor(d$TPE)
                                                                             61
30
                                                                             62
                                                                                 stats.df = as.data.frame(matrix(unlist (stats.list),
    d = as.factor(d 0 cc)
31
                                                                             63
                                                                                                      nrow=length(stats.list), byrow=TRUE))
32
                                                                             64
                                                                                 colnames(stats.df) = names(stats.list$`34eswyt.121`)
                                                                             65
                                                                                 stats.df$t.occ = paste("t.occ", names(stats.list), sep = "")
                                                                             66
```

#### α—Lattice (Incomplete block design): Analysis

| <b>↑</b> Home                   |                                                                                                                               | ٩                                                                                                                                                                                                      | User Guide                                | Support                     | Sign Up                          | Log In          |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|----------------------------------|-----------------|
|                                 |                                                                                                                               |                                                                                                                                                                                                        | MMYT<br>Research Sof                      |                             |                                  |                 |
| CIMMYT Research Data & Software | e Repository Network > CIMMYT Research Softwa                                                                                 | are > META-R (Multi Environment Trail Analys                                                                                                                                                           | sis with R for Wind                       | dows) Versio                | n 6.04                           |                 |
| Metrics 6.914 Downlo            | pads                                                                                                                          |                                                                                                                                                                                                        |                                           |                             | Contact 🕑                        | Share           |
| META-R (Multi Er                | nvironment Trail Analysis with R fo                                                                                           | or Windows) Version 6.04 Version                                                                                                                                                                       | n 221                                     |                             |                                  |                 |
| ÷ .                             | o; Vargas, Mateo; Pacheco, Ángela; Rodríguez, Fra<br>onment Trail Analysis with R for Windows) Version<br>sitory Network, V22 |                                                                                                                                                                                                        | •                                         | Earn about Da               | aset / Softw<br>ata Citation Sta |                 |
| Description                     | locations and genetic correlations b<br>too, in order to make boxplots and                                                    | at performs statistical analyses to calcula<br>between variables, broad-sense heritability,<br>I histograms. Analyses may be performed l<br>is a graphical JAVA interface that helps the<br>p analyze. | and other statistic<br>by location, acros | cs for breedi<br>ss managem | ng trials are<br>1ent conditio   | given<br>ons or |
|                                 |                                                                                                                               | J Z                                                                                                                                                                                                    | 66666                                     |                             |                                  | CI              |

#### α—Lattice (Incomplete block design): Analysis

| 🐵 META-R (                                                  | Multi Environment Trial Analysis with R for Windows)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 🗆 X                                                                         |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Open I                                                      | ile Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Biometrics & Statistics Unit International Meize and Wheat Improvement Center |
|                                                             | e <b>to META-R (Multi Environment Trial Analysis with R for Windows). Version 6.0 (2016-11-30)</b><br>t© 2016 Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT).                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>^</b>                                                                      |
| Marco Lo<br>Mateo Va<br>Angela F                            | irgas<br>iacheco<br>o Rodríguez<br>igueño                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                                                             |
| develope<br>Binary C<br>(availabl<br>of this pr<br>terms of | gram is based in some components from Java, developed by ORACLE AMERICA, INC. and R,<br>ed by Kurt Hornik. Any Java component of this program is hereby licensed under the Oracle<br>ode License Agreement for the Java SE Platform Products and JavaFX made available by Oracle<br>e at http://www.oracle.com/technetwork/java/javase/terms/license/index.html). Any R component<br>ogram as well as the program as a whole developed by CIMMYT are hereby licensed as per the<br>the GNU General Public License version 3(available at http://www.gnu.org/licenses/gpl-3.0.html),<br>fied below. |                                                                               |
|                                                             | gram is free software; you can redistribute it and/or modify it under the terms of the GNU General<br>cense as published by the Free Software Foundation; either version 3 of the License, or any later.                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               |
| the impli                                                   | gram is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even<br>ed warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU<br>Public License for more details.                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
|                                                             | uld have received a copy of the GNU General Public License along with this program; if not, write<br>are Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |

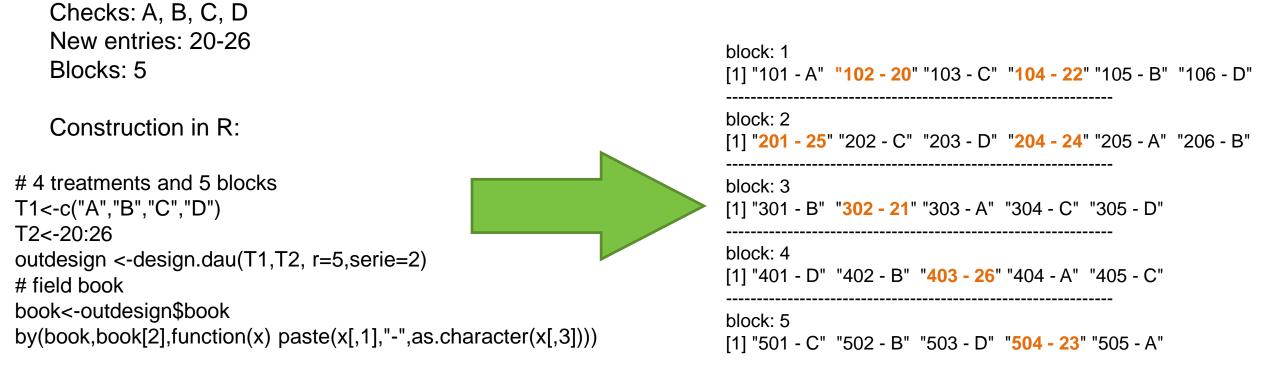
α—Lattice (Incomplete block design): Analysis

| META-R (Multi Environment Trial                                                                                                                                                                        | Analysis with R for Windo                                                                     | ws)                              |                 |                |       |           |                                   | – 0 ×                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------|-----------------|----------------|-------|-----------|-----------------------------------|------------------------------------------------------------|
| Back Contin                                                                                                                                                                                            | e Help                                                                                        |                                  |                 |                |       |           | Biometrics & Statistics Unit inte | CIMMYT, ve<br>enational Maize and Wheat Improvement Center |
| Experimental Design<br>Lattice                                                                                                                                                                         | Variable Select     Covariate:     Grouping Factor     Environment:     Replicate:     Block: | none<br>none<br>select<br>select |                 |                |       |           |                                   |                                                            |
| Output folder: Analysis1                                                                                                                                                                               | Genotype:                                                                                     | select                           |                 |                |       |           |                                   | E                                                          |
| Welcome to META-R (Multi En<br>Copyright © 2016 Centro Intern<br>Authors:<br>Gregorio Alvarado<br>Marco López<br>Mateo Vargas<br>Angela Pacheco<br>Francisco Rodríguez<br>Juan Burgueño<br>José Crossa |                                                                                               |                                  |                 |                |       |           |                                   |                                                            |
| Management Site F                                                                                                                                                                                      | ep Blk                                                                                        | Plot Entry                       | gyf ad          | asi            | ph eh | еро       |                                   |                                                            |
| Low N 1 1                                                                                                                                                                                              | 1 1                                                                                           | 10                               | 1.42 85         | 0 90           | 40    | 0.44      |                                   |                                                            |
| Low N 1 1<br>Low N 1 1                                                                                                                                                                                 | 1 2<br>1 3                                                                                    | 16<br>3                          | . 85<br>1.17 82 | 0 110<br>0 110 |       | 0.36 0.55 |                                   |                                                            |
|                                                                                                                                                                                                        | 1 5                                                                                           | 5                                | 1.17 02         |                |       | 0.55      |                                   | ▼                                                          |

•

#### Augmented designs

Contain *c* checks or standard treatments replicated *r* times, and *n* new treatments or genotypes included once (usually) in the experiment


- 1. The number of checks can be any kind and number *c*.
- 2. The number of new entries can be any number *n*.
- 3. The new treatments can be considered as random or as fixed effects.
- 5. Some of the designs in this class allow for screening when other factors are present, thereby revealing genotype-by-factor interactions.





### **Trial designs** Augmented designs Complete **Blocks** Incomplete Augmented **Row-Column** Resolvable designs Split plots Federer & Crossa, 2012

#### Augmented designs







#### Augmented designs

book<-outdesign\$book book



| lots | block | trt |  |
|------|-------|-----|--|
| 101  | 1     | 22  |  |
| 102  | 1     | 24  |  |
| 103  | 1     | В   |  |
| 104  | 1     | С   |  |
| 105  | 1     | D   |  |
| 106  | 1     | Α   |  |
| 201  | 2     | D   |  |
| 202  | 2     | 21  |  |
| 203  | 2     | в   |  |
| 204  | 2     | 23  |  |
| 205  | 2     | С   |  |
| 206  | 2     | Α   |  |
| 301  | 3     | Α   |  |
| 302  | 3     | С   |  |
| 303  | 3     | D   |  |
| 304  | 3     | в   |  |
| 305  | 3     | 20  |  |
| 401  | 4     | 26  |  |
| 402  | 4     | в   |  |
| 403  | 4     | A   |  |
|      |       |     |  |

p—Rep

In Multi-environmental (MET) testing, augmented designs can miss adjustment if checks have different error variance.

AugD allocate high number of plots to checks.

Cullist et al 2016 proposed P-rep designs: Replace replicated checks with new entries.

Williams et al 2011, applied the concept to Augmented designs in MET





#### **Field Maps**



| TIMMYT INT                                                                                                                                                                                                                                        | — | $\times$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|
| File Help About                                                                                                                                                                                                                                   |   |          |
| Field Map<br>Specification of block                                                                                                                                                                                                               |   |          |
| Cycle : 18-19                                                                                                                                                                                                                                     |   |          |
| Field : E9                                                                                                                                                                                                                                        |   |          |
| Section : 1                                                                                                                                                                                                                                       |   |          |
| Block : 1                                                                                                                                                                                                                                         |   |          |
| Date : 24-Feb-2019                                                                                                                                                                                                                                |   |          |
| Field Plan Layout   Columns: Rows:   15 6   90 (PU)   Select the starting point for plan.  Select the starting point for plan.  Select the starting point for plan.     Select the starting point for plan.   O Unidirectional    Command     Kit |   |          |
|                                                                                                                                                                                                                                                   |   |          |





### **Field Maps**

| TIMMYT INT                                                                                                 |                                     | -   | o x |
|------------------------------------------------------------------------------------------------------------|-------------------------------------|-----|-----|
| File Help About                                                                                            |                                     |     |     |
| Field Map<br>Specification of block                                                                        | r PU sequence numbers. Commands     |     |     |
| Num                                                                                                        | sery : <<< Back                     |     |     |
| Field : E9 PU/                                                                                             | Entry: PU left : 0                  |     |     |
| Section : 1 Star                                                                                           | ting : PU left 0 Matrix             |     |     |
| Block : 1 End                                                                                              | ing:                                |     |     |
| Date : 24-Feb-2019                                                                                         |                                     |     |     |
| Ad                                                                                                         | ld + Clear Exit                     |     |     |
| Field Plan Layout Spec                                                                                     | cifications of nurseries per block. | r l |     |
| Columns:         Rows:         Planting Units         Nurse           15         6         90         (PU) |                                     |     |     |
| Select the starting point for plan.                                                                        | T Flat 5IR 90 1 90 1                |     |     |
| 3) Bottom Left                                                                                             |                                     |     |     |
| Command                                                                                                    | >                                   |     |     |
| Continue                                                                                                   | Up v Down Modify Del x Clear xx     |     |     |
|                                                                                                            |                                     |     |     |



### **Field Maps**

|    | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      | 11      | 12      | 13      | 14      | 15      | 16          |                   |
|----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------------|-------------------|
| 1  | BORLAUG 100 | RELLENO           |
| 2  | BORLAUG | 390     | 389     | 388     | 387     | 386     | 385     | 384     | 383     | 382     | 381     | 380     | 379     | 378     | 377     | 376         | EYTBW-Flat-5IR 03 |
| 3  | BORLAUG | 361     | 362     | 363     | 364     | 365     | 366     | 367     | 368     | 369     | 370     | 371     | 372     | 373     | 374     | 375         | EYTBW-Flat-5IR 03 |
| 4  | BORLAUG | 360     | 359     | 358     | 357     | 356     | 355     | 354     | 353     | 352     | 351     | 350     | 349     | 348     | 347     | 346         | EYTBW-Flat-5IR 03 |
| 5  | BORLAUG | 331     | 332     | 333     | 334     | 335     | 336     | 337     | 338     | 339     | 340     | 341     | 342     | 343     | 344     | 345         | EYTBW-Flat-5IR 03 |
| 6  | BORLAUG | 330     | 329     | 328     | 327     | 326     | 325     | 324     | 323     | 322     | 321     | 320     | 319     | 318     | 317     | 316         | EYTBW-Flat-5IR 03 |
| 7  | BORLAUG | 301     | 302     | 303     | 304     | 305     | 306     | 307     | 308     | 309     | 310     | 311     | 312     | 313     | 314     | 315         | EYTBW-Flat-5IR 03 |
| 8  | BORLAUG | 290     | 289     | 288     | 287     | 286     | 285     | 284     | 283     | 282     | 281     | 280     | 279     | 278     | 277     | 276         | EYTBW-Flat-5IR 02 |
| 9  | BORLAUG | 261     | 262     | 263     | 264     | 265     | 266     | 267     | 268     | 269     | 270     | 271     | 272     | 273     | 274     | 275         | EYTBW-Flat-5IR 02 |
| 10 | BORLAUG | 260     | 259     | 258     | 257     | 256     | 255     | 254     | 253     | 252     | 251     | 250     | 249     | 248     | 247     | 246         | EYTBW-Flat-5IR 02 |
| 11 | BORLAUG | 231     | 232     | 233     | 234     | 235     | 236     | 237     | 238     | 239     | 240     | 241     | 242     | 243     | 244     | 245         | EYTBW-Flat-5IR 02 |
| 12 | BORLAUG | 230     | 229     | 228     | 227     | 226     | 225     | 224     | 223     | 222     | 221     | 220     | 219     | 218     | 217     | 216         | EYTBW-Flat-5IR 02 |
| 13 | BORLAUG | 201     | 202     | 203     | 204     | 205     | 206     | 207     | 208     | 209     | 210     | 211     | 212     | 213     | 214     | 215         | EYTBW-Flat-5IR 02 |
| 14 | BORLAUG | 190     | 189     | 188     | 187     | 186     | 185     | 184     | 183     | 182     | 181     | 180     | 179     | 178     | 177     | 176         | EYTBW-Flat-5IR 01 |
| 15 | BORLAUG | 161     | 162     | 163     | 164     | 165     | 166     | 167     | 168     | 169     | 170     | 171     | 172     | 173     | 174     | 175         | EYTBW-Flat-5IR 01 |
| 16 | BORLAUG | 160     | 159     | 158     | 157     | 156     | 155     | 154     | 153     | 152     | 151     | 150     | 149     | 148     | 147     | 146         | EYTBW-Flat-5IR 01 |
| 17 | BORLAUG | 131     | 132     | 133     | 134     | 135     | 136     | 137     | 138     | 139     | 140     | 141     | 142     | 143     | 144     | 145         | EYTBW-Flat-5IR 01 |
| 18 | BORLAUG | 130     | 129     | 128     | 127     | 126     | 125     | 124     | 123     | 122     | 121     | 120     | 119     | 118     | 117     | 116         | EYTBW-Flat-5IR 01 |
| 19 | BORLAUG | 101     | 102     | 103     | 104     | 105     | 106     | 107     | 108     | 109     | 110     | 111     | 112     | 113     | 114     | 115         | EYTBW-Flat-5IR 01 |
| 20 | BORLAUG 100 | RELLENO           |



# **Field trial management**

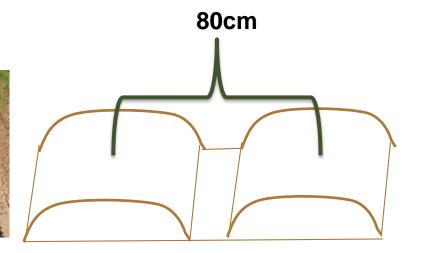




### **Management Practices**

- ➤A key aspect in crop production
  - Sowing systems
  - Irrigation systems
  - Crop Management

# **Field Preparation**


#### Tillage

- Conventional tillage : Turning and loosening of topsoil layer using disc or plough
- Conservation tillage : Sowing on previous crop residue (30% or more) with minimum soil disruption
- Zero tillage : Direct sowing over previous crop, with no residue turnover





# **Sowing Systems**



- Raised Bed
  - 2/3/4 rows
  - Bed size varies,
    - 80cm at Obregon station
    - 3-row spacing 18cm
- Flats
  - -6 or 8 rows
  - 6-row spacing 18cm





# **Sowing systems**

- Hand planting : used for planting small plot 1m or less, head rows/plant to rows/disease evaluations
- Machine planting : planting plots of 2m or larger.
- Plot sizes for yield trials is 2m or larger (4m)
- Seeding rate: 120-180kg/ha for bread wheat & durum wheat



# **Irrigation systems**

- Flood furrow/basin irrigation : irrigated environment trials
- Drip irrigation : drought and irrigated yield trials
- Sprinkler irrigation : disease nursery (eg. Fusarium)



#### **Harvest Management**

















# Thank you for your interest!