Excellence in Breeding Platform: Linkage with STMA

> April 4, 2018 STMA annual meeting

Mike Olsen, Michael Quinn, Sarah Hearne, George Kotch, Vincent Vadez, Kelly Robbins, Marianne Bänzinger

Excellence in Breeding Platform Objective

Accelerate rates of genetic gain by breeding programs targeting resource poor farmers and consumers

Vision of success

Crop and animal breeding programs are delivering higher rates of genetic gains to farmers in the developing world through cultivars and breeds that are more productive, resilient, nutritious, and desired by the market.

Excellence in Breeding Platform

Five focus areas = Modules

Module 1	Breeding program management	
		Creating
Module 2	Optimizing breeding schemes	synergies to accelerate
Module 3	Genotyping / sequencing tools and services	genetic gains o breeding
		programs
Module 4	Phenotyping tools and services	developing
		world
Module 5	Bioinformatics, biometry and data management tools and services	
	·	

The Toolbox

Direction Setting / Monitoring

- Develop a common language within the CGIAR/NARES networks
- Increase Variety Turnover through our CGIAR/NARES partnerships.
- Maximize Speed to Market and focus delivery through improved product management
- Maximize client satisfaction through better designed products
- Breeding program improvements through the implementation of metrics
- Linking the CGIAR/NARES in a common variety replacement focus.
- Switch from a Tool/Trait Driven Breeding to Demand Driven Breeding

What Does "Good" Look Like?

CGIAR/NARS Success depends on instilling the Principles of High Performing Groups

Lean, Rapid and Profitable New Product Development By Dr. Scott J. Edgett and Dr. Robert G. Cooper (2005)

CGIAR

Product Advancement (Stage Descriptions)

Do Less.....But Better.....On Purpose

Aligning Product Delivery

Module #1 & #2 is about "Setting Direction" Module #3, #4 and #5 is about "Driving Results"

Program Management : Three Big "Topics/Objectives"

#1 to deliver more effective products through an improved product advancement and management system

- Product Advancement Process Agreement
- Validating a common stage gate system and the stage-gate definitions
- Define critical roles and sponsorship
- Benchmarking current CGIAR product pipelines
- Develop a roadmap for adoption, communication, implementation and the tool box needs
- Implement Smart Product Management in an low Variety Turnover Region

Program Management : Three Big "Topics/Objectives"

#2 is to increase client impact by implementing a **Product Replacement Strategy**

- Gaps to implement the Product Replacement Strategy
- Validation of the product replacement strategy as the over-riding breeding strategy
- Link the variety replacement strategy to the product development process (stage gates)
- Agreement on the official product profile format of product design
- Building a system for information mining (Tool Box Initiative)
- Discussions and then agreement on supporting and improving NARES Product Design and Delivery
- Develop a roadmap for communication, adoption & implementation

Managing Breeding Program Products

Sales

Tesco cuts range by 30% to simplify shopping

Rule #1 in Product Introduction: Less Means More

Program Management : Three Big "Topics/Objectives"

#3 - improve CGIAR/NARES breeding programs by assessing genetic trends of improvement

- Link the right genetic trend assessment to the variety replacement strategy and the product advancement process
- Benchmark our current assessment of genetic trend across the CGIAR and NARES programs
- Develop a short, medium and long term genetic trend assessment plan supported by "how to" documentation
- Decide the approach
 - an annual assessment or
 - a program assessment.
- Develop a roadmap for communication, adoption, implementation and the tool box needs

STMA Metrics / Genetic gain indicators

Outcome	Indicator
Improved performance of marketable hybrids taken up by partners.	Mean yield of stage 4 hybrids taken up by partners for further evaluation relative to baseline checks
Improved productivity of new stress tolerant products under high stress farmer conditions.	kg ha-1 year-1 (Mean yield of on-farm trial cohort relative to baseline checks under stress : trial mean < 3.0 t ha-1)
Improved productivity of new stress tolerant products under low stress farmer conditions	kg ha-1 year-1 (Mean yield of on-farm trial cohort relative to baseline checks under lower stress : trial mean > 3.0 t ha-1)
Improved productivity of new stress tolerant products under managed abiotic stress conditions.	kg ha-1 year-1 (Mean yield of stage 4 hybrid cohort relative to baseline checks under heat, drought and low nitrogen conditions)
Improved productivity of new stress tolerant products under MLN disease pressure.	kg ha-1 year-1 (Mean yield of stage 4 hybrid cohort relative to baseline checks under MLN)
Improved productivity of new stress tolerant products under Striga pressure.	kg ha-1 year-1 (Mean yield of stage 4 hybrid cohort relative to baseline checks under Striga infestation)

Thank you for your interest!

