Conservation Agriculture and Ecosystem Services: Integrating Power of Practices, Policies and People (PPP) is a Must for Impact at Scale

ML Jat
Principal Scientist/Systems Agronomist
(M.Jat@cgiar.org)

International Maize and Wheat Improvement Center
Presentation structure

• Key challenges in agriculture
• What CA is all about?
• Overview of CA-history, adoption etc
• CA practices in South Asia
 ✓ Meta analysis results
 ✓ Evidence base on multiple wins
• Some examples of CA and ecosystem services
• Examples on SDGs
• Cost effective climate Change mitigation
• Policies
• Integrating with Socio-ecological system
Agricultural Issue, Concerns

Manmade

- Monotonous cropping systems (e.g., rice-wheat)
- Out of place cropping systems
- Intensive tillage
- Residue burning
- Flood Irrigation
- Blanket nutrient use and broadcast application

Nature made

- Abiotic stresses—temperature (terminal heat, cold), monsoon variability, water stresses (dry spell, excess rains), salinity
- Biotic stresses—pest outbreak, Phalaris, diseases etc
- Climate change induced weather risks

- Continued depletion of water
- Soil health deterioration
- GHGs/Global Warming
- Yield gaps & Low farmer’s profit

Twin Challenge: Doubling Farmer’s income with sustaining natural resources under emerging climatic risks
Part of Solutions: Conservation Agriculture

CA ++ (Adapted component technologies)
- Micro-irrigation/fertigation
- Precision nutrient management
- Weed management
- Scale-appropriate mechanisation
- Solar energy
- GxExM
History and Adoption of CA (2015/16). Since 2008/09 increasing at 10 M ha annually

Source: Kassam et al (2017)
Area of cropland under CA by continent – 2015/16

(source: FAO AquaStat: www.fao/ag/ca/6c.html & personal database)

<table>
<thead>
<tr>
<th>Continent</th>
<th>Area (Mill. ha)</th>
<th>Per cent of global total</th>
<th>Per cent of arable land of reporting countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>South America</td>
<td>69.9 (49.6)*</td>
<td>39.0 (40.9)#</td>
<td>63.2</td>
</tr>
<tr>
<td>North America</td>
<td>63.2 (40.0)</td>
<td>35.2 (58.0)</td>
<td>28.1</td>
</tr>
<tr>
<td>Australia & NZ</td>
<td>22.7 (12.2)</td>
<td>12.7 (86.1)</td>
<td>45.5+</td>
</tr>
<tr>
<td>Asia</td>
<td>13.2 (2.6)</td>
<td>7.4 (408)</td>
<td>3.8</td>
</tr>
<tr>
<td>Russia & Ukraine</td>
<td>5.2 (0.1)</td>
<td>2.9 (5000)</td>
<td>3.3</td>
</tr>
<tr>
<td>Africa</td>
<td>2.7 (0.5)</td>
<td>1.5 (447)</td>
<td>2.0</td>
</tr>
<tr>
<td>Europe</td>
<td>2.5 (1.6)</td>
<td>1.4 (56.3)</td>
<td>3.5</td>
</tr>
<tr>
<td>Global total</td>
<td>179.5 (107)*</td>
<td>100 (69.2)#</td>
<td>12.5 (7.4)*</td>
</tr>
</tbody>
</table>

* \(\text{Area}^\text{*} \text{2008/9} \)

\# \% change since 2008/09

~50% in developing regions, ~50% in industrialized regions

Source: Kassam et al (2017)
Asia --13.2+ Mha in 2015/16 (2008/09 - 2.6 Mha, 408% increase)

Countries now reporting CA area:

South Asia: India, Pakistan, Bangladesh,
Southeast & East Asia: Laos, Cambodia, Vietnam, China, North Korea
Central Asia: Kazakhstan, Uzbekistan, Kyrgyzstan, Tajikistan
West Asia: Iran, Turkey, Azerbaijan, Lebanon, Syria, Iraq

Source: Kassam et al (2017)
Meta-data analysis of CA research in major cereal based systems in South Asia: Yield response to different elements

Source: Jat et al (Forthcoming)
Meta-data analysis of CA in South Asia: Yield Gain/Loss in different soil types

Source: Jat et al (Forthcoming)
Meta-data analysis of CA in South Asia: Yield gain/loss in different crops

Source: Jat et al (Forthcoming)
A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production

Received: 7 June 2017
Accepted: 28 July 2017
Published online: 24 August 2017

CA based in Intensive Cereal Systems in NW India: Productivity, Profitability, Soil quality and Environmental footprints (8 yr average)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Productivity (Mg ha(^{-1}))</th>
<th>Irrigation water (mm ha(^{-1}))</th>
<th>Energy requirement (MJ ha(^{-1}))</th>
<th>Net return (USD ha(^{-1}))</th>
<th>Organic carbon (%)</th>
<th>Total GWP (t CO(_2) eq ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventiona l RW</td>
<td>12.40</td>
<td>2557</td>
<td>75225</td>
<td>1361</td>
<td>0.45</td>
<td>6.3</td>
</tr>
<tr>
<td>CA based RW</td>
<td>13.17 (6)</td>
<td>1868 (-27)</td>
<td>57833 (-23)</td>
<td>1629 (20)</td>
<td>0.90 (100)</td>
<td>4.9 (-22)</td>
</tr>
<tr>
<td>CA based MW</td>
<td>14.09 (14)</td>
<td>738 (-71)</td>
<td>39376 (-48)</td>
<td>2122 (56)</td>
<td>0.84 (87)</td>
<td>4.5 (-29)</td>
</tr>
</tbody>
</table>

*In parenthesis= % change over conventional system

ICAR-CSSRI-CIMMYT Collaborative Research
Yield Trends-Maize-Wheat Rotation

- **ZT-Flat**
 - Linear: $y = 0.700x + 9.363; R^2 = 0.729$

- **PB**
 - Linear: $y = 0.649x + 9.753; R^2 = 0.719$

- **CT-Flat**
 - Linear: $y = 0.356x + 9.564; R^2 = 0.636$

Source: Parihar et al ICAR-IARI, New Delhi
CA in Wheat Systems Adapting to Terminal Heat

Days after sowing
Temperature difference (°C)
Residue retained
Residue removed

Source: Jat et al (2009)
Performance of Wheat Under Extreme Climate Risks (Excess Rains at Wheat Grain Filling in 2014-15)
Landscape Scale Evidence on How CA is Climate Smart: a case of climate risks in wheat during 2014-15 in Western IGP

Conservation agriculture-based wheat production better copes with extreme climate events than conventional tillage-based systems: A case of untimely excess rainfall in Haryana, India

Jeetendra Prakash Aryan, Climate Economist
Tek Bahadur Sapkota, Mitigation Agronomist
Clare Maeve Stirling, Senior Agronomist
M.L. Jat, Senior Cropping Systems Agronomist
Hanuman S. Jat, Senior Agronomist
Munmun Rai, Senior Agronomist
Surbhii Mittal, Senior Agricultural Economist
Jhabar Mal Sutaliya, Senior Agronomist

*International Maize and Wheat Improvement Center (CIMMYT), CC Block, National Agricultural Science Center (NASC) Complex, DPS Marg, Pusa Campus, New Delhi 110012, India
*International Maize and Wheat Improvement Center (CIMMYT), Toluca, Mexico
*International Maize and Wheat Improvement Center (CIMMYT), CIMMYT, Karnal, Haryana, India
CA in Maize Systems: Adapting Climate Risks (200+ mm in 3 days in end of June 2017) in Haryana, India

Water, nitrogen
CA in Maize Systems: Adapting Climate Risks (200+ mm in 3 days in end of June 2017) in Haryana, India

6.38 t/ha

5.03 t/ha
Long-term Trials on CA in Eastern IGP: Yield changes with different management scenarios at varying probability (11 years)

- In long-run, CA (no-till + residues) provides more stable yields at higher probability levels
- Partial CA (no-till without residue as well as no-till-conventional till cycle) are prone to lower yield stability at high probability even compared to conventional till based management

Source: Jat et al (2019)
Addressing Water-Energy-Food (FEW) Nexus in NW India (Layering CA with Fertigation, Solar energy)

<table>
<thead>
<tr>
<th>System magt</th>
<th>Irrigation method and energy source</th>
<th>System yield (t ha(^{-1}) yr(^{-1}))</th>
<th>System net income (USD ha(^{-1}) yr(^{-1}))</th>
<th>System water use (cm ha(^{-1}) yr(^{-1}))</th>
<th>System energy use (kWh ha(^{-1}) yr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZTDSR-ZTW</td>
<td>SSD with solar power</td>
<td>12.33c</td>
<td>2094</td>
<td>96d</td>
<td>3663</td>
</tr>
<tr>
<td>ZTDSR-ZTW</td>
<td>Flood</td>
<td>11.94c</td>
<td>2000</td>
<td>167e</td>
<td>6151</td>
</tr>
<tr>
<td>TPR-CTW</td>
<td>Flood</td>
<td>12.18c</td>
<td>1909</td>
<td>181f</td>
<td>6686</td>
</tr>
<tr>
<td>PBM-PBW</td>
<td>SSD with solar power</td>
<td>13.67a</td>
<td>2357</td>
<td>29a</td>
<td>1249</td>
</tr>
<tr>
<td>PBM-PBW</td>
<td>Furrow irrigation</td>
<td>13.24ab</td>
<td>2318</td>
<td>49b</td>
<td>1714</td>
</tr>
<tr>
<td>CTM-CTW</td>
<td>Flood</td>
<td>12.56bc</td>
<td>2087</td>
<td>59c</td>
<td>2027</td>
</tr>
</tbody>
</table>

- CA + micro-irrigation within RW system: same yields with 85 cm /ha/yr less water, half energy use and USD 185/ha/yr higher income
- CA + micro irrigation in MW system: 1.5 t/ha/yr more yield, 152 cm water saving with one quarter energy use and USD 450 /ha/yr more profit compared to conventional RW system in NW India

Collaborative research of CIMMYT-BISA-PAU, Ludhiana, Punjab
Some Examples for Ecosystem Services
Evidence of Ecosystem Services from CA in Irrigated Rice-Wheat System

Improved soil health
(SOC 0.5 t/ha/yr)

Reduced weather risks
(High adaptability and Low CV in crop yield)

Reduce Chemical load
(20-25 kg N/ha, Less herbicide)

More crop per drop: Save irrigation water
Rice-wheat-mungbean: 40-50 ha-cm/yr

More profit: Lower costs and higher yields
(Profit 12000-15000/ha/yr)

Lower GHGs emission
(~1 t CO2-eq/ha/yr)

ICAR-CSSRI-CIMMYT Collaborative research
Residue Management

Monetary cost of converting biomass into soil organic matter/soil organic carbon (C).

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Amount (kg)</th>
<th>Price (US$ kg⁻¹)</th>
<th>Total price (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residues</td>
<td>62,000*</td>
<td>0.038</td>
<td>2,350</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>833</td>
<td>0.67</td>
<td>558</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>200</td>
<td>1.94</td>
<td>388</td>
</tr>
<tr>
<td>Sulfur</td>
<td>143</td>
<td>0.57</td>
<td>82</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>3,384</td>
</tr>
</tbody>
</table>

*Assuming conversions of biomass C at 35%, and C combustion in residues of 45% = (10⁴ kg ÷ 0.35) ÷ 0.45 = 62,000 kg.

Cost calculations for 10 t C

Total Cost= US$ 3384
Monetary gains= US$2057
Net cost= US$ 1327 (US$ 0.13/kg)
C Sequestration per ha = 300 kg
Cost of C per ha = ~ US$ 40/ha

Source: Lal (2014)
Laser leveling

Function
Reduced topographic variability, increased yields & input efficiency

Service
Precise spread of water across field

Benefits
Increased WP
Increased yield
Reduced GHGs

Value
Reduced energy for water pumping/irrigation cost
(US$ 20/ha)

Service
Water saving/low energy use for pumping (~20 cm/yr)

Benefits
Adapting to excess water/flooding
Better establishment & yields

Value
Higher yields (US$ 50/ha/yr)

Service
Save Fert Nitrogen (20kg/ha)

Benefits
Increase NUE, Reduced GHGs
Increased yield

Value
N cost
(US$ 15/ha)

Laser leveling

Flood Irrigation

Conceptualized by ML Jat (CIMMYT)
No-till farming

Intensive tillage

Function
- Direct drilling, reduced soil movement

Service
- Low soil respiration
- Fuel saving (~100 l/ha/yr)

Benefits
- Increased SOM
- Reduced GHGs (2-4 t/ha/yr)

Value
(US$ 50/ha/yr)

Service
- Implement manufacturing/wear/teat

Benefits
- Reduced GHGs

Value
(US$ 20/ha/yr)

Value
(US$ 100/ha/yr)

~2 mha

Service
- Save Fert Nitrogen (40 kg/ha)

Benefit
- Increase NUE, Reduced GHGs, Increased yield

Value
- N cost (US$ 30/ha)

Conceptualized by ML Jat (CIMMYT)
Nitrogen and Sustainable Development Goals

Source: Stirling et al (2018), CIMMYT
Evidence on Cost-effective opportunities for climate change mitigation in India

- All options are climate smart
- Technical Mitigation potential = 86 MtCO$_2$e/year
- 80% of mitigation potential achieved via cost saving options

Right Policies Are Critical
Integrating with Socio-ecological system is a Must
Interaction between Agro-ecosystems, Agri-food systems and Socio-Ecosystems (Hubeau et al. 2016)

• Beyond public policies, social processes having major environmental effects
• These processes determine the relationship between supply and demand, through the agri-food system, affecting the dynamics of local, regional and global agroecosystems
• Understanding and integration of environmental impacts of diets by consumers is a major mechanism determining the relationship between societies and agro-ecosystems, promoting some types of agricultural production.
Thank you for your interest!