Conservation Agriculture and Ecosystem Services: Integrating Power of Practices, Policies and People (PPP) is a Must for Impact at Scale

ML Jat Principal Scientist/Systems Agronomist (M.Jat@cgiar.org)

International Maize and Wheat Improvement Center

Presentation structure

- Key challenges in agriculture
- What CA is all about ?
- Overview of CA-history, adoption etc
- CA practices in South Asia
 ✓ Meta analysis results
 ✓ Evidence base on multiple wins
- Some examples of CA and ecosystem services
- Examples on SDGs
- Cost effective climate Change mitigation
- Policies

Integrating with Socio-ecological system

Agricultural Issue, Concerns

Manmade

Nature made

- Monotonous cropping systems (eg rice-wheat)
- Out of place cropping systems
- Intensive tillage
- Residue burning
- Flood Irrigation
- Blanket nutrient use and broadcast application

- Abiotic stresses- temperature (terminal heat, cold), monsoon variability, water stresses (dry spell, excess rains), salinity
- Biotic stresses- pest outbreak, Phalaris, diseases etc
- Climate change induced weather risks
- Continued depletion of water
 - Soil health deterioration
 - GHGs/Global Warming
- Yield gaps & Low farmer's profit

Twin Challenge: Doubling Farmer's income with sustaining natural resources under emerging climatic risks

Part of Solutions: Conservation Agriculture

Conservation Agriculture Basic Principles

Residue retention (no burning) (vo pnuviud) Keelane Lereuciou

Zero tillage

Zero tillage

Crop rotation

Crop rotation

CA ++ (Adapted component technologies)

- Micro-irrigation/fertigation
- Precision nutrient management
- Weed management
- Scale-appropriate mechanisation
- Solar energy
- GxExM

Source: Kassam et al (2017)

Area of cropland under CA by continent – 2015/16 (source: FAO AquaStat: <u>www.fao/ag/ca/6c.html</u> & personal database)

Continent	Area (Mill. ha)	Per cent of global total	Per cent of arable land of reporting countries
South America	69.9 (49.6)*	39.0 (40.9)#	63.2
North America	63.2 (40.0)	35.2 (58.0)	28.1
Australia & NZ	22.7 (12.2)	12.7 (86.1)	45.5+
Asia	13.2 (2.6)	7.4 (408)	3.8
Russia & Ukraine	5.2 (0.1)	2.9(5000)	3.3
Africa	2.7 (0.5)	1.5 (447)	2.0
Europe	2.5 (1.6)	1.4 (56.3)	3.5
Global total	179.5 (107)* ()* 2008/9	100 (69.2)# ()# % change since 2008/09	12.5 (7.4)* %global cropland + includes non- cropland

~50% in developing regions, ~50 % in industrialized regions Source: Kassam et al (2017)

Asia --13.2+ Mha in 2015/16 (2008/09 - 2.6 Mha, 408% increase) Countries now reporting CA area:

- South Asia: India, Pakistan, Bangladesh,
- Southeast & East Asia: Laos, Cambodia, Vietnam, China, North Korea
- **Central Asia:** *Kazakhstan,* Uzbekistan, Kyrgyzstan, Tajikistan
- West Asia: Iran, Turkey, Azerbaijan, Lebanon, Syria, Iraq

Source: Kassam et al (2017)

Meta-data analysis of CA research in major cereal based systems in South Asia: Yield response to different elements

Source: Jat et al (Forthcoming)

Meta-data analysis of CA in South Asia: Yield Gain/Loss in different soil types

Source: Jat et al (Forthcoming)

Meta-data analysis of CA in South Asia: Yield gain/loss in different crops

Source: Jat et al (Forthcoming)

Meta-Analysis of Alternate Rice Production Systems

www.nature.com/scientificreports

SCIENTIFIC REPORTS

OPEN

Received: 7 June 2017

Accepted: 28 July 2017 Published online: 24 August 2017 A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production

Debashis Chakraborty¹, Jagdish Kumar Ladha², Dharamvir Singh Rana³, Mangi Lal Jat⁴, Mahesh Kumar Gathala⁵, Sudhir Yadav², Adusumilli Narayana Rao⁶, Mugadoli S. Ramesha² & Anitha Raman⁶

CA based in Intensive Cereal Systems in NW India: Productivity, Profitability, Soil quality and Environmental footprints (8 yr average)

Scenario	Productivity (Mg ha ⁻¹)	Irrigation water (mm ha ⁻¹)	Energy requirement (MJ ha ⁻¹)	Net return (USD ha⁻¹)	Organic carbon (%)	Total GWP (t CO ₂ eq ha ⁻¹)
Convention al RW	12.40	2557	75225	1361	0.45	6.3
CA based RW	13.17	1868	57833	1629	0.90	4.9
	(6)	(-27)	(-23)	(20)	(100)	(-22)
CA based MW	14.09	738	39376	2122	0.84	4.5
	(14)	(-71)	(-48)	(56)	(87)	(-29)

*In parenthesis= % change over conventional system

ICAR-CSSRI-CIMMYT Collaborative Research

Yield Trends-Maize-Wheat Rotation

CA in Wheat Systems Adapting to Terminal Heat

Performance of Wheat Under Extreme Climate Risks (Excess Rains at Wheat Grain Filling in 2014-15)

Landscape Scale Evidence on How CA is Climate Smart : a case of climate risks in wheat during 2014-15 in Western IGP

CrossMark

CA in Maize Systems: Adapting Climate Risks (200+ mm in 3 days in end of June 2017) in Haryana, India

Water, nitrogen

CA in Maize Systems: Adapting Climate Risks (200+ mm in 3 days in end of June 2017) in Haryana, India

Long-term Trials on CA in Eastern IGP: Yield changes with different management scenarios at varying probability (11 years)

- In long-run, CA (no-till + residues) provides more stable yields at higher probability levels
- Partial CA (no-till without residue as well as no-till-conventional till cycle) are prone to <u>lower yield stability at high probability</u> even compared to conventional till based management

Source: Jat et al (2019)

Addressing Water-Energy-Food (FEW) Nexus in NW India (Layering CA with Fertigation, Solar energy)

System magt	Irrigation method and energy source	System yield (t ha ⁻ ¹ yr ⁻¹)	System net income (USD ha ⁻ ¹ yr ⁻¹)	System water use (cm ha ⁻¹ yr ⁻ ¹)	System energy use (kWh ha ⁻¹ yr ⁻ ¹)
ZTDSR-ZTW	SSD with solar power	12.33c	2094	96d	3663
ZTDSR-ZTW	Flood	11.94c	2000	167e	6151
TPR-CTW	Flood	12.18c	1909	181f	6686
PBM-PBW	SSD with solar power	13.67a	2357	29a	1249
PBM-PBW	Furrow irrigation	13.24ab	2318	49b	1714
CTM-CTW	Flood	12.56bc	2087	59c	2027
0					

Collaborative research of CIMMYT-BISA-PAU, Ludhiana, Punjab

- CA + micro-irrigation within RW system: same yields with 85 cm /ha/yr less water, half energy use and USD 185/ha/yr higher income
- CA + micro irrigation in MW system: 1.5 t/ha/yr more yield, 152 cm water saving with one quarter energy use and USD 450 /ha/yr more profit compared to conventional RW system in NW India

Some Examples for Ecosystem Services

Evidence of Ecosystem Services from CA in Irrigated Rice-Wheat System

Improved soil health (SOC 0.5 t/ha/yr)

Reduced weather risks (*High adaptability and Low CV in crop yield*)

Reduce Chemical load (20-25 kg N/ha, Less herbicide)

More crop per drop: Save irrigation water Rice-wheat-mungbean: 40-50 ha-cm/yr

More profit: Lower costs and higher yields (Profit 12000-15000/ha/yr)

ICAR-CSSRI-CIMMYT Collaborative research

Residue Management

Monetary cost of converting biomass into soil organic matter/soil organic carbon (C).

Ingredients	Amount (kg)	Price (US\$ kg-1)	Total price (US\$)
Residues	62,000*	0.038	2,350
Nitrogen	833	0.67	558
Phosphorus	200	1.94	388
Sulfur	143	0.57	82
		Total	3,384

*Assuming conversions of biomass C at 35%, and C combustion in residues of 45% = (104 kg ÷

0.35) ÷ 0.45 = 62,000 kg. Cost calculations for 10 t C

Total Cost= US\$ 3384 Monetary gains= US\$2057 Net cost= US\$ 1327 (US\$ 0.13/kg) C Sequestration per ha = 300 kg Cost of C per ha = ~ US\$ 40/ha

Source: Lal (2014)

Nitrogen and Sustainable Development Goals

Source: Stirling et al (2018), CIMMYT

Evidence on Cost-effective opportunities for climate change mitigation in India

- All options are climate smart
- Technical Mitigation potential = 86 MtCO₂e/year
- 80% of mitigation potential achieved via cost saving options

Sapkota, Vetter, Jat et al: Science of the Total Environment (2019)

Right Policies Are Critical

Policy Brief No. 2 National Academy of Agricultural Sciences Innovative Viable Solution to Rice Residue Burning in Rice-Wheat Cropping System through Concurrent Use of Super Straw Management System-fitted Combines and Turbo Happy Seeder

Trust for Advancement of Agricultural Sciences (TAAS) Australian Centre for International Agricultural Research (ACIAF Australian AID International Maize and Wheat Improvement Center (CIMMYT)

The Evergreen Revolution Six ways to empower India's no-burn agricultural future

BISA matter CGAR Control CCAFS

Trust for Advancement of Agricultural Sciences (TAAS) International Maize and Wheat Improvement Center (CMMYT) Indian Council of Agricultural Research (ICAR) Research Program on Climate Change, Agriculture and Food Security (CCAFS) World Bank Group

THE TIMES OF INDIA

Centre okays Rs 1,151-crore plan to tackle stubble burning

Home > Cities > Delhi > Union Budget 2018: To end stubble-burning and fight pollution, a scheme for farmers

Union Budget 2018: To end stubble-burning and fight pollution, a scheme for farmers

CIMMYT

Integrating with Socio-ecological system is a Must

Interaction between Agro-ecosystems, Agri-food systems and Socio-Ecosystems (Hubeau et al. 2016)

- Beyond public policies, social processes having major environmental effects
- These processes determine the relationship between supply and demand, through the agri-food system, affecting the dynamics of local, regional and global agroecosystems
- understanding and integration of environmental impacts of diets by consumers is a major mechanism determining the relationship between societies and agro-ecosystems, promoting some types of agricultural production

Thank you for your interest!

Photo Credits (top left to bottom right): Julia Cumes/CIMMYT, Awais Yaqub/CIMMYT, CIMMYT archives, Marcelo Ortiz/CIMMYT, David Hansen/University of Minnesota, CIMMYT archives, CIMMYT archives (maize), Ranak Martin/CIMMYT, CIMMYT archives.