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Prospects and Challenges of Applied Genomic 
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Julio Huerta-Espino, Leonardo Crespo-Herrera, and Velu Govindan

ABSTRACT  Genomic selection (GS) has been promising 
for increasing genetic gains in several species. Therefore, we 
evaluated the potential integration of GS for grain yield (GY) in 
bread wheat (Triticum aestivum L.) in CIMMYT’s elite yield trial 
nurseries. We observed that the genomic prediction accuracies 
within nurseries (0.44 and 0.35) were substantially higher than 
across-nursery accuracies (0.15 and 0.05) for GY evaluated in the 
bed and flat planting systems, respectively. The accuracies from 
using only a subset of 251 genotyping-by-sequencing markers 
were comparable to the accuracies using all 2038 markers. We 
also used the item-based collaborative filtering approach for 
incorporating other related traits in predicting GY and observed 
that it outperformed genomic predictions across nurseries, but 
was less predictive when trait correlations with GY were low. 
Furthermore, we compared GS and phenotypic selections (PS) 
and observed that at a selection intensity of 0.5, GS could select 
a maximum of 70.9 and 61.5% of the top lines and discard 
71.5 and 60.5% of the poor lines selected or discarded by PS 
within and across nurseries, respectively. Comparisons of GS and 
pedigree-based predictions revealed that the advantage of GS 
over the pedigree was moderate in populations without full-sibs. 
However, GS was less advantageous for within-family selections 
in elite families with few full-sibs and minimal Mendelian sampling 
variance. Overall, our results demonstrate the importance of 
applying GS for GY at the appropriate stage of the breeding 
cycle, and we speculate that gains can be maximized if it is 
implemented in early-generation within-family selections.

The integration of innovative and cutting-edge 
technologies in breeding programs to accelerate 

genetic gains and boost efficiency is critical for sustain-
ing global bread wheat production. Over the last few 
years, tremendous increase in genetic gains for economi-
cally important traits in dairy cattle has been achieved 
by implementing GS that uses genome-wide marker 
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core ideas

•	 Genomic prediction of grain yield across nurseries 
or years is challenging, because of genotype × 
environment interactions.

•	 Prediction accuracies can be improved by having at 
least one full-sib in the training population.

•	 Genomic selection (GS) was less advantageous for 
within-family selections in elite families with few 
full-sibs and minimal Mendelian sampling variance.

•	 It is important to apply GS at the appropriate stage of 
the breeding cycle.

Abbreviations:  BLUE, best linear unbiased estimate; DTHD, days to heading; 
DTMT, days to maturity; EYT, elite yield trials; EYT 13–14, elite yield trial 
nursery in 2013–2014; EYT 14–15, elite yield trial nursery in 2014–2015; 
EYT 15–16, elite yield trial nursery in 2015–2016; EYT 16–17, elite yield trial 
nursery in 2016–2017; GBLUP, genomic best linear unbiased prediction; 
GBS, genotyping-by-sequencing; G × E, genotype × environment interaction; 
GEBVs, genomic-estimated breeding values; GS, genomic selection; GY, 
grain yield; IBCF, item-based collaborative filtering; LD, linkage disequilibrium; 
PS, phenotypic selection.
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information to predict the genetic merit or genomic-
estimated breeding values (GEBVs) of individuals prior 
to phenotyping (Meuwissen et al., 2001; Hayes et al., 
2013). In GS, individuals that have been genotyped and 
phenotyped (referred to as the ‘training population’) 
are used to train prediction models and predict the per-
formance of genotyped individuals that have not been 
phenotyped (referred to as the ‘validation population’ or 
‘selection candidates’). Genomic selection is an efficient 
selection tool for shortening the cycle time, predicting 
individuals in unobserved environments (sparse testing), 
increasing the selection accuracy for traits of low herita-
bility (Muir, 2007; Calus et al., 2008; Crossa et al., 2017), 
and eliminating poor-performing progenies before the 
next generation of costly, time-consuming, and laborious 
field testing (Heffner et al., 2009). Although GS has been 
investigated for several traits in wheat via cross-valida-
tions (Crossa et al., 2014; Battenfield et al., 2016; Hayes et 
al., 2017; Juliana et al., 2017a; 2017b; Pérez-Rodríguez et 
al., 2017), assessments of its routine implementation in a 
wheat breeding program are lacking.

Breeding for high GY is the primary target for most 
wheat breeding programs. However, it is challenging 
because of the complex genetic nature of GY (controlled by 
many loci with small effects), low heritability, the poor sta-
bility of genotypes across different environments resulting 
from genotype × environment interactions (G × E), a lack of 
clear understanding of the genetic basis of GY, inconsistent 
GY quantitative trait loci detected across different envi-
ronments, and the role of epistatic and non-genetic effects 
(Quarrie et al., 2005; Kuchel et al., 2007a; Snape et al., 2007; 
Griffiths et al., 2015; Jiang et al., 2017). Hence, the benefits of 
marker-assisted selection for GY are limited and extensive 
yield testing remains crucial for the development of well-
adapted, stable, and high yielding wheat varieties. However, 
yield testing is expensive and several lines are discarded 
in each yield trial. Therefore, one approach to minimize 
the phenotyping costs and leverage genomic information 
would be to integrate GS with phenotypic selection (PS) and 
evaluate lines that are only predicted to have some favorable 
alleles. This integrated approach is expected to result in bet-
ter responses over PS, especially for a trait with low herita-
bility (Dekkers, 2007; Calus et al., 2008).

A critical aspect of GS is determining the appropri-
ate prediction model. Several models that differ in their 
assumption about the underlying genetic architecture of 
traits have been proposed. Among these, the best linear 
unbiased prediction and its extensions [genomic best lin-
ear unbiased prediction (GBLUP) that uses the genomic 
relationships based on markers] have been the most widely 
used parametric models for genomic-enabled prediction 
(VanRaden, 2008; Habier et al., 2013). Several Bayesian 
models like the Bayesian ridge regression, BayesA, BayesB, 
BayesCpi, and the Bayesian least absolute shrinkage and 
selection operator (Meuwissen et al., 2001; Park and 
Casella, 2008; Kizilkaya et al., 2010; Gianola, 2013), which 
use different prior assumptions for marker effects, are also 
used for GS. In addition, the semiparametric model called 

‘reproducing kernel Hilbert spaces’, which is expected to 
capture nonadditive effects (Gianola et al., 2006; Gianola 
and van Kaam, 2008), has been evaluated in wheat (Heslot 
et al., 2012; Pérez-Rodríguez et al., 2012; Rutkoski et al., 
2012; Crossa et al., 2014; Juliana et al., 2017b).

Grain yield is known to be affected by variability in 
days to heading (DTHD), days to maturity (DTMT), plant 
height, and lodging (Fischer and Stapper, 1987; Flintham 
et al., 1997; Quarrie et al., 2005; Kuchel et al., 2007b; Addi-
son et al., 2016) that should be considered in prediction 
models. Although statistical models have been developed 
for incorporating multiple traits in genomic-enabled pre-
diction (Montesinos-López et al., 2016), the time needed 
to fit these models continues to be a significant challenge. 
Recently, a new algorithm implemented in GS proved to 
be competitive with respect to accuracy and computing 
time (Montesinos-López et al., 2018). The algorithm called 
‘item-based collaborative filtering’ (IBCF) is very popular 
in electronic commerce websites for recommending items 
and products. Here, the customer’s interests are used as 
input to generate a list of recommended items. The basic 
idea in the IBCF algorithm lies in building a database 
of preferences for items by users. For a specific user, ,su  
we look for the set of items that the user has rated in the 
database, compute how similar they are to the target item, 
and then select the k most similar items. Simultaneously, 
the corresponding similarities between the k most similar 
items are also computed. Once the most similar items are 
found, prediction for the specific user and target items 
is computed via a simple weighted average of the similar 
items. Thus, one of our objectives was to evaluate the IBCF 
approach for predicting GY by incorporating information 
from other traits that can affect GY. In this case, users 
are comparable to GY and items are comparable to traits 
like DTHD, DTMT, plant height, and lodging, which are 
expected to have some correlation with GY.

For GS to have a real impact in breeding programs, it 
is essential to look beyond prediction accuracies. Though 
various micro and macro environmental factors like soils, 
irrigation, management, weather patterns, etc. play a role in 
determining GY, modeling these effects might not be very 
beneficial to a breeder who is interested in the line’s perfor-
mance across a range of different environments and would 
want to exploit this variation to develop varieties with wide 
and specific adaptation (Snape et al., 2007). In addition, 
the variable extent of plasticity (Bradshaw, 1965) (the range 
of phenotypes produced by a single genotype in different 
environments) among genotypes for GY in wheat (Sadras 
et al., 2009) will hamper accurate predictions of GY. Hence, 
without a good understanding of stability, phenotypic 
plasticity, and G × E interactions, GY predictions across 
environments will be challenging. However, a breeder is 
also not interested exclusively in prediction accuracies, but 
how genomics-assisted breeding can be leveraged in select-
ing lines with high breeding values and discarding lines that 
might not contribute to any future genetic gains. Hence, a 
key objective of this study was to look beyond prediction 
accuracies and compare selections made from PS and GS 
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for GY. In addition, our objectives were to (i) assess how 
marker subsets and the training population schemes can 
affect the accuracy of genomic predictions for GY, and (ii) 
compare genomic and pedigree-based predictions for differ-
ent nurseries and subsets of lines with and without full-sibs 
in the training population.

MATERIALS AND METHODS
Populations and Phenotyping Data
For this study, we used four elite yield trial (EYT) nurser-
ies from CIMMYT’s bread wheat breeding program. The 
EYTs are second-year yield trial nurseries, each compris-
ing 1092 lines. The selected bulk breeding method was 
used to develop these lines, where all the selections were 
bulked in early generations until the head rows or indi-
vidual plants derived from F5, F6, or F7 lines. About 70,000 
individual plant-derived lines were then grown in small 1- 
by 1-m plots (preyield testing stage) and selected visually 
for agronomic characteristics, spike health, and a few dis-
eases. These selections resulted in the first-year yield trial 
nurseries comprising about 9000 lines, which were further 
selected for GY to form the EYT nurseries. Although the 
1092 lines in the four EYT nurseries were different, some 
level of genetic relatedness is expected between the lines, 
because of several common parents used across the years.

The EYT nurseries were planted during mid-Novem-
ber (which is the optimum planting time for CIM-
MYT’s yield trials) in optimally irrigated environments 
(receiving 500 mm of water) under bed and flat planting 
systems at the Norman E. Borlaug Research station, 
Ciudad Obregon, Sonora, Mexico. They were sown in 39 
trials, each comprising 28 lines and two high-yielding 
checks (‘Kachu’ and ‘Borlaug’) that were arranged in an 
α-lattice design, with three replications and six blocks. 
The nurseries were evaluated for GY on a plot basis dur-
ing the 2013–2014 (EYT 13–14), 2014–2015 (EYT 14–15), 
2015–2016 (EYT 15–16), and 2016–2017 (EYT 16–17) 
seasons. In addition, traits like DTHD (number of days 
from germination to 50% of spike emergence), DTMT 
(number of days from germination to 50% physiological 
maturity), plant height (in cm), and lodging (measured in 
an ordinal scale from 0 to 5) were also recorded.

The best linear unbiased estimates (BLUEs) of the 
breeding lines for each planting system within each nurs-
ery were estimated with the ASREML statistical package 
(Gilmour, 1997) via the following mixed linear model:

( ) ( )ijkl i j ijklk j l jky g t r b=m+ + + + +e ,�  [1]

where ijkly  is the GY, μ is the mean,  ig is the fixed effect of 
the genotype, jt  is the random effect of the trial that is inde-
pendent and identically distributed ( )2~  0, j tt N s , ( )  k jr is the 
random effect of the replicate within the trial that is inde-
pendent and identically distributed ( ) ( ) 2~  0,  rk jr N s , ( )  l jkb is the 
random effect of the incomplete block within the trial and 
the replicate that is independent and identically distributed 

( ) ( )2 ~  0,  bm jkb N s , and ijkle  is the residual that is independent 
and identically distributed ( )2~  0, ijkl N ee s . Since DTHD and 

lodging were also associated with GY, we included them 
as fixed effect covariates in the model [Eq. 1]. For across-
nursery predictions, we obtained BLUEs for each line by 
including the random effect of the environment in Model 1 
and the model with DTHD and lodging as covariates.

The square root of the heritability (H) for GY within 
each year for both the planting systems was calculated on 
a line-mean basis across the replicates using the formula:
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where 2
gs  is the genetic variance, 2

es  is the error variance, 
and nreps is the number of replications. The estimates 
of the genetic and residual variances were obtained via 
the average information-restricted maximum likeli-
hood algorithm (Gilmour et al., 1995) implemented in 
the R package ‘heritability’ (Kruijer et al., 2015). Tests of 
analysis of variance (ANOVA) were performed with JMP 
statistical software (www.jmp.com, accessed 5 Sept. 2018) 
to detect if the families and sibs nested within families 
contributed significantly to GY variation in the differ-
ent nurseries.

Genotyping and Principal Component Analysis
All 4368 lines in the four nurseries were genotyped with 
genotyping-by-sequencing (GBS) (Elshire et al., 2011; 
Poland et al., 2012) for obtaining genome-wide markers. 
Genotyping was done at Kansas State University, on an 
Illumina HiSeq2500 (Illumina Inc., San Diego, CA) with 
190 samples pooled per lane. The initial read length was 
100 bp, which was trimmed to 64 bp after removing the 
barcode. Marker polymorphisms were called with the 
TASSEL version 5 GBS pipeline (Glaubitz et al., 2014) and 
anchored to the International Wheat Genome Sequenc-
ing Consortium’s first version of the reference sequence 
(RefSeq version 1.0) assembly of the bread wheat variety 
‘Chinese Spring’. Markers with more than 60% missing 
data, less than 5% minor allele frequency, and more than 
10% heterozygosity were removed, and 2038 markers were 
obtained from an initial set of 34,900 markers. Missing 
marker data were imputed with LinkImpute (Money et 
al., 2015), implemented in TASSEL version 5 (Bradbury 
et al., 2007). The lines were also filtered and those with 
more than 50% missing data were removed, resulting 
in 3485 lines (767 lines from EYT 13–14, 775 lines from 
EYT 14–15, 964 lines from EYT 15–16, and 980 lines from 
EYT 16–17). We then performed a principal component 
analysis for the 3485 lines with 2038 markers to determine 
population structure (the genotyping and phenotyping 
data for these lines are available in Supplemental File S1).

Genomic and Pedigree-Based Predictions 
Since several genomic prediction models are known to 
result in similar prediction accuracies (Heslot et al., 2012; 
Rutkoski et al., 2012; Juliana et al., 2017b), we have only 
used the GBLUP model, which can be represented as:
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i  i iy u=m+ +e , � [3]
where iy  is the response variable for individual i, m  is 
the general mean, iu  is an additive genetic effect for indi-
vidual i, [we assume that the joint distribution of the 
vector of additive genetic effects u is N (0, Gσ2

g), where G 
is the additive relationship matrix computed from mark-
ers according to Endelman and Jannink (2012), and σ2

g 
is the variance component associated with markers] and 
εi is the error term [we assume that the joint distribution 
of ε is N (0, Iσ2

e) where σ2
e is the residual variance]. The 

GBLUP model was fitted with the BGLR package in R 
(Pérez and de los Campos, 2014).

Since CIMMYT maintains an excellent pedigree 
of the breeding lines, we also fitted the previous model 
by replacing the genomic relationship matrix with the 
additive relationship matrix derived from the pedigree 
(A matrix), which is twice the coefficient of parentage 
(A = 2fxy, where fxy is the coefficient or parentage) and 
represents identical-by-descent relationships. In addi-
tion, we fitted a model that included the relationship 
matrices derived from markers and pedigree (the G and 
A matrices) jointly. The BLUEs estimated in Eq. [1] (no 
covariates) and the BLUEs with DTHD and lodging as 
fixed-effect covariates (with covariates) were used in the 
prediction models. Prediction accuracies were calculated 
as the Pearson’s correlation between the phenotypic 
BLUEs and the predicted values.

Marker Subsets
The effects of the number of markers and linkage dis-
equilibrium (LD) on genomic predictions were evaluated 
with different marker subsets created from the estimated 
intermarker correlations (r2) among the 2038 mark-
ers. After randomly retaining only one of the correlated 
markers, we had marker subsets of 810 markers (r2 = 
0.8), 504 markers (r2 = 0.6), 251 markers (r2 = 0.4), and 29 
markers (r2 = 0.2).

Training Population Schemes
We evaluated three training population schemes for 
implementing GS in the EYTs. In Scheme 1, the datasets 
for each EYT were divided into five sets; and four of them 
were used as the training population (611 lines in EYT 
13–14, 620 lines in EYT 14–15, 771 lines in EYT 15–16, 
and 784 lines in EYT 16–17) to predict the remaining 
lines in the fifth set or the validation population. Here, 
the prediction accuracies are merely the cross-validation 
accuracies within nurseries. In Scheme 2, we used one 
nursery as the training population to predict another for 
every possible nursery combination (forward and back-
ward predictions). In Scheme 3, we used all the previous 
nurseries as the training population to predict a given 
nursery. Here, EYT 13–14 and EYT 14–15 were used to 
predict EYT 15–16, whereas EYT 13–14, EYT 14–15, and 
EYT 15–16 were used to predict EYT 16–17.

Genomic and Pedigree-Based Predictions  
in Populations with and without Full-Sibs  
in the Training Population

The predictive abilities of the G and A matrices in popula-
tions without full-sibs were assessed via cross-validations 
on a subset of lines with only one line per cross in the 
nurseries (343 lines in EYT 13–14, 226 lines in EYT 14–15, 
243 lines in EYT 15–16, and 201 lines in EYT 16–17). 
We also evaluated the advantage of having full-sibs in 
the training population by using a subset of lines in each 
nursery that had at least one full-sib in that nursery (424 
lines in EYT 13–14, 549 lines in EYT 14–15, 721 lines in 
EYT 15–16, and 779 lines in EYT 16–17). With the full-sib 
subsets, we performed two different analyses: (i) all other 
full-sibs in the training population were used to predict 
one random full-sib in the validation population; (ii) one 
random full-sib in the training population was used to 
predict all other full-sibs in the validation population.

Item-Based Collaborative Filtering
In the IBCF approach, the rating , ´ ,i jP  for user i in item j́  
can be predicted from the following expression (Sarwar 
et al., 2001):

, , ´

, ´
, ´

i j j jj N
i j

j jj N

y w
P

w
Î

Î

=
å
å

, � [4]

where the summation is over all other rated items ( j NÎ ) 
for user i (N is the number of rated items), , ´j jw  is the 
weight between items j and j́ , and ,i jy  is the rating for user 
i of item j. The weights used in Eq. [4] were obtained from 
an item-to-item similarity matrix built from the cosine 
similarity that provides information on how similar an 
item is to another item (Montesinos-López et al., 2018):
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We implemented IBCF with the GY BLUPs obtained by 
incorporating marker information and then used them 
for prediction along with similarities to correlated traits 
like DTHD, DTMT, height, and lodging. The rating 
matrix used for implementing IBCF is shown in Supple-
mental Table S1 and all the traits were standardized 
before the IBCF method was applied.

Phenotypic Selection and GS
We evaluated different scenarios for the potential use of 
GEBVs in making selections: (i) selections within nurser-
ies (and years) using the GEBVs estimated from random 
cross-validations and (ii) selections across nurseries (and 
years) by including only the previous year’s data in the 
training population. We then compared the PS and GS 
of the lines at selection thresholds of 0.1, 0.2, 0.3, and 0.5 
by classifying them as: selected by PS only (SPS), selected 
by GS only (SGS), selected by GS and PS (SGSPS), and not 
selected by either GS or PS (NS). The percentage of poor 
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lines discarded by GS that was also discarded by PS was 
calculated as: 

GS

NS
NS S+

. � [6] 

The percentage of top lines selected by GS that was also 
selected by PS (Supplemental Fig. S1) was calculated as:

GSPS

GSPS PS

S
S S+

. � [7]

RESULTS
Phenotypic Data and Principal Component Analysis
The mean GY in EYT 13–14, EYT 14–15, EYT 15–16 and 
EYT 16–17 was 6.1 ± 0.5, 5.6 ± 0.5, 7.2 ± 0.4, and 6.5 ± 0.6 t 
ha–1, respectively in the bed planting system and 6.4 ± 0.6, 
5.7 ± 0.5, 6.9 ± 0.6, and 6.3 ± 0.7 t ha–1, respectively in the 
flat planting system. The line-mean heritabilities for GY 
in these nurseries were 0.58, 0.73, 0.66, and 0.69 in the bed 
planting system and 0.8, 0.6, 0.66, and 0.68 in the flat plant-
ing system. The correlations between GY in the bed and flat 
planting systems were low to moderate: 0.40 (EYT 13–14), 
0.57 (EYT 14–15), 0.12 (EYT 15–16), and 0.12 (EYT 16–17).

In the bed planting system, the correlation of GY with 
DTHD and DTMT was positive, although it was slightly 
higher in EYT 14–15 and EYT 16–17 (Fig. 1). We also 
observed that the average DTHD was higher in EYT 15–16 
(85 d) and EYT 13–14 (82 d). A similar trend was also 
observed with DTMT, with higher averages in EYT 15–16 
(125 d) and EYT 13–14 (123 d). Plant height had a positive 
correlation with GY in all the nurseries (ranging between 
0.01 and 0.25), and lodging had a negative correlation with 
GY in EYT 13–14 and EYT 14–15 (-0.37 and -0.38).

In the flat planting system, GY had a negative corre-
lation with DTHD in all the nurseries except EYT 14–15. 
Considering DTMT, the correlation with GY was positive 
in EYT 14–15 and EYT 15–16 (0.28 and 0.09), but it was 
negative in EYT 13–14 and EYT 16–17 (-0.07 and -0.41). 
The average DTHD was highest in EYT 15–16 (83 d), fol-
lowed by EYT 13–14 (80 d). Similarly, with DTMT, the 
lines in EYT 15–16 (123 d) and EYT 13–14 (120 d) had 
higher average DTMT. We also observed that GY had a 
positive correlation with plant height in three nurseries 
(ranging between 0.09 and 0.24), but a negative correla-
tion in EYT 16–17 (-0.12). Lodging was negatively cor-
related with GY in all the nurseries and the correlations 
ranged between -0.47 and -0.58.

ANOVA indicated that the families contributed sig-
nificantly to the GY variation in the bed and flat planting 
systems, but the sibs nested within families had no signifi-
cant contribution to GY variability in the different nurser-
ies (Supplemental Table S2). Principal component analysis 
indicated that there was no grouping of nurseries or popu-
lation structure when Principal Component 1 (explained 
7.8% of the variation) was plotted against Principal Com-
ponent 2 (explained 6.3% of the variation) (Fig. 2).

Genomic and Pedigree Relationships
The G matrices and A matrices from all the nurseries 
were rescaled between zero and one, to facilitate com-
parisons and were visualized by heat maps (Supplemental 
Fig. S2). We observed that several lines with zero to low 
relationships (0–0.2) with the A matrix had relationships 
of 0.2 or slightly higher with the G matrix. This differ-
ence in the degree of relationships captured by the two 
matrices could be caused by (i) the realized relationships 
between the lines captured by the G matrix and (ii) the 

Fig. 1. Correlations among wheat grain yield, days to heading, days to maturity, height, and lodging in bed and flat planting systems in the 
elite yield trial (EYT) nurseries.
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high identity-by-state similarities in genomic regions 
that have been highly selected for various traits (e.g., 
heading and height) captured by the G matrix.

Considering family sizes, the lines in EYT 13–14 were 
from 488 crosses that included 335 crosses with only one 
line per cross and several other crosses with 2 to 11 full-sibs 
per cross. In EYT 14–15, the lines were from 386 crosses 
that included 226 crosses with one line per cross and sev-
eral crosses with family sizes ranging from 2 to 12. In EYT 
15–16, the lines were from 444 crosses that included 239 
crosses with one line per cross and several families with 2 to 
15 full-sibs. The lines in EYT 16–17 were from 408 crosses 
that included 199 crosses with one line per cross and several 
large families with 27, 20, 17, 15, 11, and 10 full-sibs each. 
The hotspots of high relationships seen in Supplemental Fig. 
S2 result from the families with a large number of full-sibs.

Genomic Prediction Accuracies  
within and across Nurseries

Bed Planting
In the bed planting system, the average cross-validation 
accuracies within nurseries (scheme 1) ranged between 
0.37 and 0.51 in the four nurseries (Table 1). However, 
when EYT 13–14 was predicted using other nurseries as 
training populations (Scheme 2), the accuracies dropped 
down to 0.20, 0.02, and 0.13. When EYT 14–15 was 
predicted from other nurseries, EYT 16–17 (0.27) and 
EYT 13–14 (0.24) resulted in high accuracies. We also 
observed that EYT 15–16 was best predicted from EYT 
16–17 (0.18), and EYT 16–17 was best predicted from 
EYT 15–16 (0.32). The mean genomic prediction accu-
racy within-nurseries was 0.44 ± 0.08 and the mean pre-
diction accuracy across nurseries was 0.15 ± 0.12.

In Scheme 3, where all the lines from previous nurseries 
were used in the training population, the genomic predic-
tion accuracies for EYT 15–16 and EYT 16–17 were 0.03 
and 0.08 lower than the accuracies obtained from just the 
lines from the previous nursery. Genomic predictions with 
BLUEs where DTHD and lodging were included as covari-
ates yielded within-nursery accuracies of 0.19, 0.50, 0.25, and 
0.39, for the four nurseries, respectively. These accuracies 
were 0.18, 0.12, and 0.12 lower than those from the model 
without covariates in EYT 13–14, EYT 15–16, and EYT 16–17, 
respectively, and similar in EYT 14–15. The across-nursery 
predictions, including the covariates, resulted in the same 
accuracies to a 0.06 decrease in accuracy.

Flat Planting
In the flat planting system, the average within-nursery 
prediction accuracies ranged between 0.28 and 0.56 in 
the four nurseries (Table 1). However, when EYT 13–14, 
EYT 14–15, EYT 15–16, and EYT 16–17 were predicted 
from other nurseries, the highest accuracies achieved 
were 0.07, 0.08, 0.02, and 0.13, respectively. The mean 
within-nursery genomic prediction accuracy was 0.35 ± 
0.06 and the mean across-nursery prediction accuracy 
was 0.05 ± 0.05 for GY in the flat planting system. 

In Scheme 3, the accuracies from using all the lines in 
the previous nurseries resulted in similar to a 0.06 decrease 
in accuracies in EYT 15–16 and EYT 16–17, respectively. 
The GY BLUEs adjusted for covariates resulted in within-
nursery prediction accuracies ranging between 0.21 and 
0.40, that were 0.07, 0.03, 0.07, and 0.16 lower than the accu-
racies obtained from the GY BLUEs without covariates in 
EYT 13–14, EYT 14–15, EYT 15–16, and EYT 16–17, respec-
tively. In across-nursery predictions with covariates, accura-
cies that were similar to 0.11 lower were obtained. 

Genomic Prediction Accuracies with Marker Subsets
The effect of marker number on prediction accuracies was 
assessed and we observed that subsets of 810, 504, and 251 
markers (corresponding to r2 values of 0.8, 0.6, and 0.4, 
respectively) did not lead to a significant loss in prediction 
accuracies in either planting system (Table 1). Although 
the accuracy of predictions reduced negligibly with a 
reduced number of markers, the average decrease with 
these subsets was only 0.01. While the highest reduction 
(-0.18) was observed when EYT 14–15 was predicted from 
EYT 16–17, a slight increase in accuracy (up to 0.07) was 
obtained in several datasets. However, when 29 markers 
corresponding to an r2 of 0.2 were used, it led to a 0.11 loss 
in accuracy on average, as expected with very few mark-
ers for a complex trait. While the maximum decrease in 
accuracy was observed in the within-nursery prediction of 
EYT 15–16 (-0.33), a slight increase in accuracies (ranging 
between 0.01 and 0.08) was obtained in six datasets.

Genomic and Pedigree-Based Prediction Accuracies 
within and across Nurseries 

Bed Planting
In the bed planting system, the mean within-nursery pre-
diction accuracies with the pedigree model ranged between 
0.39 and 0.60 in the four nurseries (Fig. 3). Although these 
accuracies were similar to the mean genomic prediction 
accuracies in EYT 13–14 and EYT 14–15, they were 0.07 and 
0.09 higher in EYT 15–16 and EYT 16–17, respectively. In 
across-nursery pedigree-based predictions, the pedigree-
based prediction accuracies were, in general, lower than the 

Fig. 2. Principal component analysis of the four elite yield trial (EYT) 
nurseries showing the plot of Principal Component 1 (PC1) vs. Princi-
pal Component 2 (PC2).
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corresponding genomic prediction accuracies. Overall, the 
mean prediction accuracy with the pedigree model was 0.48 
± 0.09 within nurseries and 0.09 ± 0.07 across nurseries.

In the markers plus pedigree model, the within-
nursery accuracies ranged between 0.41 and 0.61. These 
accuracies were slightly higher (ranging between 0.04 
and 0.1) than the accuracies from the GBLUP model. In 
across-nursery predictions, accuracies that were similar 
or slightly lower (a maximum decrease of 0.08) than the 
genomic prediction accuracies were obtained. Overall, the 
mean prediction accuracy within nurseries was 0.51 ± 0.09 
and the mean prediction accuracy across nurseries was 
0.14 ± 0.10 with the markers plus pedigree model.

Flat Planting
In the flat planting system, the mean within-nursery 
prediction accuracies with the pedigree model ranged 
between 0.30 and 0.62 (Fig. 3). Although these accura-
cies were similar to the genomic prediction accuracies 
for EYT 13–14 and EYT 14–15, they were 0.12 and 0.06 
higher for EYT 15–16 and EYT 16–17, respectively. When 
EYT 13–14, EYT 14–15 and EYT 15–16 were predicted 
from other nurseries via the pedigree model, negative 
to zero accuracies were obtained. The across-nursery 
genomic prediction accuracies for these three nurseries 
were also very poor and meaningful comparisons with 
the pedigree-based model accuracies could not be made. 
However, when EYT 16–17 was predicted from other 
nurseries, the accuracies were comparatively better, with 
EYT 13–14 resulting in the highest prediction accuracy 
(0.17). Overall, the mean within-nursery prediction 

accuracy was 0.48 ± 0.15 and the mean across-nursery 
prediction accuracy was 0.02 ± 0.07 with the pedigree-
based model for GY in the flat planting system.

In the markers plus pedigree model, the within-
nursery GY prediction accuracies were 0.04, 0.07, 0.12, 
and 0.06 higher than the genomic prediction accuracies 
in EYT 13–14, EYT 14–15, EYT 15–16, and EYT 16–17, 
respectively. However, the across-nursery predictions 
resulted in poor accuracies that were similar or slightly 
lower or higher than the genomic prediction accuracies. 
The mean within-nursery prediction accuracy for GY in 
the flat planting system was 0.51 ± 0.13, and the mean 
across-nursery prediction accuracy was 0.04 ± 0.05 with 
the markers plus pedigree model.

Genomic and Pedigree-Based Prediction  
Accuracies in Populations with and without  
Full-Sibs in the Training Population
The cross-validation genomic prediction accuracies in 
populations without full-sibs were 0.18, 0.17, 0.22, and 
0.15 lower than the corresponding genomic prediction 
accuracies for the complete set of lines in EYT 13–14, 
EYT 14–15, EYT 15–16, and EYT 16–17 respectively, in 
the bed planting system (Table 2). Similarly, in the flat 
planting system, the accuracies in populations without 
full-sibs were similar or were 0.11, 0.24, and 0.24 lower 
than the corresponding genomic prediction accuracies 
for all the lines in the four nurseries, respectively. The 
prediction accuracies obtained from the set of lines that 
had one or more full-sibs in the training population were 
either similar or slightly better (a maximum increase of 

Table 1. Genomic prediction accuracies for grain yield in bed and flat planting systems from the genomic best linear unbiased prediction 
(GBLUP) model with all the markers and marker subsets

Planting system Bed planting system Flat planting system
Marker set† All markers 0.8 0.6 0.4 0.2 All markers 0.8 0.6 0.4 0.2
Covariates‡ NC WC NC NC WC NC

EYT 13–14 0.37 0.19 0.40 0.39 0.34 0.24 0.28 0.21 0.28 0.31 0.31 0.16
EYT 13–14 from EYT 14–15 0.20 0.14 0.20 0.18 0.18 0.05 0.07 0.02 0.11 0.14 0.12 0.01
EYT 13–14 from EYT 15–16 0.02 -0.03 0.02 0.01 0.01 0.09 0.02 0.05 0.02 0.02 0.02 0.06
EYT 13–14 from EYT 16–17 0.13 0.08 0.15 0.09 0.06 0.04 0.02 0.01 0.02 0.003 0.01 0.02
EYT 14–15 0.51 0.50 0.50 0.52 0.47 0.29 0.43 0.40 0.41 0.44 0.41 0.22
EYT 14–15 from EYT 13–14 0.24 0.22 0.23 0.23 0.21 0.07 0.08 0.04 0.09 0.11 0.10 0.03
EYT 14–15 from EYT 15–16 0.05 0.05 0.07 0.07 0.10 0.10 0.03 -0.01 0.01 0.07 0.05 -0.01
EYT 14–15 from EYT 16–17 0.27 0.27 0.21 0.18 0.09 0.02 0.03 0.002 -0.01 -0.02 -0.06 -0.08
EYT 15–16 0.37 0.25 0.37 0.32 0.23 0.04 0.46 0.39 0.45 0.42 0.37 0.25
EYT 15–16 from EYT 13–14 -0.03 -0.07 -0.02 -0.02 -0.02 0.05 0.004 0.08 -0.01 0.01 0.01 0.05
EYT 15–16 from EYT 14–15 0.08 0.08 0.10 0.09 0.10 0.04 -0.01 -0.02 -0.03 -0.01 -0.01 -0.05
EYT 15–16 from EYT 16–17 0.18 0.13 0.17 0.13 0.12 0.03 0.02 -0.04 0.01 -0.01 0.05 0.03
EYT 15–16 from EYT 13–14 and EYT 14–15 0.05 0.03 0.03 0.02 0.02 -0.02 -0.03 -0.01 -0.01 -0.01 0 -0.03
EYT 16–17 0.51 0.39 0.50 0.49 0.46 0.26 0.56 0.40 0.57 0.55 0.53 0.25
EYT 16–17 from EYT 13–14 0.04 0.02 0.07 0.07 0.06 0.02 0.11 0.11 0.13 0.12 0.12 0.002
EYT 16–17 from EYT 14–15 0.28 0.28 0.26 0.25 0.22 -0.01 0.12 0.01 0.17 0.15 0.12 -0.03
EYT 16–17 from EYT 15–16 0.32 0.29 0.31 0.31 0.29 0.08 0.13 0.09 0.14 0.10 0.17 0.07
EYT 16–17 from EYT 13–14, EYT 14–15 and EYT 15–16 0.24 0.20 0.18 0.17 0.15 0.08 0.07 0.05 0.04 0.04 0.02 -0.01

† “All markers” refers to the complete set of 2038 markers, 0.8 is a marker subset comprising 810 markers (r2 = 0.8), 0.6 is a marker subset comprising 504 markers (r2 = 0.6), 0.4 is a marker subset 
comprising 251 markers (r2 = 0.4), and 0.2 is a marker subset comprising 29 markers (r2 = 0.2).

‡ NC, no covariates; WC, days to heading and lodging used as covariates; EYT,elite yield trial.
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0.08) than the accuracies obtained from the complete set 
of lines in both the planting systems. In general, using all 
other full-sibs in a cross to predict one random full-sib 
resulted in slightly better prediction accuracies (a maxi-
mum increase of 0.14) than having one random full-sib 
to predict all other full-sibs.

In pedigree-based predictions, the accuracies in popula-
tions without full-sibs were 0.16 to 0.44 lower than the cor-
responding accuracies for the complete set of lines in both the 
planting systems. The prediction accuracies from using one 
or more full-sibs in the training population were generally 
superior to the prediction accuracies in the complete set, with 
a maximum increase in accuracy of 0.09. Finally, including 
all other full-sibs in the training population to predict one 
random full-sib resulted in a maximum increase of 0.13 in 
accuracy over using one random full-sib to predict others.

A clear advantage of the G matrix over the A matrix 
was seen in the case of predicting lines with no full-sibs 
in the training population. Here, the realized relation-
ships captured by the markers led to similar, a 0.23 
increase, a 0.04 decrease, and a 0.17 increase in accuracy 
over those obtained from the pedigree for GY in the bed 
planting system in EYT 13–14, EYT 14–15, EYT 15–16, 
and EYT 16–17 respectively. Similarly, we obtained a 0.15 
increase, 0.16 increase, 0.12 decrease and 0.14 increase 
in the accuracies for GY in the flat planting system in 
EYT 13–14, EYT 14–15, EYT 15–16, and EYT 16–17, 
respectively, with the G matrix. However, when the 
training population had at least one full-sib, the A matrix 

performed similar to or gave a maximum increase of 0.13 
in accuracy over the genomic prediction accuracy.

Prediction Accuracies from the IBCF Approach
We compared genomic prediction accuracies from the 
GBLUP model with prediction accuracies from the IBCF 
approach for the training population Scheme 1 and with only 
lines from the previous nursery as the training population 
(Table 3). In Scheme 1, GY in the bed planting system was 
predicted at a higher accuracy via the IBCF approach, with 
0.04, 0.06, and 0.16 increases in accuracy in EYT 13–14, EYT 
14–15, and EYT 15–16, respectively. However, in EYT 16–17, a 
decrease (0.07) in accuracy compared with the GBLUP model 
was observed. When the lines in the previous nursery were 
used as the training population, EYT 14–15, EYT 15–16, and 
EYT 16–17 were predicted at better accuracies with the IBCF 
approach than with the GBLUP model, resulting in 0.12, 0.15, 
and 0.07 increases in accuracy, respectively. Overall, a maxi-
mum increase of 0.16 in within-nursery prediction accuracies 
and a 0.15 increase in across-nursery prediction accuracies 
were obtained with the IBCF approach over the GBLUP 
model in the bed planting system.

In the flat planting system, the IBCF accuracies 
for Scheme 1 were 0.09, 0.08, 0.28, and 0.14 lower than 
the corresponding GBLUP accuracies in EYT 13–14, 
EYT 14–15, EYT 15–16, and EYT 16–17, respectively. 
However, when the previous year’s data was used as the 
training population, the IBCF approach led to similar 
(EYT 15–16) and slightly better accuracies, resulting 

Fig. 3. Prediction accuracies for wheat grain yield with the genomic best linear unbiased prediction (GBLUP) model with markers, pedigree 
model, and the markers plus pedigree model in the bed and flat planting systems.
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in increases of 0.13 (EYT 14–15) and 0.35 (EYT 16–17). 
With EYT 16–17, the IBCF approach resulted in negative 
within and across-nursery prediction accuracies with 
both training population schemes because of the negative 
correlation of GY with DTHD in this nursery. 

Phenotypic Selection and GS

Phenotypic Selection and GS within Nurseries by 
Including some Lines from the Nursery in the Training 
Population (Scheme 1)
We evaluated the scenario of making selections within 
nurseries when some lines from each nursery were 

included in the training population. In the bed planting 
system, on average, 93, 86, 80, and 65% of the poor lines 
were discarded by GS and 34, 45, 53, and 65% of the top 
lines were selected by GS at thresholds of 0.1, 0.2, 0.3, 
and 0.5, respectively, in EYT 13–14, EYT 14–15, EYT 
15–16, and EYT 16–17 (Table 4). However, Table 4 clearly 
indicates inflated estimates of the lines discarded, when 
fewer lines were selected than discarded (i.e., 92.5% of 
the poor lines were discarded on average at a selection 
intensity of 0.1, 85% of the poor lines were discarded 
on average at a selection intensity of 0.2, and 80% of 
the poor lines were discarded on average at a selection 
intensity of 0.3). Hence, we considered it appropriate 

Table 2. Genomic prediction accuracies for grain yield in the bed and flat planting systems with the genomic best linear unbiased 
prediction (GBLUP) model in populations with and without full-sibs

Dataset Lines with no full-sibs Lines with one or more full-sibs
Training population All other full-sibs One random full-sib

Validation population One random full-sib All other full-sibs
Nursery Planting system Bed Flat Bed Flat Bed Flat

EYT 13–14† No. of individuals 343 424 424
No. of individuals in the training population 274 273 151
No. of individuals in the validation population 69 151 273
Genomic prediction accuracy 0.19 0.29 0.44 0.3 0.42 0.22
Pedigree prediction accuracy 0.19 0.14 0.48 0.36 0.45 0.31

EYT 14–15 No. of individuals 226 549 549
No. of individuals in the training population 181 390 159
No. of individuals in the validation population 45 159 390
Genomic prediction accuracy 0.34 0.32 0.54 0.51 0.49 0.43
Pedigree prediction accuracy 0.11 0.16 0.59 0.53 0.49 0.47

EYT 15–16 No. of individuals 243 721 721
No. of individuals in the training population 194 517 204
No. of individuals in the validation population 49 204 517
Genomic prediction accuracy 0.15 0.22 0.4 0.45 0.26 0.4
Pedigree prediction accuracy 0.19 0.34 0.47 0.58 0.34 0.5

EYT 16–17 No. of individuals 201 779 779
No. of individuals in the training population 161 486 293
No. of individuals in the validation population 40 293 486
Genomic prediction accuracy 0.36 0.32 0.38 0.51 0.5 0.55
Pedigree prediction accuracy 0.19 0.18 0.45 0.47 0.6 0.57

† EYT, elite yield trial.

Table 3. Genomic prediction accuracies for grain yield in bed and flat planting systems from the genomic best linear unbiased prediction 
(GBLUP) model and prediction accuracies from the item-based collaborative filtering (IBCF) approach

Planting system

Predictor(s) Genomic relationships Genomic relationships, days to heading, days to maturity, height, and lodging
Approach GBLUP IBCF

Training population† Scheme 1 Lines from the previous nursery Scheme 1 Lines from the previous nursery
Bed EYT 13–14‡ 0.37 0.41

EYT 14–15 0.51 0.24 0.57 0.36
EYT 15–16 0.37 0.08 0.53 0.23
EYT 16–17 0.51 0.32 0.44 0.39

Flat EYT 13–14 0.28 0.19
EYT 14–15 0.43 0.08 0.35 0.21
EYT 15–16 0.46 -0.01 0.18 0.02
EYT 16–17 0.56 0.13 -0.42 -0.48

† Scheme 1 refers to using some lines from the same nursery as the training population.

‡ EYT, elite yield trial. 
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to use only a selection intensity of 0.5 (where an equal 
number of lines are selected and discarded) for PS and 
GS comparisons. Thus, in the flat planting system, on 
average, 66% of the poor lines were discarded and 66% of 
the top lines were selected by both PS and GS at a selec-
tion intensity of 0.5 (Table 4). Overall, an average of 33% 
of the lines were selected by both PS and GS, 17.3% of 
the lines were selected by PS only, 33% of the lines were 
discarded by both GS and PS, and 17.1% of the lines were 
selected by GS only in the bed and flat planting systems 
at a selection intensity of 0.5 (Fig. 4).

Phenotypic Selection and GS across Nurseries  
by Including Lines from the Previous Nursery  
in the Training Population
We evaluated the scenario of making selections when only 
the lines from the previous nursery were used as a training 
population. In the bed planting system, an average of 29% 
of the lines were discarded by GS and PS, 29% of the lines 
were selected by GS and PS, 21% of the lines were selected 
by PS only, and 21% of the lines were selected by GS only 
(Fig. 5). Overall, genomic predictions were successful in 
discarding, on average, 58% of the poor lines and selecting 
56% of the top lines. In the flat planting system, on aver-
age, 26% of the lines were discarded by GS and PS, 26% of 
the lines were selected by GS and PS, 24% of the lines were 
selected by PS only, and 24% of the lines were selected by 
GS only (Fig. 5). Hence, GS was successful in selecting 52% 
of the top lines and discarding 52% of the poor lines.

DISCUSSION
Genomic Predictions within and across Nurseries
Our results indicated moderate to high genomic predic-
tion accuracies for GY within nurseries, but a severe 
decrease in accuracies was observed when predictions 
were made across nurseries (and also across years). When 
GY was adjusted for covariates like DTHD and lodging, 
lower prediction accuracies were obtained because some 
markers that had significant effects on GY were also asso-
ciated with these traits in some nurseries (unpublished 
results). We also observed differences in the GY predictive 
abilities of the same nurseries in the bed and flat planting 
systems, which can be attributed to the moderate to low 
correlations for GY in these planting systems and also the 
high incidence of lodging in the flat planting system.

The poor across-nursery GY predictions pose a seri-
ous challenge to implementing GS that can be attributed to 
decaying family relationships, decaying LD, and the effect 
of G × E interactions. In our results, it is unclear whether 
decaying LD or family relationships contributed to poor 
across-nursery predictions because these two factors are 
entangled and indistinguishable (Wientjes et al., 2013). 
However, the key player is G × E interactions because the 
validation populations were not evaluated in the same year 
as the training populations and the response of genotypes to 
different weather patterns that prevailed in the growing sea-
sons (the average temperatures during the 2013–2014, 2014–
2015, 2015–2016, and 2016–2017 seasons were 17.7 ± 1.7, 18.4 
± 2.7, 16.8 ± 2.3, and 17.7 ± 2°C, respectively) might have 
resulted in low prediction accuracies. Rutkoski et al. (2015) 
also concluded that forward predictions might be largely 
driven by the level of G × E interactions between the train-
ing and validation populations, rather than the relationships 
between the two populations, which is in accordance with 
the results of this study.

The ‘year’ effect was also reflected in the poor phe-
notypic GY correlations of the lines in the EYT nurser-
ies and the same lines previously evaluated as first-year 
yield trials (two replicates) in the bed planting system 
(0.23, 0.30, 0.23, and 0.18 for EYT 13–14, EYT 14–15, EYT 
15–16, and EYT 16–17, respectively). Therefore, when 
GY correlations across years are low, our ability to use 
data from 1 yr to predict a related line’s performance in 
another year will be limited. In addition, extraneous field 
and management variations also hamper accurate predic-
tions of GY. We also observed that the correlations of GY 
with traits like DTHD, DTMT, and height were variable 
across years and even between the two planting systems 
within a year, which had a substantial effect on GY and 
the predictive abilities. For example, in the 2014–2015 sea-
son where the temperatures were higher than usual, lower 
GY, early heading, and early maturity were observed. 

Effect of Marker Number on Genomic Predictions
The effect of marker number on prediction accuracies was 
assessed, and the use of subsets of markers did not lead to 
a significant loss in prediction accuracies. This result is in 

Table 4. Phenotypic selection (PS) and genomic selection (GS) 
using the genomic best linear unbiased prediction (GBLUP) model 
for grain yield in the bed and flat planting systems

Planting system Bed planting Flat planting
Training population: Scheme 1 (lines from the same nursery)

Nursery
Phenotypic selection threshold 0.1 0.2 0.3 0.5 0.5
Genomic selection threshold 0.1 0.2 0.3 0.5 0.5

EYT 
13–14†

Poor lines discarded (%) 92.0 85.9 80.5 63.4 61.1
Top lines selected (%) 31.3 44.3 50.8 64.6 63.7

EYT 
14–15

Poor lines discarded (%) 93.1 86.5 81.4 67.8 64.1
Top lines selected (%) 39.0 46.5 57.3 68.6 63.9

EYT 
15–16

Poor lines discarded (%) 92.7 84.6 77.1 60.1 65.7
Top lines selected (%) 34.3 40.6 46.9 59.1 65.5

EYT 
16–17

Poor lines discarded (%) 92.2 86.3 80.7 68.1 71.5
Top lines selected (%) 29.3 46.9 55.9 68.5 70.9

Training population: Lines from the previous nursery

Nursery
Phenotypic selection threshold 0.1 0.2 0.3 0.5 0.5
Genomic selection threshold 0.1 0.2 0.3 0.5 0.5

EYT 
14–15

Poor lines discarded (%) 89.4 79.9 72.9 60.5 49.8
Top lines selected (%) 5.0 23.6 39.7 61.5 49.4

EYT 
15–16

Poor lines discarded (%) 91.1 80.6 72.3 54.4 50.4
Top lines selected (%) 18.0 27.9 33.8 53.8 50.4

EYT 
16–17

Poor lines discarded (%) 92.1 84.3 77.6 57.6 55.7
Top lines selected (%) 22.2 41.6 47.5 57.8 56.5

† EYT, elite yield trial.
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agreement with previous studies that have reported only a 
small loss in accuracy with sparse markers or low-density 
marker panels (Luan et al., 2009; Weigel et al., 2009; Moser 
et al., 2010; Lenz et al., 2017). While the average decrease in 
accuracy with these subsets was only 0.01, about 251 mark-
ers were sufficient to obtain accuracies equivalent to those 
observed with all the 2038 markers, indicating the existence 
of extensive LD in wheat and high collinearity among the 
GBS markers. Although this implies that genomic selec-
tion for GY in these populations can be implemented with 
a limited number of markers, it is also a concern, because 
251 informative markers might only capture the broad 

relationships among the lines and not the minor differ-
ences among full-sibs. This could also be the reason why 
the pedigree-based predictions outperformed the genomic 
predictions in populations with full-sibs.

Prediction of GY via the IBCF Approach
The IBCF approach was used to predict GY incorporating 
information from multiple traits and we observed that it 
gave a maximum of 0.16 and 0.15 increase in within and 
across-nursery accuracies over the GBLUP model in the 
bed planting system. However, in the flat planting sys-
tem, the GBLUP model outperformed the IBCF approach 

Fig. 4. Phenotypic selection (PS) and genomic selection (GS) for wheat grain yield within nurseries in the bed and flat planting systems.

Fig. 5. Phenotypic selection (PS) and genomic selection (GS) for wheat grain yield across nurseries in the bed and flat planting systems, with 
lines from the previous nursery as the training population.
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within nurseries (maximum increase in accuracy of 0.28), 
whereas the IBCF resulted in similar to slightly higher 
accuracies across nurseries. The negative accuracies 
obtained with the IBCF approach in EYT 16–17 occurred 
because of the negative correlation of DTHD with GY in 
this nursery, which was not observed for any other nurs-
ery. This indicates that changes in correlations of GY with 
related traits will affect the predictive ability, especially 
when one particular year is different from the others. 
While the ability of the IBCF approach to yield accura-
cies higher than the genomic prediction accuracies across 
nurseries is encouraging, it is also not desirable for GY to 
have very high correlations with these traits, because we 
could just be selecting for these traits rather than real GY.

Effect of the Training Population Schemes  
on Genomic Prediction
The composition, size, and optimization of the training 
population are critical in GS. We investigated three training 
population schemes, and our results indicated that includ-
ing lines from within nurseries (and years) in the training 
population always resulted in the highest accuracy. When 
only the previous year’s data were included in the training 
population, we obtained slightly higher accuracies than 
when we used all the data from previous years. Several stud-
ies have reported an increase in accuracy with large training 
population sizes and it has also been suggested that combin-
ing phenotypes from several populations in a large training 
population or adding a few individuals from the unrelated 
population to the training population might increase accu-
racy (Muir, 2007; de Roos et al., 2009; Daetwyler et al., 2010; 
Asoro et al., 2011; Jarquín et al., 2014b). However, our results 
indicate that increasing the training population size might 
not necessarily result in high accuracies, as also observed 
by Dawson et al. (2013) and Lorenz and Smith (2015). It 
was also suggested by de Roos et al. (2009) that combining 
populations in a training population may be less advanta-
geous when there is a substantial quantitative trait locus × 
environment interaction, as marker effects will differ across 
populations, which might explain why using all the lines 
from the previous nurseries was not very successful in our 
study. However, our results are based on inferences from 
limited datasets and in diverged populations, higher marker 
densities may be required for exploiting the advantage of 
larger training populations and achieving high accuracies 
(de Roos et al., 2009). Nevertheless, the forward prediction 
scenario from a correlated previous nursery or year is realis-
tic for applied breeding programs and will be ideal in cases 
where there are more related sibs in the previous nursery.

Comparison of Genomic  
and Pedigree-Based Predictions
Pedigree-based prediction accuracies were similar or slightly 
better (a maximum increase of 0.12) than the genomic predic-
tion accuracies within nurseries and the model with markers 
and pedigree resulted in the highest accuracy, consistent with 
previous reports (de los Campos et al., 2009; Pérez et al., 2010; 
Burgueño et al., 2012; Bartholomé et al., 2016; Juliana et al., 

2017a). However, the advantage of considering both the mark-
ers and pedigree was not very high, because of some redun-
dancy in the information captured by both, as also reported 
by Crossa et al. (2010). 

Although genomic predictions are expected to result in 
higher accuracies than pedigree-based predictions, because 
the Mendelian sampling term and allele sharing between 
sibs are exploited (Daetwyler et al., 2007; Hayes et al., 2009), 
the high within-nursery accuracies from the pedigree-based 
predictions were a consequence of the family structure in 
these nurseries. In other words, about 50% of the lines in 
each nursery had no full-sibs and were represented by only 
one individual per cross, but the remaining lines that had 
at least one full-sib in the nursery had minimal variance for 
GY, because of being selected previously for high GY. In this 
case, genomic predictions will have limited scope for being 
advantageous over pedigree-based predictions, as the Men-
delian sampling variance is not a significant source of the 
GY variability (clearly observed from the insignificant effect 
of sibs nested within families in the ANOVA). However, the 
clear advantage of the genomic relationship matrix over the 
pedigree relationship matrix was seen in the case of predict-
ing lines with no full-sibs, where the realized relationships 
captured by markers led to a moderate increase in accuracy.

The genetic relatedness between individuals in the 
training and validation populations has to be maximized 
for obtaining precise GEBV estimates (Habier et al., 2010; 
Clark et al., 2012; Pszczola et al., 2012; Thorwarth et al., 
2017). Although smaller training populations can be used 
when the validation population is closely related to the 
training population (Mackay et al., 2015), it was suggested 
that at least one closely related line should be present in the 
training and validation populations to achieve higher accu-
racies with distantly related individuals (Daetwyler et al., 
2014). In our study, we observed that when the training pop-
ulation had at least one full-sib from a cross, the pedigree-
based predictions performed similar to or gave a maximum 
increase in accuracy of 0.13 over the genomic prediction 
accuracies. This implies that although markers account for 
genomic relationships that occurred among the founders 
of the population, the narrow variance among full-sibs and 
the insignificant contribution of more distant relationships 
further back in time (before the five generations of pedigree 
considered), as also observed by Luan et al. (2012), might 
have contributed to high accuracies with the pedigree. In 
addition, the imperfect estimation of the identity-by-state 
relationships by the limited number of markers available 
for this study might have resulted in high pedigree-based 
prediction accuracies. Vela-Avitúa et al. (2015) reported that 
the accuracy of genomic predictions based on the identity-
by-state relationships declined rapidly as marker densities 
declined and, at the lowest densities, genomic predictions 
based on the identity-by-state relationships was even out-
performed by the pedigree-based model. Nevertheless, our 
results emphasize that in highly pedigreed breeding popula-
tions where across-family selection is combined with selec-
tion among the top within-family performers in advanced 
lines, the predictive ability of the genomic relationship 



juliana et al.	 13 of 17

matrix compared with the pedigree relationship matrix will 
be underestimated.

Comparison of PS and GS
While increasing the selection intensity increases the rate 
of genetic gain (Pryce and Daetwyler, 2012), we observed 
that at a stringent selection intensity of 0.1, we would be 
at the risk of losing of 66.5 ± 4.2% of the top perform-
ers on average in within-nursery predictions and 84.4 ± 
6.4% of the top performers in across-nursery predictions 
with GS. This risk should be taken into concern to avoid 
losing top performers that may be at a low frequency, but 
have rare alleles with substantial effects that the models 
were not trained to predict. Overall, a maximum of 72% 
of the poor lines was discarded and 71% of the top lines 
was selected within nurseries via GS. In across-nursery 
predictions, a maximum of 61% of the poor lines was dis-
carded and 62% of the top lines was selected by GS.

Prospects of Implementing GS for GY in an Applied 
Wheat Breeding Program
The successful implementation of GS in a breeding pro-
gram will depend largely on the stage at which it is used 
and the gains per unit of time and cost compared with 
conventional breeding. Our results clearly indicate that 
GS will be less advantageous at a stage where there is 
minimal Mendelian sampling variance, as there is no 
scope for outperforming pedigree-based predictions. 
This demonstrates the importance of applying GS at the 
appropriate stage of the breeding cycle to obtain maxi-
mum gains and some prospects of implementing GS for 
GY in bread wheat are discussed below.

Integrating GS with PS and Increasing Gains per Unit 
Cost by Substituting Replications with GS
One or more within-year GY replications can be substi-
tuted by GEBV-based selections, since the within-nursery 
genomic prediction accuracies were high and only slightly 
lower than the line-mean heritabilities. While this would 
enhance the accuracy of within-year selections and capital-
ize on the genetic variance for GY, gains per unit cost can 
also be maximized if the genotyping data are used for mul-
tiple trait selections. Assuming that the cost for yield-testing 
one unit of replication on a plot-basis is US$10 and the cost 
of genotyping a line is US$20, the gains per unit cost can be 
maximized if the genotyping cost is shared for 20 key traits 
(GY in 6 environments, 4 diseases, and 10 quality traits) 
and the genotyping cost per trait is US$1. This integrated 
strategy would result in a reduction of yield-testing costs for 
a breeding program while also minimizing the risks associ-
ated with complete abstinence from phenotyping.

Looking beyond Prediction Accuracies
While prediction accuracies are key to successful evalua-
tion of GS, it is important to consider a trait like GY as a 
unique case and rethink how precise the predicted values 
would be, given the low heritability and high G × E interac-
tions. Although pursuing accuracies close to one for such 

a trait will be an impossibility, it is difficult to set a target 
accuracy beyond which a breeder might apply GS for GY 
across nurseries. Hence, the way to move forward with GS 
for a complex trait like GY is to not rely solely on predic-
tion accuracies but look beyond it as to how effectively the 
GEBVs can be used. For this, we should take advantage 
of a key finding in this study that even at low prediction 
accuracies across nurseries, we could still select or discard 
a reasonable number of lines with GS. Since an average of 
65.6% (716 lines) and a maximum of 71.2% (778 lines) were 
selected and discarded by PS and GS within each nursery, 
cost savings of about US$7160 to US$7780 from using 
GEBVs for selections within nurseries can be obtained. 

Using Genomic Selection for Early-Generation  
Within-Family Selections
While this study has explored the possibility of using GS 
for GY in the EYT stage, we speculate that greater gains 
can be achieved if it is implemented in early-generation 
within-family selections, where yield testing is not fea-
sible because of limited seed. However, a pilot study with 
some families and a reasonable number of individuals 
per family is required to understand the comparative 
advantage of GS over conventional breeding.

Challenges for Implementing Genomic Selection for 
Grain Yield in an Applied Wheat Breeding Program
Some of the considerable challenges in implementing 
GS in an applied bread wheat breeding program are dis-
cussed below.

Poor Prediction Accuracies across Nurseries  
and Families
The poor accuracies from across-nursery and across-fam-
ily predictions remain a major challenge for implementing 
GS, as observed in this study and also in previous studies 
(Reif et al., 2013; Crossa et al., 2014). However, this prob-
lem is also prevalent in animal breeding, where predic-
tion equations trained with one breed do not accurately 
predict another breed or a reproductively isolated popula-
tion (Harris et al., 2008; Toosi et al., 2010; Taylor, 2014; 
Wientjes et al., 2015). This challenge can be addressed by 
including some parental information for unrelated lines 
in the training population and is similar to animal breed-
ing, where inclusion of the sire’s genetic information in 
the training population results in higher accuracies (Lund 
et al., 2009). In addition, including more phenotypes and 
markers might help in achieving higher prediction accura-
cies (Hickey et al., 2014), as effects estimated from a lim-
ited number of families might not detect rare alleles with a 
large effect in some families (Wientjes et al., 2015).

Genotype × Environment Interactions
Though this study clearly indicates the role of G × E inter-
actions in decreasing accuracies, genomic predictions 
for unknown future environments are also inherently 
complex. A lack of correlation among the years leading 
to genotype rank changes and variation in performance 
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across years will undoubtedly challenge GS (Crossa et 
al., 2017; Pérez-Rodríguez et al., 2017). Although, several 
studies have shown that modeling G × E can result in 
substantial gains in prediction accuracy (Burgueño et al., 
2012; Heslot et al., 2013; Jarquín et al., 2014a; Lopez-Cruz 
et al., 2015; Cuevas et al., 2016), accurate estimations of G 
× E interactions require models trained with data from 
large populations that are replicated in different environ-
ments. Furthermore, some information on a genotype’s 
performance in a particular environment is mandatory for 
implementing GS. For a wheat breeding program like that 
of CIMMYT, where selections are conducted on a limited 
number of locations for distribution of lines to several 
national programs in diverse environments or countries, 
selecting lines with minimal G × E interactions is key for 
the successful delivery of widely adapted varieties.

Low Heritability
While GS is expected to be promising for improving traits 
of low heritability, it should also be noted that markers will 
be able to explain only the heritable portion of the genetic 
variance. For a trait like GY, where heritability can be as 
low as 0.2 across years, it is not surprising that genomic 
predictions will result in poor accuracies. In addition, the 
use of BLUEs adjusted for different field designs as true 
breeding values for a trait like GY with high G × E interac-
tions would be misleading, as it also results from nonher-
itable environmental effects, in addition to genetic effects 
(phenotype = genotype + environmental effects). 

Marker Technologies and the Costs of Genotyping
It is unknown if the prediction accuracies obtained from 
GBS markers reflect the maximum accuracies that could be 
obtained from any whole-genome genotyping technology. 
Although alternative genotyping technologies are available 
and continue to evolve, their high cost is still prohibitive for 
large-scale implementation of GS. If we consider an ideal 
scenario of implementing GS in the F2 stage of CIMMYT’s 
wheat breeding scheme where maximum gains will be 
expected from within-family selections, the approximate 
cost of genotyping 1130,000 lines from F2 simple crosses 
(1000 crosses × 1130 plants per cross) and 1320,000 plants 
from F2 top crosses (1200 crosses × 1100 plants per cross) 
will be US$49,000,000 at the rate of US$20 per sample. 
In the F3 stage, the cost of genotyping 415,000 lines (1000 
crosses × 415 plants per cross) will be US$8300,000 USD. 
However, these costs do not reflect the cost of sampling, 
DNA extraction, database management, and analysis. In 
addition to the high cost of genotyping, other factors like 
the limited seed availability in early generations, the logis-
tics and timeliness of genotyping massive populations, seg-
regation of the populations, and the relative gain from GS 
compared with the low cost of line-development (US$5.7 is 
the approximate cost of obtaining seed for planting F5 to F6 
plots from individual spikes or plants), hinder implementa-
tion of GS in the early generations of a large breeding pro-
gram like that of CIMMYT.

Optimizing Training Populations and the Frequency  
of Phenotyping Required for Model Training
Though large training populations for GY predictions exist 
for CIMMYT’s bread wheat breeding program, leveraging 
historical information for prediction of yet to be observed 
phenotypes remains a challenge. Optimization of the train-
ing populations to identify a core subset of lines for reliable 
predictions is essential and has proved to be efficient in 
many studies (Rincent et al., 2012; Isidro et al., 2014). 

Genomic selection was expected to change the role of 
phenotyping dramatically as in a GS-driven breeding cycle, 
where phenotypes will be used only to update prediction 
models and not for selecting lines (Heffner et al., 2009). 
However, our results indicate that the use of ancestral train-
ing populations subject to high environmental variations is 
not ideal for a GS-driven breeding scheme at CIMMYT, and 
the best strategy would be to use only data from immediate 
relatives or a correlated season, as also suggested in other 
studies (Lorenz and Smith, 2015; Hoffstetter et al., 2016). 
In addition, field and management variations across years 
might also result in stochasticity, thereby emphasizing the 
need for managed environments to collect phenotypes 
for training models in GS. Furthermore, if we consider 
the change in relationships and allele frequencies across 
populations, it is evident that large populations should be 
used for accurate estimation of marker effects (Lande and 
Thompson, 1990; Goddard and Hayes, 2007; Solberg et al., 
2008; van der Werf, 2009; VanRaden et al., 2009). While 
molecular marker information can enhance the efficiency 
of PS (Whittaker et al., 2000), successful implementation 
of GS will require some amount of phenotyping (Bernardo 
and Yu, 2007). The frequency of phenotyping will depend 
largely on the genetic relatedness among the individuals in 
the training and validation populations and might be high 
for wheat breeding programs like that of CIMMYT, where 
new germplasm is introduced every year for novel diversity.

CONCLUSION
Designing a GS-driven wheat breeding program for GY 
needs careful consideration of several factors that are 
highlighted below:

(i) 	 A complex trait like GY will be challenging for GS, as 
much as it is challenging for PS, because GS models 
are trained with phenotypic data. Hence, the reliability 
of prediction models should be improved by using 
well-replicated phenotypic GY data for training, and 
accuracy estimates derived from single-year phenotypic 
performance should be considered cautiously.

(ii) 	 Genomic selection should be implemented within 
its scope; in other words, GS should not be expected 
to perform well when the models are trained with 
completely unrelated lines or with lines evaluated in 
noncorrelated environments.

(iii) 	A significant advantage of genomic relationships over 
the pedigree for implementing GS in the yield testing 
stage was not observed in this study because of good 
pedigree records and the family structure in these 
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nurseries. However, wheat breeding programs that do 
not maintain pedigree records or have a reasonable 
number of full-sibs in the yield testing stage can 
effectively implement GS for sparse GY testing.

(iv) 	This study has only evaluated GS for minimizing 
phenotyping in the advanced yield testing stage. 
However, it is also important to test GS for GY in 
early generations, where the real advantage of rapid 
cycling generations can be achieved. In addition, 
combining GS with faster breeding technologies like 
speed breeding (Watson et al., 2018) might lead to an 
acceleration of genetic gains by reducing time.

In conclusion, we have investigated and discussed sev-
eral prospects and challenges of implementing GS for GY in 
wheat. However, the findings of this study are exclusive to 
the nurseries used and cannot be generalized to all breed-
ing programs without further population-specific analysis. 
While GS for GY is promising in some scenarios, this is an 
exciting area that needs more research and understanding 
of the fit of GS in wheat breeding programs.
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Supplemental Fig. 1: Graphical representation of calculat-
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(GS) that were also discarded by phenotypic selection (PS)
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