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Abstract
Bread-making quality traits are central targets for wheat breeding. The objectives of our

study were to (1) examine the presence of major effect QTLs for quality traits in a Central

European elite wheat population, (2) explore the optimal strategy for predicting the hybrid

performance for wheat quality traits, and (3) investigate the effects of marker density and

the composition and size of the training population on the accuracy of prediction of hybrid

performance. In total 135 inbred lines of Central European bread wheat (Triticum aestivum
L.) and 1,604 hybrids derived from them were evaluated for seven quality traits in up to six

environments. The 135 parental lines were genotyped using a 90k single-nucleotide poly-

morphism array. Genome-wide association mapping initially suggested presence of sev-

eral quantitative trait loci (QTLs), but cross-validation rather indicated the absence of

major effect QTLs for all quality traits except of 1000-kernel weight. Genomic selection

substantially outperformed marker-assisted selection in predicting hybrid performance. A

resampling study revealed that increasing the effective population size in the estimation

set of hybrids is relevant to boost the accuracy of prediction for an unrelated test

population.

Introduction
Bread wheat (Triticum aestivum L.) is one of the most important crops grown on 200 million
hectares of farmland worldwide [1] and the development of varieties with good bread-mak-
ing quality has been a major target in wheat breeding. The bread-making quality of wheat is a
complex property controlled by both genetic background and environmental conditions [2].
The bread-making properties of wheat flour are mainly determined by relative content and
features of gluten proteins [3], which are quantified in breeding programs using the sedimen-
tation (SDS) test according to Zeleny. Similarly, total protein content is an important
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indicator of baking quality and nutritional value of wheat. Test weight and 1000-kernel
weight are relevant for flour millers who use these traits to describe wheat kernel composition
and potential flour extraction [4]. Measuring quality traits in wheat is often labor-intensive.
Therefore, quality traits are interesting targets for the application of genomic-assisted crop
improvement.

Genomic-assisted crop improvement can either be based on marker-assisted selection [5] or
genomic selection [6]. In marker-assisted selection, genotypic values of individuals are pre-
dicted based on the effects of a limited number of selected markers. In contrast, genomic selec-
tion considers an extensive number of markers without performing marker-specific
significance tests [7–9]. The comparative efficiencies of marker-assisted versus genomic selec-
tion depend on the genetic architecture underlying the respective traits under consideration.
Marker-assisted selection is most effective for traits influenced by a few quantitative trait loci
(QTLs) each controlling a large proportion of phenotypic variation. In contrast, if the genetic
architecture underlying the traits of interest is complex, genomic selection should be preferable
[7, 10].

The genetic architecture of quality traits in wheat has been explored in a number of quanti-
tative genetic studies [11–18]. Several QTLs and genes exhibiting large effects have been
reported, including Glu-1 and Glu-3 [19–22] affecting gluten composition, Pina-D1 and Pinb-
D1 [23–26] affecting kernel hardness, as well as Ppo-A1 and Ppo-D1 [27–29] and Psy-A1 and
Psy-B1 [30–32] affecting flour color. However, such large effect QTLs are often already fixed in
elite breeding programs, as has been exemplified by Groos et al. [18]. Therefore, genomic selec-
tion is potentially more relevant than marker-assisted selection to improve quality traits in
wheat. This has been confirmed in a pioneering study based on two bi-parental wheat inbred
line populations adapted to U.S. environments [33], in which across nine quality traits exam-
ined the accuracy of prediction of genomic selection was on average 30% higher than the accu-
racy of prediction of marker-assisted selection.

Wheat as a selfing species is so far mainly bred as pure line varieties. Implementing hybrid
wheat breeding thus holds the potential to boost yield per area and enhance yield stability [34,
35]. One key challenge in the design of a hybrid breeding program is to efficiently select supe-
rior hybrids out of millions of potential single cross-combinations [36]. The potential of apply-
ing line per se performance or general combining ability effects for predicting wheat hybrid
performance have been studied for the traits grain yield, plant height, and heading time as well
as susceptibility to frost, lodging, septoria tritici blotch, yellow rust, leaf rust, and powdery mil-
dew [37]. In addition, the limits and prospects of marker-assisted and genomic selection of
wheat hybrid performance have been examined for grain yield, plant height, heading date, frost
tolerance and resistance to powdery mildew, leaf rust, stripe rust, septoria tritici blotch, and
fusarium head blight [38–44]. Nevertheless, options to predict the performance of hybrids for
quality traits have not yet been investigated.

Here, we report the results from an approach based on phenotypic data for seven quality
traits gathered in field trials conducted in up to six environments and genotypic data gener-
ated using a 90k single-nucleotide polymorphism (SNP) array [45] for a large collection of
135 Central European elite winter wheat inbred lines and 1,604 single-cross hybrids derived
from them. The objectives were to (1) examine the presence of major effect QTLs for quality
traits in the population of 135 parental lines, (2) explore the optimal strategy for predicting
hybrid performance for quality traits, and (3) investigate the effects of marker density and the
composition and size of the training population on the accuracy of prediction of hybrid
performances.
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Materials and Methods

Plant material and field experiments
The present study was based on 135 elite winter wheat lines adapted to Central Europe and
1,604 F1 hybrids derived from them [37, 39]. The hybrids were generated in a factorial crossing
scheme with 120 inbred lines serving as female and 15 inbred lines serving as male parents
with the aid of chemical hybridization agents. All genotypes were evaluated in up to six envi-
ronments (S1 Table). The experimental designs were partially replicated alpha designs. All
genotypes were randomly split into three adjacent trials linked with 10 common checks and in
each trial lines, checks as well as 29% of the hybrids were evaluated in both replications. The
sedimentation (SDS) volume according to Zeleny (unit ml) providing a measure for gluten
content and swelling properties and thus baking quality of wheat was determined in accor-
dance with International Association for Cereal Science and Technology (ICC) Standards 116/
1 and 118 (http://www.icc.or.at/standard_methods). Protein, gluten, and starch content (unit
%) as well as hardness (%) were determined by near infrared reflectance (NIR) spectroscopy in
accordance to ICC Standard 159 (http://www.icc.or.at/standard_methods). 1000-kernel weight
(unit g) and test weight (unit kg hL-1) were determined in accordance with the variety registra-
tion regulations [46, 47].

Phenotypic data analyses
After outlier tests [48], we estimated the adjusted entry means for each environment for the fol-
lowing association mapping study based on the following model:

y ¼ mþ XGg þ XTt þ XRr þ XBbþ e;

where y was the vector of phenotypic performance, μ was the vector of intercept term, g was
the vector of genetic effects, t was the vector of trial effects, r was the vector of replication
effects, b was the vector of block effects, and e was the vector of residuals. XG, XT, XR, and XB

were corresponding design matrices for g, t, r, and b. Only μ and g were treated as fixed effects.
The adjusted means of each genotype across environments were estimated with the follow-

ing model:

y ¼ mþ XGg þ XLl þ e;

where y was the vector of the best linear unbiased estimator (BLUE), μ was the vector of inter-
cept term, g was the vector of genetic effects, l was the vector of environment effects, and e was
the vector of residuals. XG and XL were corresponding design matrices for g and l, respectively,
with only l being treated as random effect. For each combination of parental lines, mid-parent
value (MP) and relative mid-parent heterosis (MPH) were calculated using hybrid perfor-
mance (HYB) as follows: MP = (P1 + P2)/2, MPH = [(HYB −MP)/MP] × 100, where P1 and
P2 were performance of two parental lines.

The general combining ability (GCA) of parental lines was estimated with the following
model:

y ¼ mþ XMgcam þ XFgcaf þ Xssca;

where y was the vector of BLUEs across environments, μ was the vector of intercept term, gcam
was the vector of GCA for male lines, gcaf was the vector of GCA for female lines, sca is the vec-
tor of special combining ability (SCA) of hybrids. XM, XF and XS were corresponding design
matrices for gcam, gcaf and sca.
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In addition, we estimated the genetic variance components of hybrids and parental lines as
well as the variance of genotype × environment interactions by a one-step model:

y ¼ mþ XLl þ XTt þ XRr þ XBbþ XPpþ XPLzpl þ XHhþ XHLzhl þ e;

where y was the vector of phenotypic performance, μ was the vector of intercept term, l was the
vector of environment effects, t was the vector of trial effects, r was the vector of replication
effects, b was the vector of block effects, p was the vector of genetic effects of parental lines, zpl
was the vector of parent-by-environment interaction effects, h was the vector of genetic effects
of hybrids, zhl was the vector of hybrid-by-environment interaction effects, and e was the vector
of residuals. XL, XT, XR, XB, XP, XPL, XH, and XHL were corresponding design matrices. Except
μ, all effects were treated as random.

Significance of variance component estimates were tested by model comparison with likeli-
hood ratio tests where the halved P values were used as an approximation [49]. Using the vari-
ance components, we estimated the heritability on an entry-mean basis. The phenotypic data
analyses were performed using the software ASReml-R 3.0 [50].

Genotyping
DNA was extracted according to standard procedures from all parental genotypes and finger-
printing was performed with a 90k SNP array based on an Illumina Infinium assay [41].
Hybrid profiles were deduced from the parental fingerprints. All markers that were either
monomorphic, had missing values of>5%, heterozygosity of>5% in inbred lines, or had a
minor allele frequency of<5% were discarded from analysis. After applying this filtering,
17,372 high-quality SNP markers were retained in the data set [51].

Genome-wide association mapping and marker-assisted selection
Data from each environment were used in association mapping scans with correction for popu-
lation stratification with a kinship matrix [39]. The kinship matrices for the inbred lines and
hybrids were modeled as described previously [39, 52]. Genome-wide scans for marker-trait
associations were conducted to detect main-effect QTLs. The model for association mapping
scan [53] is defined as the following:

Y ¼ Xbþ Ssþ Zuþ e;

where Y stands for the adjusted entry means of the 1,739 genotypes within environments, β is a
vector of environment effects, s is a vector of SNP effects, u is a vector of polygene background
effects, and e is a vector of residual effects. X, S, and Z are incidence matrices relating Y to β, s,
and u. β and s were treated as fixed effects and u as random effect. To check whether the popu-
lation or family structure was adequately controlled by the model, a QQ-plot was drawn based
on the observed P-values and expected P-values of all markers [53].

The Bonferroni-Holm procedure [54] was applied to correct for multiple testing at a signifi-
cance level (P< 0.05). The association mapping analyses were performed using the software
ASReml-R 3.0 [50]. The proportion of the phenotypic variance explained by single QTL (R2)
was estimated using analysis of variance (ANOVA) with QTLs reordered according to the P-
values and the proportion of phenotypic variance explained by all the QTLs (R2

adj), and effects
of detected QTLs were estimated using a standard multiple regression approach [55]. The pro-
portion of explained genotypic variance (pG) by single QTL and all the QTLs was determined
as proportion of explained phenotypic variance standardized by broad-sense heritability (h2),
i.e. pG = R2adj/h

2.
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Genomic selection
Based on the adjusted entry means across environments for the 1,739 genotypes included in
our study, we applied ridge regression best linear unbiased prediction (RR-BLUP) [56],
weighted best linear unbiased prediction (W-BLUP) [40], and Bayes-Cπ [57, 58] considering
additive and dominance effects. Details of the implementation of the models have been
described in Zhao et al. [39, 40]. Briefly, the general form of the models is defined as the
following:

RR-BLUP.

Y ¼ 1nmþ ZAaþ ZDd þ e;

where Y stands for the adjusted entry means of the 1,739 genotypes across locations, while ln is
a vector of ones and n is the number of genotypes, μ refers to the overall mean across all envi-
ronments, a is the additive marker effect, and d is the dominance marker effect. ZA and ZD are
design matrices for the additive and dominance effects of the markers as specified according to
the F1 metric of Falconer and Mackay [59], and e is the residual. We assumed that additive
and dominance marker effects have normal distributions Nð0; s2

aÞ and Nð0; s2
dÞ with constant

variances of additive effects s2
a and dominance effects s2

d . The estimates of μ, a, and d, which

are denoted as m̂, â, and d̂ , were obtained from the following mixed-model equation [60]:
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â

d̂
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Here, Im refers to an identity matrix with dimension of m, where m is the number of mark-
ers. The shrinkage parameters λA and λD were defined as the ratios between the modified vari-

ance of residuals ( s2e
Nr:Env

) and the marker effects (
s2GCA

Nr:Marker
or

s2SCA
Nr:Marker

) [6]. s2
e , s

2
GCA, and s

2
SCA

represent the variance of residual, GCA effects, and SCA effects. Nr.Env and Nr.Marker repre-
sent the number of environments and marker density, respectively.

For a solely additive model, the equation is simplified to:

Y ¼ 1nmþ ZAaþ e:

W-BLUP. The model used in W-BLUP is similar to the RR-BLUP model, but we added an
additional effect for functional markers, which were defined as the three most significant mark-
ers based on association mapping in the training population:

Y ¼ 1nmþ ZAaþ FAaf þ ZDd þ FDdf þ e;

where af, df denote the additive and dominance effects of the functional markers, and FA and
FD are the design matrices.

Bayes-Cπ. Whereas in RR-BLUP it is assumed that all markers contribute to the genetic
variance, in Bayes-Cπ only a fraction 1–πg (g denotes either a or d) of the used markers is con-
sidered to contribute to the genetic variance. Based on this assumption, the model for Bayes-
Cπ is:

Y ¼ 1nmþ ZAdaaþ ZDddd þ e:

Genomic-Assisted Selection for Wheat Quality
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The additional parameter δg has a prior distribution:

dg �
0; with probability pg

1; with probability 1� pg

:

(

In Bayes-Cπ, a uniform (0, 1) prior was assumed for πg, resulting in a β-distribution for the
full-conditional posterior [58]. For Bayes-Cπ, all above outlined parameters have to be sampled
from their full-conditional posterior using a special Markov chain Monte Carlo method called
Gibbs sampling.

Cross-validation of genome-wide association mapping and genomic
selection
The prediction accuracy of genotypic values from marker-assisted as well as genomic selection
was checked by cross-validation. Due to the factorial mating design of the plant material used
in our study, relatedness between estimation and test set was expected to influence prediction
accuracy. To account for this effect, we followed the suggestion of Schrag et al. [61] and sam-
pled estimation sets consisting of 10 (out of 15) male and 80 (out of 120) female parental lines
as well as 610 (out of potentially 800) hybrids derived from them (S1 Fig). From the remaining
hybrids, test sets with three successively decreasing degrees of relatedness to the estimation set
were formed. Test set T2 most closely related to the estimation set included only hybrids
derived from the same parents as the hybrids that had been evaluated, while the less related test
set T1 included hybrids sharing one (either female or male) parent with the hybrids in the esti-
mation set and the least related test set T0 included only hybrids having no parents in common
with the estimation set. 100 cross-validation runs were performed for marker-assisted as well
as genomic selection and different parental lines, and hybrids derived from them, were selected
to compose the estimation set and test sets for each cross-validation run.

For marker-assisted selection, genome-wide association mapping was performed on the
sampled estimation set of each cross-validation run. The Bonferroni-Holm procedure [54] was
applied to correct for multiple testing. Markers showing trait association at different signifi-
cance levels (P< 0.10, P< 0.05, P< 0.01, P< 0.001, and P< 0.0001) were selected separately
and recorded in order to count the occurrence frequencies of markers. Sizes of effects were esti-
mated for significant marker-trait associations separately in each cross-validation run using a
mixed linear model with a random polygenic effect. For genomic selection, marker effects were
directly estimated based on the estimation set of each cross-validation run. The obtained
marker effects were then used to predict the performance of the hybrids in the T2, T1, and T0
test sets. The accuracy of prediction for each test set was estimated as the Pearson correlation
coefficient between the predicted and the observed hybrid performance standardized with the
square root of the heritability on an entry-mean basis [5].

Effect of population size and marker density on prediction accuracy
We applied two further cross-validation strategies to unravel the potential impact of estimation
set size and composition on the accuracy of prediction. To validate the impact of the number
of parents included, we randomly sampled four different groups of hybrids derived from an
increasing number (30, 60, 90, and 120) of female parents and a constant number of 15 male
parents to mimic different population sizes. For each size, estimation sets then contained two
thirds (20, 40, 60, and 80) of the selected female parents, 10 of the selected male parents, and
100 hybrids derived from them, and the remaining hybrids were split into three test sets
according to the relatedness levels (S2 Fig). To examine the influence of number of hybrids on
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prediction accuracy, we reduced the number of hybrids in estimation sets from 610 as intro-
duced in the first paragraph of last section the cross-validation strategy successively to 500,
300, and 100.

In addition, we randomly sampled k (k from 1 to 173) markers from every 173 markers of
the whole marker array in order to follow the accuracy of prediction of genomic selection
(RR-BLUP) in dependence on increasing marker density with marker numbers ranging from
100 to 17,300, with intervals of 100. For all outlined cross-validation strategies, 100 runs were
performed and the mean of outcomes was calculated.

Results

Extensive phenotyping revealed broad genotypic variation and resulted
in high heritability
For all seven wheat quality traits examined, we observed a broad variation of phenotypic values
across environments (Table 1). Phenotypic values generally followed approximately normal
distributions (S3 Fig) consistent with quantitative inheritance. We observed only a low level of
average absolute mid-parent heterosis values, with an average of 2% across traits (Table 1).
Phenotypic correlation analysis showed that some traits were highly related, e.g., gluten content
was significantly (P< 0.001) related with protein content with a correlation coefficient of 0.81

Table 1. First and second degree statistics for 135 inbred lines and 1,604 hybrids derived from them for quality traits gluten content(%), kernel
hardness (%), protein content (%), SDS value (ml), starch content (%), test weight (kg/hL), and 1000-kernel weight (g) determined in up to six
environments.

Gluten content Kernel hardness Protein content SDS value Starch content Test weight 1000-kernel weight

Environments 2 3 6 5 2 3 4

σ²environment 3.75*** 206.21*** 1.26*** 120.23*** 1.46* 4.53* 1.36

σ²trial 0.00 0.16 0.01* 0.98* 0.07* 0.25* 0.62*

σ²replication 0.02*** 1.46*** 0.01*** 1.24*** 0.01** 0.07*** 0.34***

σ²block 0.18*** 2.69*** 0.08*** 2.22*** 0.06*** 1.23*** 0.49***

Lines

Mean 27.6 46.7 12.4 44.1 68.1 75.8 45.3

Range 24.6–33.2 20.8–61.5 11.6–14.0 28.2–58.9 66.4–69.6 66.6–79.7 38.9–54.1

σ²Lines 1.42*** 38.80*** 0.18*** 47.99*** 0.44*** 3.99*** 8.18***

σ²Lines×Environment 0.56*** 26.50*** 0.12*** 6.88*** 0.20*** 0.38*** 2.98***

h²Lines 0.78 0.78 0.87 0.96 0.72 0.91 0.89

Hybrids

Mean 27.2** 50.1*** 12.0*** 43.1 68.6*** 77.3*** 48.4***

Range 24.5–30.5 30.7–65.6 11.1–13.2 26.7–55.0 65.7–70.2 68.0–80.9 42.3–56.4

σ²Hybrids 0.61*** 13.36*** 0.08*** 22.79*** 0.15*** 1.10*** 3.53***

σ²Hybrids×Environment 0.04 12.53*** 0.02*** 1.59*** 0.01 0.58*** 1.35***

σ²error 0.47 12.36 0.09 6.99 0.28 1.61 2.03

MPH (%) -0.89 3.53 -1.97 -2.36 0.51 1.43 5.85

h²Hybrids 0.76 0.70 0.84 0.94 0.63 0.64 0.83

h²Lines
# 0.58 0.50 0.47 0.78 0.48 0.67 0.62

h²Hybrids
# 0.55 0.42 0.42 0.73 0.41 0.33 0.51

*, **, and *** indicate P < 0.05, P < 0.01 and P < 0.001 levels of probability, respectively, for means of hybrids being significantly different from means of

lines or σ² values being significantly different from zero, respectively. MPH indicates average mid parent heterosis in hybrids.
# represents heritability on a plot basis.

doi:10.1371/journal.pone.0158635.t001
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(S4 Fig). For all seven quality traits, the wide genetic variation present resulted in significant
genotypic variances (P<0.001) for the parental lines and as well as the hybrids (Table 1). Heri-
tability estimates across all the environments were moderate to high (ranging from 0.63 for
starch content to 0.96 for SDS volume) and were much higher than plot-based heritability.
Thus, field testing at several environments was required to obtain high quality phenotypic
data.

Association mapping indicated putative QTLs for all seven quality traits
The quantile-quantile plot revealed absence of an excess of QTL (S5 Fig), indicating that popu-
lation stratification had been sufficiently controlled. QTLs with additive effects were detected
for all seven quality traits (S2 Table). Eight markers with additive effects were shared by gluten
content and protein content, implying a close correlation between these two traits. No marker
with dominance effect was detected for gluten content, kernel hardness, and starch content.
Only 4% of the detected markers showed significant interaction effects with the environments.
Markers explaining more than 10% of the genotypic variation were observed for the five quality
traits gluten content, kernel hardness, protein content, SDS volume, and 1000-kernel weight.
The total proportion of genotypic variance explained by all putative QTL exceeded 30% for
each of these five traits, while it was lower for starch content and test weight.

For all quality traits except starch content and test weight, the detected markers with signifi-
cant (P< 0.05 applying Bonferroni-Holm correction) additive effects were distributed over dif-
ferent chromosomes (S2 Table). None of the detected marker-trait associations has been
reported in available QTL studies, but most of them were located in chromosomal regions that
were previously described to be related to quality traits (S2 and S3 Tables). To check whether
the significant markers were located in transcribed regions of the wheat genome, local blast
was performed to align marker sequences with wheat cDNA sequences. In total, 35 markers
were successfully aligned to cDNA sequences with identities>99% (S4 Table). These cDNA
sequences could identify putative candidate genes related to quality traits, although further
efforts are required to confirm this assumption.

Most of the markers significantly associated to 1000-kernel weight were centered on chro-
mosome 3B (Fig 1). Ten of the 15 detected markers for 1000-kernel weight were positioned in
a window of 7 cM (S2 Table) and strong linkage disequilibrium (r2) was detected among these
markers (Fig 1). The allele effect of the most significant marker underlying 1000-kernel weight
amounted to -6.5 g (S2 Table), which is substantial when considering the given range of BLUEs
with a minimum of 42.3 g and a maximum of 56.4 g.

Non-cross validated accuracy of marker-assisted selection is severely
overestimated
Cross-validated accuracies of prediction through marker-assisted selection increased with
relaxing significance threshold for all traits and cross-validation scenarios except for the T0
scenario and 1000-kernel weight (Fig 2). Moreover, the accuracies of prediction decreased
gradually with increasing genetic distance between estimation and test sets. For the T0 sce-
nario, in which the relatedness was lowest, comparison of accuracies without and with cross-
validation revealed a substantial overestimation of accuracies of prediction by marker-assisted
selection for all seven quality traits analyzed (Table 2; S2 Table). In contrast, the overestimation
of the accuracy of prediction was small in the case of the most related T2 scenario.

We also counted the occurrence frequency of each particular QTL within 100 cross-valida-
tion runs (Fig 1). For all seven quality traits except 1000-kernel weight, unstable putative QTLs
detected in less than 50% of the runs or moderately stable putative QTLs detected in less than
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80% of the runs were detected. In contrast, five stable marker-trait associations were detected
for 1000-kernel weight with a high occurrence frequency of nearly 90 out of 100 cross-valida-
tion runs.

Genomic selection outperformed marker-assisted selection in terms of
accuracies of prediction
The cross-validated accuracies of prediction of genomic selection by RR-BLUP were in all
cases substantially higher than that of marker-assisted selection (Table 2). The trends of accu-
racies obtained by RR-BLUP in T2, T1, and T0 scenarios were in accordance with the observa-
tions made for marker-assisted selection. For the T0 scenario, in which the test set was least
related to the estimation set, we observed the lowest accuracies of prediction. In contrast, we
observed highest accuracies of predictions for the T2 scenario with closest relatedness to the
estimation set.

Our cross-validation study revealed 1000-kernel weight as the only trait for which stable
putative QTLs were obtained. Implementation of Bayes-Cπ andW-BLUP models was expected
to improve the accuracy of prediction. Nevertheless, we observed no increase in the accuracy of
prediction accuracy for Bayes-Cπ and only a slight increase of 2.6% in the case of the T0 sce-
nario for W-BLUP compared to RR-BLUP (Table 2).

In addition, we observed in 81% of the cross-validation runs higher accuracies of prediction
for the additive plus dominance model compared with the pure additive model based on the
same training population of hybrids. Nevertheless, the benefits in accuracies were only mar-
ginal with an average of 0.27%.

Fig 1. SNPs with additive effects contributing to 1000-kernel weight.Heat-plots of (OF, top row)
frequencies with which SNPmarkers were significantly associated with 1000-kernel weight in 100 cross-
validation runs, (P, middle row) P-values of respective SNPmarkers that contributed significantly to the
additive genetic variation of 1000-kernel weight, and (r², lower triangular section) linkage disequilibrium
measured as squared Pearson’s correlation coefficients among SNPmarkers.

doi:10.1371/journal.pone.0158635.g001
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Fig 2. Cross-validated accuracies of prediction in marker-assisted selection for seven wheat quality traits. Varying degrees of relatedness
between the estimation and test sets, with triangles indicating a T2 scenario with closest, round discs a T1 scenario with intermediate, and squares a T0
scenario with closest relatedness, and levels of significance, with P-values of 0.001, 0.001, 0.01, 0.05, 0.1, and applying Bonferroni-Holm correction for
multiple testing, were used in genome-wide scans for marker-trait associations. Significant markers were then used to predict the performance of the
individuals included in test sets. Numbers in brackets indicate the average number of significant marker-trait associations found based on 100 cross-
validation runs. Red lines show corresponding non-cross-validated accuracies of prediction accuracies obtained based on the full data set.

doi:10.1371/journal.pone.0158635.g002

Table 2. Cross-validated accuracies of prediction of marker-assisted selection, genomic selection, mid-parent prediction and prediction based on
general-combining ability effects.

Trait MASa MAS-CVb RR-BLUP Bayes-Cπ W-BLUP MPc GCAd

T0 T1 T2 T0 T1 T2 T0 T1 T2 T0 T1 T2 T2 T2

Gluten content 0.67 0.23 0.41 0.64 0.37 0.69 0.95 0.36 0.69 0.95 0.36 0.68 0.95 0.88 0.94

Kernel hardness 0.79 0.16 0.43 0.73 0.34 0.77 1.00e 0.35 0.78 1.00d 0.29 0.74 1.00e 0.97 1.00d

Protein content 0.66 0.19 0.38 0.50 0.36 0.69 0.96 0.35 0.69 0.96 0.34 0.68 0.96 0.89 0.95

SDS value 0.72 0.20 0.43 0.69 0.48 0.79 0.99 0.48 0.79 0.99 0.47 0.78 0.99 0.97 0.98

Starch content 0.20 -0.01 0.19 0.44 0.27 0.64 0.89 0.28 0.65 0.90 0.20 0.60 0.89 0.80 0.88

Test weight 0.32 0.11 0.26 0.42 0.41 0.67 0.89 0.44 0.69 0.89 0.34 0.63 0.88 0.78 0.87

1000-kernel weight 0.59 0.21 0.41 0.66 0.39 0.74 0.98 0.38 0.74 0.98 0.40 0.73 0.98 0.92 0.97

a accuracy of prediction based on marker-assisted selection without cross-validation at significance level p-value < 0.05 (Bonferroni-Holm correction).
b accuracy of prediction based on marker-assisted selection with cross-validation at significance level p-value < 0.05 (Bonferroni-Holm correction).
c MP represents cross-validated mid-parent prediction.
d GCA represents cross-validated prediction based on general-combining ability effects.
e prediction accuracies above 1 were set as 1.

doi:10.1371/journal.pone.0158635.t002
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Effects of marker density and estimation population size on the accuracy
of prediction
We studied the effect of the marker density on the prediction accuracy based on an equidistant
sampling of subsets of SNPs. The prediction accuracies enhanced with increasing marker den-
sity for the T2, T1, and T1 scenarios (Fig 3). The increase plateaued, however, after ~3k for the
T0 scenario, after ~2k for the T1 scenario, and 0.5k for the T2 scenario.

We observed a substantial increase in the accuracy of prediction for the T0 scenario from
0.20 for in total 30 parental lines to 0.36 for in total 90 parental lines in the estimation set while
keeping the number of hybrids (100) and male parents (10) constant (Fig 4A). In contrast, the
accuracies of prediction increased only marginally for the T1 and T2 scenarios when increasing
the number of parental lines included. Increasing the number of hybrids but keeping the num-
ber of parental lines constantled for T0, T1, and T2 scenarios to only a slight increase in accura-
cies of prediction, with a maximum increase of 12% for starch content when increasing the
number of hybrids from 100 to 610 (Fig 4B).

Discussion

Absence of robust QTLs hampers marker-assisted selection of quality
traits in elite wheat except for 1000-kernel weight
Marker-assisted selection is beneficial compared to phenotypic selection in particular for (1)
traits that are controlled by major effect QTLs [62, 63] and (2) traits that are expensive to

Fig 3. Cross-validated accuracies of prediction of genomic selection using RR-BLUP for seven quality traits in dependence on
marker density (0.1-17k) for three cross-validation scenarios. The dashed lines indicate accuracies of prediction observed with highest
marker density as reference, blue, green, and red refer to T2, T1, and T0 scenarios with closest, intermediate, and lowest relatedness between
estimation and test sets, respectively.

doi:10.1371/journal.pone.0158635.g003
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phenotype [64, 65]. We observed low accuracies of prediction in the case of low relatedness
between estimation and test sets as with the T0 cross-validation scenario (Fig 2) and a preva-
lence of unstable marker-trait associations (S2 Table), which clearly suggests absence of large
effect QTL for all traits studied except 1000-kernel weight. This is not surprising, as large
effect QTL are likely to be fixed in elite germplasm for important quality traits as has been
reported for instance for a RIL population of French elite wheat lines [18]. Consequently, our
findings suggest low prospects of marker-assisted selection for gluten content, kernel hard-
ness, protein content, SDS volume, starch content, and test weight in Central European
wheat breeding.

For 1000-kernel weight, a robust putative QTL explaining 18% of genotypic variation was
detected on chromosome 3B. The chromosomal region corresponds to a previously reported
QTL for 1000-kernel weight [66]. Accordingly, applying the most stringent significance thresh-
old (P< 0.0001), we observed for 1000-kernel weight the highest accuracy of prediction for the
T0 scenario (0.32), and the smallest difference between T0 and T2 scenarios (0.16) among all
analyzed traits (Fig 2). These findings in combination with the high occurrence frequency of
respective marker-trait associations (Fig 1) clearly suggest presence of a reliable, large effect
QTL for 1000-kernel weight which provides a very interesting target for further fine-mapping
and map-based cloning activities. Interestingly, the large effect QTL has not yet been fixed in
the selection process, which may be explained by a low contribution of 1000-kernel weight to
grain yield.

Fig 4. Cross-validated accuracies of prediction of genomic selection using RR-BLUP for seven quality in dependence on the size and
composition of estimation sets as well as the relatedness between estimation and test sets. Estimation sets consisted of (A, top row) 10 male lines,
a varying number of female lines, and 100 hybrids derived from them or (B, lower row) 10 male parents, 80 females, and varying numbers of hybrids
derived from them. Triangles in red, round discs in green, and squares in blue represent T2, T1, and T0 scenarios with closest, intermediate, and lowest
relatedness between estimation and test sets, respectively. Solid red, green, and blue lines indicate accuracies for of prediction for T2, T1, and T0
scenarios with estimation sets consisting of 10 male parents, 80 female parents, and 610 hybrids as reference.

doi:10.1371/journal.pone.0158635.g004
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Genomic selection for quality traits based on RR-BLUP is only for the T0
and T1 scenarios an attractive alternative/complementation to
phenotypic selection
Several studies performed on wheat inbred line populations reported moderate to high accura-
cies of prediction by genomic selection for a wide array of traits in wheat [33, 38, 67–69]. In
accordance with these findings, in our study using hybrid wheat, for the T1 scenario involving
intermediate relatedness and the T2 scenario involving high relatedness between estimation
and test sets, we observed moderate to high accuracies of prediction, which points to the poten-
tial of genomic selection for improving quality traits. Heffner et al. [33] had used two segregat-
ing populations of wheat lines adapted to the U.S., which were genotyped with 399 to 574
molecular markers and phenotyped for nine quality traits. In this setup, genomic selection sub-
stantially outperformed marker-assisted selection for line per se performance with an average
increase of 30%. Our results for genomic selection in hybrid prediction (Table 2) are in line
with this observation and are consistent with the presence of multiple QTLs each exhibiting
only small effects [6]. Consequently, genomic selection is preferred to marker-assisted selection
for improving the quality of wheat hybrids.

Hybrid breeding facilitates to exploit dominance effects in contrast to line breeding [59],
which is reflected by a 8.1% smaller prediction accuracy by training the prediction model
purely based on parental lines as compared to using hybrid data (data not shown). Therefore,
Technow et al. [70] recommended to predict hybrid performance by exploiting both additive
and dominance effects. We observed only marginal benefits by using additive plus dominance
model compared with the pure additive model. The only marginal advantages were not due to
a tight correlation between the additive and dominance relationship matrices, which actually
was low (r = 0.21), but rather can be explained by the low ratio of variance of specific versus
general combining ability effects for quality traits [34]. In addition, dominance effects are
intra-locus interaction effects and are, hence, more difficult to estimate than additive effect,
which are main effects [38, 39, 70].

Hybrid prediction can also be based on mid-parent performance or general combining
ability effects. These data, however, are only available under certain conditions: mid-parent
prediction requires that phenotypic data are available for both parental lines of the hybrids
and GCA prediction requires that both parents of evaluated hybrids were involved in the
estimation hybrid set (for review, see Schrag et al. [71]). The tiny differences that were
observed when comparing MP- and GCA-based accuracies of prediction with that based on
RR-BLUP clearly points to the overwhelming importance of additive versus dominance
effects for quality traits. In particular, GCA-based prediction could be hardly outperformed
by applying genomic selection (Table 2). Consequently, for the T2 scenario, genomic selec-
tion is in terms of accuracy of prediction not an attractive alternative to phenotypic
selection.

For the T0 and T1 scenarios, MP- and GCA-based prediction is not applicable, while geno-
mic selection is a potential strategy to predict hybrid performance. Longin et al. [72] suggested
based on a simulation study that hybrid breeding applying exclusively genomic selection can
only be recommended if prediction accuracies exceed 0.5, in which case purely genomic selec-
tion strategy showed maximum annual gain compared to the other breeding strategies. Our
results revealed that a prediction accuracy of 0.5 is only reached in the T1 but not in the T0 sce-
nario for RR-BLUP (Table 2). Consequently, genomic selection is only for the T1 scenario the
method of choice and must be combined with phenotypic selection for wheat quality for the
T0 scenario.
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Genomic selection approaches designed to more properly model a mix
between large and small effect QTLs did not boost accuracy of
prediction of quality traits
Previous simulation studies have shown that equal shrinkage of marker effects as applied in
RR-BLUP can result in too strict shrinkage for QTL exhibiting large effects [6, 73]. Bayesian
models allow specific shrinkage of every marker [74], and, thus, are expected to outperform
RR-BLUP if large effect QTLs for the relevant trait are present. Among the seven quality traits
examined in our study, 1000-kernel weight is the only trait for which presence of a QTL exhib-
iting a large effect is indicated (Figs 1 and 2). Despite the presence of large effect QTL, however,
Bayes-Cπ did not outperform RR-BLUP. This can be explained by still too strict shrinkage [40]
or by high marker density resulting in a bulk of markers in linkage disequilibrium to the major
QTL [7, 75]. To distinguish between both reasons, we adopted an further alternative approach
W-BLUP, which was in a previous study successfully used to enhance accuracy of prediction
for heading time and plant height [40]. In contrast to the previous results, we observed in our
current study no significant increase in accuracy of prediction when applying W-BLUP com-
pared with RR-BLUP (Table 2). Rather, closer examination of the QTL region on chromosome
3B revealed that the large-effect QTL is actually captured through a number of closely linked
SNPs (Fig 1), explaining the lack of an increase in prediction accuracies switching from
RR-BLUP to Bayes-Cπ or W-BLUP.

Increasing the number of parental lines in the estimation set boosts
prediction accuracies in the T0 scenario
Meuwissen [76] reported that the accuracies of prediction of the performance of distantly
related individuals were restricted by both marker density and phenotypic records of the esti-
mation set. We performed an equidistant sampling of subsets of SNPs and found that the accu-
racy of prediction plateaued after ~3k (of approx. 17k available) for the T0 scenario with low
relatedness between estimation and test set (Fig 3), indicating that marker density is not a lim-
iting factor in our study. To take advantage of an increase in the marker density, large estima-
tion sets are required [76]. Two alternative strategies, i.e. increasing the number of parental
lines or hybrids, are possible to enlarge the estimation set used for hybrid prediction. We
observed increasing accuracies of prediction for both strategies in the T0 scenario (Fig 4). The
increase in accuracy was much stronger pronounced when the number of parental lines was
increased (Fig 4A) compared to enhancing the number of hybrids included, while keeping the
number of parents constant (Fig 4B). This is not surprising and can be explained by the key
role of the effective population size in driving accuracies of prediction [76]. We had sampled a
set of diverse 135 parental wheat lines for out wheat hybrid approach [37] and thus by increas-
ing the number of parents, also the effective population size was likely to increase. In contrast,
keeping the number of parents constant while increasing the number of hybrids did not result
in an enhanced effective population sizes. Consequently, an economic and efficient way to
improve accuracy of prediction of the hybrid performances in the T0 scenario should use a
large number of genetically diverse parents, which are evaluated in only a reduced number of
hybrid combinations.

Conclusion
For all seven quality traits scrutinized, association mapping detected QTLs, but cross-validation
revealed a large overestimation of prediction accuracies of marker-assisted selection. Genomic
selection generally showed improved prediction accuracies compared to marker-assisted
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selection and is the method of choice especially when predicting the performance of hybrids of
T0 and T1 population. Prediction accuracies can be maximized when enlarging rather the num-
ber of parents in the training population than increasing the number of hybrid combinations
per parent.

Supporting Information
S1 Fig. Scheme for the allocation of hybrids in cross-validation to estimation sets as well as
T2, T1, and T0 test sets with successively decreasing degree of relatedness to estimation
sets. Estimation sets comprised random selections of 80 out of 120 female (F) and 10 out of 15
male (M) parental inbred lines as well as 610 hybrids derived from them. Test sets included
only hybrids not assigned to the respective estimation set that had either both parents (T2),
one parent (T1) or no parent (T0) in common with the hybrids.
(EPS)

S2 Fig. Scheme for subpopulation sampling and allocation of hybrids within subpopulation
to estimation sets.
(EPS)

S3 Fig. Distributions of phenotypic values for seven quality traits based on an evaluation of
135 parental inbred lines and 1,604 hybrids in up to six environments. Arrows indicate
means of values.
(EPS)

S4 Fig. Correlation of BLUEs across environments. The upper right triangular section shows
correlations among quality trait values; the lower left triangular sections plot maps for each
pair of quality trait values; while the diagonal shows the histogram and density lines of quality
trait values. �, ��, and ��� indicate P< 0.05, P< 0.01 and P< 0.001 levels of probability for
phenotypic performance of different traits being significantly correlated.
(EPS)

S5 Fig. Quantile-quantile plots for association mapping based on the combined parental
lines and hybrids. Four different biometrical approaches were performed: (1) without correct-
ing for population structure, (2) with correcting for population structure with a heterotic effect,
(3) with correcting for population structure with a kinship matrix, and (4) with correcting for
population structure with a kinship matrix and a heterotic effect.
(EPS)

S1 Table. Summary of environments and genotypes involved in field experiments for each
quality trait.
(DOCX)

S2 Table. Significant (P< 0.05 and Bonferroni-Holm correction) marker-trait associa-
tions, and the proportion of genotypic variance (pG) explained by them, that were detected
in a genome-wide association mapping approach for seven quality traits in a Central Euro-
pean winter wheat population based on a 90k SNP array.
(DOCX)

S3 Table. Putative QTLs for wheat quality traits reported in previous studies.
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S4 Table. Detailed information on markers with significant trait-association that could be
successfully aligned to wheat coding sequence data.
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