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RESEARCH

Genomic prediction (GP) combines genomewide marker data 
with phenotypic and pedigree data (when available) in a 

training dataset to predict the genomic estimated breeding values 
(GEBVs) of untested individuals in a candidate dataset (Meuwis-
sen et al., 2001; Heffner et al., 2009; Wray et al., 2013). Genomic 
selection (GS) uses whole-genome molecular markers to predict 
and select individuals with top-ranking GEBVs from a selection 
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ABSTRACT
Genomic prediction (GP) combines genome-
wide marker data with phenotypic data in a 
training population to predict the genomic esti-
mated breeding values of untested individuals 
in a relevant testing population. Our objective 
was to evaluate the effects of population struc-
ture, genotype ´ trial, tester, and management 
interactions, and imputation methods on the 
accuracy of GP for grain yield in the CIMMYT’s 
African maize (Zea mays L.) program. The 
dataset included 2022 diverse breeding lines 
in 156 Stage 1 yield trials and 66,000 single-
nucleotide polymorphism markers. The first 
two principal components from principal com-
ponent analysis explained 10.5% of the vari-
ance in marker data. Based on marker data, 
five clusters were detected, but cluster of ori-
gin explained only 2% of the phenotypic varia-
tion. Prediction accuracy, assessed by cross 
validation, ranged from 0.20 to 0.36 within 
clusters and from 0.04 to 0.26 across clusters. 
Mean GP accuracy within clusters (0.27) out-
performed pedigree-based prediction (0.03). 
Imputation methods did not strongly affect 
prediction accuracy. Testers and management 
had large effects. To achieve acceptable GP 
accuracy within such a diverse population, one 
can employ (i) a very large training population 
size, (ii) carefully planned and relevant testers, 
and (iii) common trial environments and man-
agement between the training and validation 
populations and related genetic materials.
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population, where individuals are not phenotyped but 
only genotyped (Meuwissen et al., 2001; Heffner et al., 
2011; Zhang et al., 2015). Factors affecting the accuracy of 
GS include training population size, relatedness between 
the training and selection population, marker density, trait 
heritability, genetic architecture, and other factors that 
are interrelated with trait architecture (Goddard, 2009; 
Albrecht et al., 2011; Desta and Ortiz, 2014). In contrast 
with traditional phenotypic selection (PS), GS offers the 
advantage of enabling selection prior to phenotyping, 
saving costs, and has the potential to greatly accelerate 
genetic gains (Schaeffer, 2006; Heffner et al., 2010, 2011; 
García-Ruiz et al, 2016). Genomic selection was found to 
be more accurate than marker-assisted selection (MAS) 
(Heffner et al., 2011; Arruda et al., 2016). A GP accuracy 
derived from the literature of 0.53 would correspond to a 
threefold annual genetic gain in maize (Zea mays L.) and 
a twofold gain in wheat (Triticum aestivum L.) relative to 
MAS (Heffner et al., 2010). The advantage of GS over 
MAS and PS is particularly true for traits that are expen-
sive to measure, take a long time to measure, or that have 
low heritability (Desta and Ortiz, 2014). Another advan-
tage of GS over typical MAS is that it does not require 
identification or validation of association between specific 
markers and target traits (Arruda et al., 2016), which is a 
very time-consuming and expensive process in many crop 
species (Crossa et al., 2011). As marker technology has 
continuously reduced the cost per data point, the number 
of available markers has dramatically increased. Genomic 
selection has been routinely applied in large commercial 
breeding programs (Endelman et al., 2014) but has lagged 
in the public sector as limited by resources ( Jonas and de 
Koning, 2016). On the other hand, difficulties that hinder 
PS accuracy also pose similar challenges to GS accuracy. 
These include population structure (Lorenz et al., 2012; 
Riedelsheimer et al., 2013), genotype ´ environment (G 
´ E) interaction (Comstock and Moll, 1963; Crossa et al., 
2014), and optimization of resource allocation in different 
stages of testing (Lorenz, 2013; Ly et al., 2013). Although 
overall diversity is desirable in a breeding population, 
for optimal prediction accuracy, the testing population 
should be as related to the training population as possible 
(Habier et al., 2010; Clark et al., 2012; Windhausen et 
al., 2012). Early stages of testing, such as first-year Stage 1 
yield trial at CIMMYT, often involve testcrossing a large 
number of inbred lines derived from genetically diverse 
parents and populations onto different testers in differ-
ent environments (Albrecht et al., 2011; Riedelsheimer et 
al., 2012; Wu et al., 2015). As part of a routine varietal 
development pipeline, Stage 1 testing focuses on selecting 
for high general combining ability and GEBVs, whereas 
Stage 2 or 3 trials focus on specific combining abil-
ity (SCA) and matching hybrids to the environments in 
which they perform best. To achieve accelerated breeding, 

resource allocation needs to be optimized between effi-
ciently screening a large number of breeding lines in Stage 
1 trials and testing a small number of advanced individu-
als on multiple testers and in multiple environments for 
adaptability in Stage 2 and 3 trials (Lorenz, 2013; Jonas 
and de Koning, 2016).

Another challenge for implementing GP in a large 
population is marker density and data quality (Crossa et 
al., 2013; Zhang et al., 2015). Although it is a relatively 
inexpensive high-density marker technology, genotyping 
by sequencing (GBS) (Elshire et al., 2011; Poland et al., 
2012) is also associated with large quantities of missing 
data, which arises from no- or low-depth tag sequencing, 
because of the random sequencing of all tags available in 
the sequencing library. Different methods can be used to 
impute missing data, including haplotype hidden Markov 
models implemented in the software Beagle (Browning 
and Browning, 2007). Furthermore, multiple imputation 
methods have been reported to affect (Hickey et al., 2012; 
Rutkoski et al., 2013) and not affect (Crossa et al., 2013) 
GP accuracy.

Despite the potential benefits of GP in breeding 
programs, prediction accuracy studies using extensive 
empirical multiyear and multilocation, early stage of yield 
trials involving diverse and complex population structure, 
testers, and management trial datasets remain quite lim-
ited in the public maize breeding programs ( Jonas and 
de Koning, 2016). Therefore, this study was initiated 
with the following objectives: (i) to investigate GP accu-
racies in a genetically diverse and structured population 
for grain yield (GY) in CIMMYT’s Africa maize Stage 1 
testing program, (ii) to study differences between marker- 
and pedigree-based prediction on prediction accuracies, 
(iii)  to evaluate effect of marker imputation methods on 
GP accuracies, and (iv) to determine prediction accuracy 
as affected by interactions of lines with different trials, tes-
ters, and management regimes.

MATERIALS AND METHODS
Phenotypic Data
The experimental data in this study consisted of the first-year 
yield trial results, obtained between 2007 and 2011, of 2022 
maize breeding lines in CIMMYT’s African maize breeding 
program in Kenya. In these early stages of evaluation, breed-
ing lines were testcrossed to one to several testers, and the 
hybrids derived were placed into 47 trial series, totaling 156 
trials, which were set up according to genetic improvement 
objectives, source population, and pedigree derivation history, 
maturity, and testers (Supplemental Table 1). The number of 
lines tested in each trial ranged from 6 to 448, with a median 
of 40 lines. All maize lines were evaluated in hybrid combi-
nations by testcrossing them with 1 to 15 CIMMYT testers 
(advanced lines or F1 crosses between two advanced lines). The 
trials were planted in 18 different locations in Kenya, Tanza-
nia, Ethiopia, and Uganda under three different management 
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random effect of the lth tester, and eijkl is the residual effect 
that includes the genotype ´ trial interaction. A management 
effect was not included in the model as a separate variable but 
is considered part of the trial effect because management and 
trial effects were confounded with each other. Mixed model 
analysis was performed using the lme4 package version 1.1 
in R (R Core Team, 2015). Variance components were esti-
mated via restricted maximum likelihood (REML). Plot-based 
broad-sense heritability (H2) was calculated from these variance 
components as the ratio of genotypic variance to the total phe-
notypic variance. Total phenotypic variance is given by the sum 
of all variance components ( 2 2 2 2 2

g r t s es + s + s + s + s , where 2
gs  

is genotypic variance, 2
rs  is replication variance, 2

ts is trial vari-
ance, 2

ss is tester variance, and 2
es is residual variance). The 

dataset was considered unbalanced because the 2022 lines were 
not replicated equally across all the 156 trials. The prediction 
error variance (PEV) for each line depended on the number 
of times each line was replicated. According to Rincent et al. 
(2012), the relation between replication number and PEV is 
negative; lines with many replications have lower PEVs and are 
less shrunken toward the mean than those with few replica-
tions. To overcome this issue, BLUPs were deregressed on the 
basis of PEV (Garrick et al., 2009). The deregressed BLUPs 
were calculated as:
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where *
iy  is the deregressed BLUP of the ith line, ˆig  is the 

BLUP of the ith line, PEVi is the prediction error variance of 
the ith line, and 2

gŝ  is the total genetic variance. Both PEVi and 
2
gŝ  were obtained from Eq. [1].

All marker effects were estimated simultaneously (Meu-
wissen et al., 2001), as described by Endelman (2011), using the 
rrBLUP package in R. The following model was used to obtain 
estimates of the marker effects:

y* =  m + Za + e	 [3]

where y* is a n ´ 1 vector of deregressed BLUPs for GY esti-
mated across trials; n is the number of lines; m is the overall 
mean; Z is an identity matrix; a is the vector of additive genetic 
effects a ~ N(0, K 2

as ), in which K is the realized additive rela-
tionship matrix, estimated using the A.mat function in the 
rrBLUP package in R (Endelman, 2011); and e is random error 
[e ~ N(0, W 2

es ), where W is the diagonal weight matrix calcu-
lated from the lines’ PEV (PEVi) from Eq. [1]. To calculate the 
W matrix, the reliability of each line was obtained via 2

ir   = 
1 − (PEVi/

2
gs ) so that the weight for the ith line was calculated 

as ( )2 21i i iw r r= - .

Population Structure
To visualize the relatedness and potential subpopulation struc-
ture of the 2022 maize breeding lines used in this study, the 
kinship matrix (K) used in Eq. [3] was decomposed by prin-
cipal component analysis (PCA) and the first two principal 
components were plotted. To determine subpopulation clus-
ters, k-means clustering was applied to the kinship matrix using 
the kmeans function implemented in R (R Core Team, 2015), 

regimes: optimal, drought, and low nitrogen. A minimum of 
two replications of each entry within each trial were planted 
under managed drought, low nitrogen, and optimal conditions. 
Different phenotypic traits were recorded at different locations 
and trials. Among them, GY was evaluated in all trials and 
locations, which is summarized and reported here.

Marker Data
DNA was extracted from the leaf tissue of each of the 2022 maize 
lines and subsequently genotyped using GBS. A GBS protocol 
commonly used by the maize research community was applied 
in this study (Elshire et al., 2011). Briefly, GBS libraries were 
constructed in 96-plex, and genomic DNA was digested with 
the restriction enzyme ApeK1. Each library was sequenced on 
a single lane of Illumina flow cell (Cornell Life Science Core 
Laboratory Center, Ithaca, NY). To increase the genome cover-
age and read depth for SNP discovery, raw read data from the 
sequencing samples were analyzed together with an additional 
30,000 global maize accessions (Crossa et al., 2013). We used 
TASSEL 4.0 SNP GBS Discovery Pipeline, with B73 as the ref-
erence genome (Glaubitz et al., 2014) to identify SNPs. Initially, 
955,690 SNPs were generated for each line; markers with >50% 
missing scores were discarded from the dataset. After filtering for 
minor allele frequency (MAF) of >0.01, a subset of 65,995 SNPs 
remained as the unimputed dataset, with mean missing rate of 
36.6% and mean MAF of 0.15.

Imputation Methods
Before GP was applied to the filtered marker datasets, miss-
ing markers were imputed with three imputation methods: 
(i)  replace the missing genotypes of each marker with its 
population expectation (EX-POP), which is simple and compu-
tationally fast; (ii) impute using an expectation-maximization 
algorithm implemented in the ridge regression best linear unbi-
ased predictions (rrBLUP) package in R (Endelman, 2011); and 
(iii) impute using Beagle 3.3 software (Browning and Brown-
ing, 2007) with default parameters, where each chromosome 
was imputed independently. First, haplotypes were recon-
structed with default parameter values. After that, based on the 
inferred haplotypes, missing genotypes were imputed using a 
hidden Markov model.

Statistical Analyses
Similar to Ly et al. (2013), a two-step approach to GP was used in 
this study. First, raw phenotypes were corrected by partitioning 
genetic and environmental effects to calculate the deregressed 
best linear unbiased predictions (BLUP). Second, the deregressed 
BLUP (y*) was used as the response variable to calculate the 
GEBV. Prediction accuracy is the correlation between GEBV 
and deregressed BLUP (y*) in the validation set and the bias is 
the regression of GEBV on deregressed BLUP (y*). We fitted a 
linear mixed model to estimate BLUP for each line to correct 
environmental effect on phenotypes, as shown below:

yijkl = m + gi + tj + rk( j) + sl + eijkl	[1]

where yijkl is phenotype (i.e., GY), m is the overall mean and the 
only fixed effect in the model, gi is the random genetic effect 
of the ith maize line, tj is the random effect of the jth trial, rk( j) 
is the random effect of the replication within a trial, sl is the 
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which minimizes the distance between lines within clusters and 
maximizes that across clusters (AC; Saatchi et al., 2011). The 
number of clusters was determined according to Caliński and 
Harabasz (1974) using the R package NbClust.

The pedigree of all the 2022 lines was traced back for four 
generations. Pedigree-based relationships were calculated using 
the BROWSE software (McLaren et al., 2005; McLaren, 2008). 
The entries of this numerical relation matrix obtained from 
the pedigree equal to twice the coefficient of parentage (COP) 
between pairs of lines. Note that some of the lines were derived 
from open-pollinated varieties (OPVs) as parents and there-
fore had no specific pedigree. To account for the relatedness 
of pairs of lines derived from the same OPV, a COP of 0.05 
was assigned, whereas 0 was assigned to pairs of lines derived 
from different OPVs or from other sources. Prediction of the 
deregressed BLUPs using the pedigree data was performed by 
replacing the genomic marker-based matrix K in Eq. [3] with a 
pedigree-derived numerical relation matrix.

The impact of population structure on prediction accuracy 
was measured by two cross-validation (CV) strategies: within 
cluster (WC), where all the observations within a subpopulation 
cluster were randomly divided into training (70%) and valida-
tion (30%) datasets, and AC, where one of the subpopulation 
clusters was used as a validation dataset and the remaining four 
clusters were used as a training dataset (Table 1). The average 
values of the correlations between the GEBVs and deregressed 
BLUP values (y*) in the validation set from 50 runs were calcu-
lated and defined as the prediction accuracies for within cluster 
(rWC) and for across clusters (rAC) (Table 1). Similar to Zhang 
et al. (2015), correlation between rWC and H was calculated, 
where rWC is the GP accuracy and H is the square root of the 
plot-based broad-sense heritability (H2).

Effect of Line Interaction with Trial, Tester, 
and Management on Accuracy
When lines in the training and validation populations are eval-
uated in the same environments, GP accuracy can be inflated 
by interaction between lines and environments (Ly et al., 2013). 
This occurs because lines by environments interaction is shared 
between training and validation observations, even though 
they will generally not be reproduced in future environments 
(Lorenz et al., 2011). To estimate the size of this bias, only trials 
with >60 lines were included in the CV. Similar to Spindel 
et al. (2015), we altered the training population composition 

by including or excluding common testing units between the 
training and validation datasets. We took one trial at a time as 
a focal trial and used the rest of the trials to predict the focal 
trial. In the focal trial, 35 lines were randomly picked as vali-
dation dataset, whereas observations of the remaining entries 
from the focal trial were either included or removed from the 
training dataset, corresponding to two CV schemes (CV1 and 
CV2). In CV1, observations from the focal trial were excluded 
from the training dataset, whereas in CV2, those observations 
were included in the training dataset, but observations of cor-
responding lines in other trials were removed from the training 
dataset so that the amount of phenotypic data stayed the same 
in the training set between CV1 and CV2. For both valida-
tion schemes, this procedure was repeated 50 times for the focal 
trial, and the mean of 50 prediction accuracies was calculated. 
An estimate of the bias caused by line ´ trial interaction was 
obtained from the difference between CV1 and CV2 accuracy 
(Fig. 1). The same procedure was applied to testers and man-
agements. The number of lines crossed to each tester ranged 

Table 1. Genetic variance, heritability (H2), and the accuracies for within- (rWC) and across-cluster (rAC) predictions.

Cluster Origins No. of lines
Mean grain 

yield
Pedigree-

based rWC† rAC†
Genetic 
variance H2

t ha−1

1 QPM‡ 182 3.84 0.08 0.29 0.26 0.03 0.15

2 Latin America 422 4.44 −0.06 0.24 0.20 0.04 0.15

3 Zimbabwe 606 4.80 −0.03 0.33 0.06 0.11 0.21

4 Kenya 403 5.63 0.02 0.36 0.15 0.14 0.22

5 IITA 409 5.30 0.03 0.20 0.04 0.15 0.24

All lines 2022 −0.03 0.27 0.22

Mean 4.80 0.01 0.28 0.14 0.19

† The average values of the correlations between the phenotype and the genomic estimated breeding values from 50 runs were calculated and defined as the prediction 
accuracies within clusters (rWC) and across clusters (rAC).

‡ QPM, quality protein maize.

Fig. 1. Prediction accuracy with two cross-validation schemes 
(CV1 on x-axis  and CV2 on y-axis) for trials. In CV1, observations 
from the focal trial were excluded from the training dataset, 
whereas in CV2, observations from the focal trial were included 
in the training dataset, but matched observation from other trials 
were removed
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the International Institute of Tropical Agriculture (IITA) 
in Nigeria. Clusters 1 (QPM) and 2 (Latin America) were 
more closely related to each other than to Cluster 3 (Zimba-
bwe), Cluster 5 (IITA), and Cluster 4 (Kenya). Kenyan lines 
were more closely related to Zimbabwean and IITA lines 
than the Zimbabwean and IITA lines were related with 
each other. Mean GY by cluster ranked as follows: Kenya 
(5.63 t ha−1) > IITA (5.30 t ha−1) > Zimbabwe (4.80 t ha−1) 

between 6 and 1339, with a median of 67. The CV (CV1 and 
CV2) was applied to 9 of the 15 testers that had >60 lines per 
tester and to the three managements. Estimate of tester (Table 2) 
or management (Table 3) effects was obtained from the differ-
ence between CV1 and CV2 prediction accuracy.

RESULTS
Population Structure
The 2022 CIMMYT maize breeding lines evaluated in this 
study were known for their diverse genetic background 
(Wu et al., 2015), origins (tropical, subtropical, tropical 
´ temperate, or OPV), type of crosses (three-way, four-
way, synthetic, or doubled haploid), and selection history 
(multiple biotic and abiotic stresses prevalent in Africa). 
Therefore, some population structure was expected. From 
the PCA on the realized genomic relationship matrix, 
the first two principal components explained 6.9 and 
3.6% of the total marker variation, respectively (Fig. 2). 
The optimum number of clusters was determined to be 
five according to Caliński and Harabasz (1974) index for 
k-means clustering. Cluster sizes ranged from 182 to 606 
lines per cluster (Table 1). Further, cluster of line of origin 
analysis tracked the breeding program that majority of 
the lines originated from: Cluster 1 contained breeding 
lines mostly belonging to CIMMYT’s quality protein 
maize (QPM) program, Cluster 2 lines originated mainly 
from the Latin American maize breeding program, Clus-
ter 3 lines mainly belonged to the Zimbabwean maize 
breeding program, Cluster 4 lines were mostly derived 
from the Kenyan maize breeding program, and Cluster 
5 lines traced back to the maize breeding program of 

Table 2. Number of lines and observations tested for each tester, genomic prediction accuracy with two cross-validation 
schemes (CV1 and CV2). In CV1, observations from the focal tester were excluded from the training dataset, whereas in CV2, 
those observations were included in the training dataset.

Testers No. of lines
No. of 

observations CV1 CV2
Difference between 

CV1 and CV2
Classification of testers per 
accuracy by CV1 and CV2

1. CML440 67 458 0.36 0.36 0.00 Similar, high

2. CML395 ´ CML444 1,339 10,486 0.26 0.27 0.01 Similar, high

3. CML144 61 244 0.15 0.15 0.00 Similar

4. CML144 ´ CML159 68 723 0.06 0.08 0.02 Similar, low

5. CML159 67 354 0.04 0.05 0.01 Similar, low

6. CML312 ´ CML442 916 6,300 0.18 0.31 0.13 Different, high

7. CML202 ´ CML395 360 1,882 0.09 0.33 0.24 Different

8. CML445 230 1,001 −0.08 0.06 0.14 Different, low

9. ECA-EE-55 154 1,820 −0.03 0.05 0.07 Different, low

Mean 0.12 0.18 0.06 Different

Table 3. Number of lines and observations for each management, genomic prediction accuracy with two cross-validation 
schemes (CV1 and CV2). In CV1, observations from the focal management were excluded from the training dataset, whereas 
in CV2, those observations were included in the training dataset.

Management
No. of  
lines

No. of  
observations CV1 CV2

Difference between 
CV1 and CV2

Optimal 2,022 16,827 0.07 0.24 0.17

Drought 1,911 7,744 −0.02 0.13 0.15

Low nitrogen 357 992 −0.01 0.01 0.02

Mean 0.01 0.13 0.12

Fig. 2. Population and subpopulation structure as plotted by the 
first two principal components of principal component analysis 
(PCA) and K-means clustering. Five clusters were determined 
using the index given by Caliński and Harabasz (1974). Each dot 
represents one maize line, colors are determined via K-means 
clusters, and cluster sizes are shown in the legend.
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> Latin America (4.44 t ha−1) > QPM (3.84 t ha−1), with 
an overall mean of (5.08 t ha−1). Variance components esti-
mated via REML were as follows: genotypic variance ( 2

gs ) 
= 0.3401, replication variance ( 2

rs ) = 0.4189, trial variance 
( 2

ts ) = 2.8135, tester variance ( 2
ss ) = 0.7394, and residual 

variance ( 2
es ) = 1.2326. Cluster variance was 0.11, meaning 

only 2% of the total phenotypic variance for GY was con-
tributed by the clusters of origin. Plot-based broad-sense 
heritability for GY ranged from 0.15 in Clusters 1 (QPM) 
and 2 (Latin America) to 0.24 in Cluster 5 (IITA), with 
overall heritability across all lines being 0.22 and a mean 
heritability being 0.19 across all clusters.

Genomic Prediction and Pedigree-Based 
Prediction Accuracies
To verify that markers captured information beyond pedi-
gree relatedness in these predictions, we also performed 
pedigree-based predictions, where the marker-based 
kinship matrix K in Eq. [3] was replaced with a pedi-
gree-based matrix. Pedigree-based prediction accuracies 
were not much different from zero, ranging from −0.06 
in Cluster 2 lines (Latin America) to 0.075 in Cluster 1 
lines (QPM), with a mean of all lines of −0.03 (Table 1), 
which was lower than the WC (0.27) and AC means (0.14). 
Clearly, GP outperformed pedigree-based prediction.

Attributing its cluster mean of 0.14 to each hybrid 
would thus generate a cluster mean prediction accuracy of 
0.02 (i.e., 0.14 ´ 0.14 » 2%); however, we observed a pre-
diction accuracy of 0.27. In other words, GP accuracy in 
our study was almost twice as high as cluster mean predic-
tion accuracy, indicating an advantage of GP over cluster 
mean prediction, validating that markers captured more 
than population structure effects. In summary, marker-
based GP outperformed cluster mean-based prediction 
and was greatly improved over pedigree-based prediction.

Within- and Across-Cluster Genomic 
Prediction
Genomic prediction accuracy within each cluster was 
calculated using a random CV method (i.e., the mean 
accuracy of 50 times), splitting 70% of all observa-
tions randomly from a cluster to predict GEBVs of the 
remaining 30% lines within the same cluster. Among the 
five clusters identified, Cluster 4 (Kenya) had the highest 
GP accuracy (0.36), whereas Cluster 5 (IITA) had the 
lowest accuracy (0.20) (Table 1). The accuracy across all 
lines was 0.27, close to the average of the five clusters’ 
WC accuracy of 0.28. The standard error for 50 repeated 
CV prediction accuracies was low, ranging from 0.01 
to 0.03 (data not shown), with the highest value being 
for Cluster 4 lines (Kenya) and the lowest for Cluster 2 
lines (Latin America), indicating that variation among 
the 50 repeated, random CVs did not affect the reported 
accuracies much. The WC prediction accuracy did not 

appear to correlate with broad-sense heritability, nor 
with cluster size.

The AC GP accuracies were calculated by leaving 
one cluster out and using the remaining four clusters as 
training set. We found that, for all clusters, AC prediction 
accuracy was lower than WC prediction accuracy. How-
ever, Clusters 1 (QPM, 0.26) and 2 (Latin America, 0.20) 
had accuracy close to WC prediction accuracies. Cluster 
3 (Zimbabwe, 0.06) and 5 (IITA, 0.03) accuracies were 
close to zero (Table 1). The higher across-cluster accura-
cies for the QPM and Latin American clusters probably 
came from the similarity of the two clusters (Fig. 2), indi-
cating that they predict each other reasonably well.

Imputation Method Effect on Accuracy
Initially, 955,690 SNPs were generated for each line by 
GBS; a filtered subset of 65,995 SNPs, with a missing rate 
of <50% and minimum MAF >0.01, was used for the GP 
in this study. The mean missing rate was 36.6%, where the 
missing pattern was random and the mean MAF was 0.15 
in the unimputed 65,955 SNP dataset. EX-POP, Beagle 
(Browning and Browning, 2007), and expectation-
maximization (Endelman, 2011) were not only used to 
impute missing marker data points but also to evaluate the 
impact of missing data points on GP accuracy. Imputation 
using Beagle was performed for each chromosome inde-
pendently, and haplotypes were first reconstructed with 
default parameter values. Conditional on the inferred 
haplotypes, missing genotypes were then imputed using 
a hidden Markov model. In general, little difference was 
found between imputation methods for WC prediction 
accuracy or across the total dataset, as shown in Fig. 3. 
The expectation-maximization method had the high-
est or second highest accuracy of all clusters. EX-POP 
and the Beagle methods had the highest difference in 
Cluster 3 (Beagle was higher by 3.1%). The ranking of 
computational time was EX-POP < Beagle < expecta-
tion-maximization methods.

Differences among imputation methods for AC GP 
accuracy were small but slightly bigger than those of 
WC prediction (Fig. 3). Again, the highest difference 
was between EX-POP and Beagle methods (Beagle was 
higher by 5.1%) in Cluster 3. Results similar to those for 
WC prediction were obtained with AC, with the expec-
tation-maximization method tracking very closely the 
prediction accuracy of EX-POP, whereas Beagle showed 
more variability than the other two methods. Neverthe-
less, all imputation methods affected prediction accuracy 
very similarly, consistent with other studies (Weng et al., 
2012). As there was not much difference between imputa-
tion methods, the EX-POP method was chosen to impute 
for the rest of the analysis in the study because of its low 
computation time.
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Impact of Trials, Testers, and Managements 
on Prediction Accuracy
To evaluate the prediction accuracy as affected by different 
trials, testers, and managements, we adopted a CV scheme 
(CV1 and CV2) similar to Spindel et al. (2015). The trial 
sizes ranged from 61 to 233 lines (trials with <60 lines 
were excluded from these CV analyses). The number of 
phenotypic observations per trial ranged from 122 to 496, 
with each line replicated two to three times in each trial. 
The prediction accuracy for CV1 and CV2 differed very 
little (Fig. 1), averaging 0.13 and 0.14, respectively, having 
observations from a particular trial biased the accuracy 
upward by only 1%. A paired t test on the accuracies of 
CV1 and CV2 gave a p-value of 0.034. The assumptions 
of the t test were not met in this analysis because the trials 
were not independent. Nevertheless, this low p-value sug-
gested that, while small, there might be a genuine upward 
bias between CV1 and CV2 for trials.

The same approach was used to estimate the effect of 
line ´ tester interaction on prediction accuracy. In CV1, 
lines crossed to the focal tester were excluded from the train-
ing dataset, whereas in CV2, those observations remained, 
but matched lines crossed to other testers were removed 
from the training dataset so that the amount of phenotypic 
data stayed the same in the training set between CV1 and 
CV2. The number of lines and observations ranged from 
61 to 1339 lines and 244 to 10,486 observations (Table 2). 
The mean accuracy for CV1 and CV2 was 0.12 and 0.18, 
respectively. Clearly, the effect of line ´ tester interaction 
was larger than the line ´ trial interaction, suggesting that 

evaluating lines in hybrid combination with relevant testers 
was important for GP accuracy.

Among the nine testers evaluated (Table 2), CV2 and 
CV1 had no bias for five testers, where Testers 1 and 2 
had relatively high accuracy (0.36 or 0.26, respectively). 
Testers 4 and 5 had low accuracy (0.06 and 0.08, respec-
tively), and Tester 3 had intermediate prediction accuracy 
(i.e., 0.15 for both CV1 and CV2). For the other four tes-
ters (Testers 6–9), CV2 had higher prediction than CV1, 
which indicated the interaction between testers and lines 
affected prediction accuracy. Tester 6 almost doubled the 
prediction accuracy when validated by CV2 (0.31) versus 
CV1 (0.18); for Tester 7, CV2 (0.33) was almost four times 
larger than CV1 (0.09), and for Testers 8 and 9, CV1s were 
negative and CV2s were low (0.06 or 0.05). These results 
indicated that including or excluding common testing 
units between training and validation datasets made a big 
difference in prediction accuracy for Testers 6 and 7 but 
made little difference for Testers 8 and 9.

Our results have demonstrated that testers themselves 
had a major impact on prediction accuracy, where Testers 
1, 2, 3, and 6 had medium to high prediction accuracy and 
Testers 4, 5, 8, and 9 had very weak prediction accuracy 
across both CV1 and CV2 validation schemes. Therefore, 
choosing the right testers and evaluating lines in hybrid 
combinations with relevant testers are very critical for 
routine implementation of GS in Stage 1 testing in the 
CIMMYT East African Maize breeding program.

Finally, we used the CV approach to study the impact 
of different managements on prediction accuracy. A high 

Fig. 3. The accuracy of genomic prediction within clusters (left) and across clusters (right) using Beagle (circles) or expectation-maximization 
(squares) plotted against accuracies when missing marker data points were set to the cluster mean for their marker. Numbers in the 
symbol indicate the cluster. “T” indicates the total dataset.
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number of lines was observed under each management. All 
lines were tested under optimal conditions, with 16,827 
observations. Optimal management received the biggest 
advantage from CV2, with a difference of 0.17 in the GP 
accuracy over CV1 (Table 3). Performance under drought 
or low nitrogen could not be predicted without obser-
vations from those management practices, as shown by 
nonsignificant negative correlations between prediction 
and observations under CV1. Prediction for low nitro-
gen was generally unsuccessful. Even when low-nitrogen 
observations were available in the training dataset (CV2), 
the accuracy was not different from zero (Table 3).

DISCUSSION
Stage 1 yield trials in the CIMMYT maize breeding pro-
gram involve testcrossing many diverse breeding lines to 
multiple testers and evaluating the testcrosses across mul-
tiple environments and management regimes. Depending 
on the traits’ genetic architecture and selection intensity, 
yield trials and PS can be very expensive with low gain 
from selection per unit of investment. As genotyping 
costs have continued to decrease, training dataset sizes 
have tended to increase, and training models have been 
optimized, which, in turn, have improved prediction 
accuracies. In this study, we evaluated the feasibility of 
GS in the CIMMYT East African maize breeding pro-
gram, using (i) a phenotypic dataset that consisted of GY 
observations from hybrids generated from 2022 diverse 
breeding lines obtained from 156 Stage 1 yield trials 
conducted across multiple testers, environments, and 
managements; and (ii) a genotypic dataset that consisted of 
2022 breeding lines’ DNA samples ´ 65,995 unimputed 
GBS SNP marker matrix calls. Overall, the prediction 
accuracies in this study were low: WC accuracies ranged 
from 0.2 to 0.36, AC accuracies ranged from 0.04 to 0.26, 
and WC pedigree-based accuracies ranged from −0.06 to 
0.08. Despite the prediction accuracies being low, the CV 
results across different clusters, imputation methods, tes-
ters, and managements were consistent with other maize 
genomic-prediction studies, including breeding popula-
tions (Albrecht et al., 2011; Crossa et al., 2011), biparental 
and multiparental populations (Guo et al., 2013; Rie-
delsheimer et al., 2013; Schulz-Streeck et al., 2013), and 
diversity panels (Riedelsheimer et al., 2012; Rincent et 
al., 2012). For example, using multiple GS models and 
environments, prediction accuracy for maize flower-
ing time ranged from 0.46 to 0.79, and for maize GY, it 
ranged from 0.42 to 0.53 (Crossa et al., 2011). The low 
level of prediction accuracies in this study could be mostly 
attributed to the highly diverse population structure in 
the Stage 1 breeding lines evaluated. As Albrecht et al. 
(2011) and Hickey et al. (2014) reported, a high degree of 
relatedness between the training and the validation test set 
corresponded to high accuracies (0.72–0.74), and distantly 

related families corresponded to low to intermediate 
accuracies (0.47–0.48). The CIMMYT germplasm con-
stitutes diverse genetic backgrounds (Crossa et al., 2014; 
Wu et al., 2015). The diversity of the germplasm evalu-
ated in this study is consistent with that assessment. This 
diversity is very different from temperate maize that has 
very well-defined heterotic pools and well-kept selection 
history and pedigree records (Lu et al., 2009).

Zhang et al. (2015) reported that the ascertainment 
bias and SNP calling error of GBS increased when B73 
was used as reference genome in the GBS production 
pipeline for tropical germplasm, where allele frequency 
in temperate maize and tropical maize was different and 
novel alleles in the tropical maize could have been missed. 
Using the B73 temperate line as the reference genome to 
call SNP markers for the tropical germplasm could also 
cause reduced GBS marker quality. Other factors affect-
ing the prediction accuracy in this study could be variable 
GY measurements across multiyear and multilocation 
yield trials and variable training population size and com-
position. As shown in the realized genomic relationship 
matrix, the total variation for these diverse lines was so 
large that the first two principal components together 
explained 10.5% of the total marker variation. Popula-
tion structure, as tracked to the clusters of line of origins, 
explained only 2% of the total phenotypic variation. 
Although the prediction accuracies in this study were 
low, they were consistent. Clearly, the results indicated 
that, for highly diverse breeding lines in the African mid-
altitude maize, GS (WC mean 0.27 and AC mean 0.22) 
was more effective than pedigree-based prediction (mean 
0.03), which was consistent with Heffner et al. (2011) and 
Burgueño et al. (2012). Differences in accuracies in the 
all clusters between GS and PS were not large, indicat-
ing that partially replacing Stage 1 yield trial testing with 
GS could offer a significant cost reduction, more rapid 
breeding and selection cycles, and thus higher genetic 
gain along the lines of the analysis provided by (Heffner et 
al., 2010). Genomic selection offers great opportunity for 
optimizing breeding schemes within the same resources, 
which is especially true for closely related lines ( Jonas and 
de Koning, 2016). A prediction accuracy of 0.36 within 
Kenyan lines still allows a breeding program to discard the 
worst lines; for example, discarding the lines ranked in the 
lowest quartile GEBVs before placing them in expensive 
yield trials. Savings from partially replacing yield trials 
with GS in the Stage 1 testing would allow the Kenyan 
breeding program to screen more lines in the subsequent 
cycles or to add testers, replications, or environments for 
SCA in Stage 2 and Stage 3 testing.

Windhausen et al. (2012) and Guo et al. (2013) reported 
predictive accuracies that were highly affected by popula-
tion structure when the calibration set comprised genetic 
groups with significantly different mean performance. 
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Our study showed that WC was more accurate than AC 
prediction, which is consistent with the above-cited stud-
ies. The average relatedness of the individuals from the 
training population with those from the validation popu-
lation has been shown to have a strong effect on prediction 
accuracy (Habier et al., 2010). Windhausen et al. (2012) 
found that prediction accuracy was not greatly different 
from the accuracy that would be obtained by predict-
ing an individual’s value with the mean phenotype of the 
cluster to which the individual belongs, which suggested 
that individuals belonging to different clusters basically 
contributed no useful information for prediction in a focal 
cluster. Our study reached a slightly different result. We 
found that AC prediction accuracy was >0.2 for two clus-
ters and >0.10 for three clusters. Thus, individuals from 
each cluster contributed information valuable to the pre-
diction of the other clusters. In the case presented here, 
only 2% of the variation in GY was explained by cluster 
of line origin. Attributing its cluster mean to each hybrid 
would thus generate a prediction accuracy of 0.14 (that 
is, 0.14 ´ 0.14 » 2%), whereas we observed an accuracy 
of 0.27. In other words, GP accuracy in our study was 
almost twice as high as cluster mean prediction accuracy, 
indicating that markers captured more than population 
structure effects. To verify that markers captured infor-
mation beyond pedigree relatedness in these predictions, 
we also performed predictions where the pedigree-based 
relationship matrix replaced the marker-based kinship 
matrix K in Eq. [3]. Accuracies for pedigree-based pre-
dictions were close to zero (−0.03 across all lines), which 
was much lower than marker-based prediction accuracy 
for all lines. These results agree with many other studies 
in that markers consistently increased prediction ability 
over the baseline pedigree-derived model (Vazquez et al., 
2010; Heffner et al., 2011; Crossa et al., 2014).

The analyses we performed to evaluate the effect of 
the presence of data from different trials, testers, and man-
agements indirectly addressed the issue of the effect of G 
´ E interaction on prediction accuracy. The G ´ E inter-
action generates a common error component between 
the predictions and the training estimates based on the 
observations (Lorenz et al., 2011, 2012; Burgueño et al., 
2012), which is attributed to a confounding factor that 
upwardly biases the prediction accuracy (Ly et al., 2013). 
With respect to the question of what trials and environ-
ments to include in training populations, when validation 
measurements are taken in environments that were also 
sampled in training population evaluations, there will be 
a positive bias in the accuracy that depends on the total 
number of environments used and on the ratio of the G ´ 
E interaction variance to genetic variance.

Predicting the performance of newly developed 
lines that have never been evaluated in the field (CV1) 
is more challenging than predicting the performance of 

lines that have been evaluated in different but correlated 
environments (CV2) (Crossa et al., 2014). Table 3 contains 
correlations for two CV schemes (CV1 and CV2). The 
CV1 predicted unobserved phenotypes of untested lines, 
whereas CV2 predicted unobserved phenotypes of lines 
that had been evaluated in some environments but not 
others. Relative to CV1, correlations in CV2 were 240% 
greater under optimal and 750% greater under drought 
management, indicating the importance of having infor-
mation from correlated environments when predicting 
performance. For correlated management, higher predic-
tion accuracies can be achieved by borrowing information 
from correlated trials and environments; for example, the 
mean correlations in CV2 were 120% greater than those in 
CV1 (Table 3). Consistent with Crossa et al. (2013) using 
unrelated populations (CV1) as a training population, the 
prediction accuracy became negligible for drought and 
low nitrogen management. When GP includes modeling 
G ´ E interaction, an increase in prediction accuracy can 
be achieved by borrowing information from correlated 
environments (CV2, Table 3). Our results indicated that 
to achieve high prediction accuracy, the training dataset 
for GP should represent the full genetic and environmen-
tal spectrum of a breeding program. These results are 
consistent with Albrecht et al. (2014) and Crossa et al. 
(2014) in that the optimum training data for GP should 
represent the full genetic and environmental spectrum of 
the respective breeding program. Albrecht et al. (2014) 
reported that data heterogeneity can be reduced by exper-
imental designs that maximize the connectivity between 
data sources by common or highly related test units. Our 
prediction results across testers showed that borrowing 
common testing units between training and validation 
datasets was important for some testers but not for others 
(Table 2), which demonstrated that testers themselves had 
a major impact on prediction accuracy. Overall, the results 
indicated that tester selection was a very important factor 
in GP accuracy for Stage 1 yield trials. Also, choosing the 
right testers and evaluating lines in hybrid combinations 
with relevant testers are critical for routine implementa-
tion of GS in Stage 1 testing in the CIMMYT African 
maize breeding program.

Agreeing with Heffner et al. (2011) and Jonas and 
de Koning (2016), GP for GY in our study was much 
more accurate than pedigree-based prediction and was 
consistent with PS; hence, GP could possibly or par-
tially replace PS in CIMMYT maize breeding programs. 
Clearly, the CIMMYT African maize program contained 
a highly diverse subpopulation structure. However, further 
improvement in GP accuracies could still be achieved by 
(i) employing a very large training population size, (ii) cor-
rectly choosing relevant testers, and (iii) common trial units 
between the training and validation populations, including 
similar environment, management, and related genetics. 
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This report represents the largest empirical GP accuracy 
CV case study among public maize breeding programs.
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