Breeding Strategy and use of HTPG in the CIMMYT global wheat program (GWP)

Susanne Dreisigacker

Forward Breeding for accelerated crop improvement workshop

August Nov 28-30, 2016

ICRISAT

Centralized breeding program in Mexico

- Durum and spring bread wheat program in Mexiko
- ✓ Winter wheat program in Turkey
- ✓ No of crosses
- Shuttle breeding within Mexico and to Kenya
- Preliminary yield trails in multiple simulated environments in Mexico

Germplasm distribution via IWIN (International Wheat Improvement Network)

Annual seed shippments:

- ✓ approx. 200 000 wheat lines
- ✓ approx. 450 breeding programs

Centralized breeding program in Mexico

Figure 1. Most spring bread wheat varieties released in developing countries during 1994-2014 are CIMMYT/ICARDA-related; results for spring durum wheat are similarly impressive.

Source: Lantican et al. 2016.

Germplasm Target traits

Core traits

- ✓ High and stable yield potential
- Durable resistance to Rusts- Stem (Ug99),
 Stripe and Leaf
- ✓ Water use efficiency/Drought tolerance
- ✓ Heat tolerance
 - Appropriate end-use quality
 - N-use efficiency

Additional traits for specific mega-environments

- \checkmark Durable resistance to diseases and pests
 - Septoria leaf blight
 - Spot Blotch
 - Tan Spot
 - Fusarium head scab and mycotoxins
 - Karnal bunt
 - Aphids
 - Root rots and nematodes
- ✓ Enhanced Zn and Fe concentration

Marker-based selection strategies

Traits controlled by a few genes with large effects <u>Reductionistic - gene based</u> Line evaluation, MABC, MAS

Discover relevant genes

Identify and validate effects of favorable alleles

Introgression into elite breeding pools

Traits controlled by many genes with small effects <u>Holistic - genome wide</u> Genomic Prediction

Identify a prediction problem

Estimate the effects for all genomic regions

Employ prediction model for a improved or rapid enhancement of breeding values

Marker-based selection strategies - overview

Genomic selection

BW and PT – F5 to F7 prediction

BW: Marker based selection strategy - Current Breeding Cycle

DW: Marker-based selection strategy - Current Breeding Cycle

PT: Marker-based selection strategy - Current Pre-breeding Cycle

Marker deployment in 2016 (Jan – Sept 2016)

Trait-based marker data points: 160,930

DNA extraction: 18,600 lines

Number of markers/line: 8.6

Percent SNP markers: 71.8

Percent STS/SSR markers: 28.2

Percent SNP markers outsourced: 26.2

SNP array/NGS data points: >750 000

DNA extraction: 9,994 lines

In-house cost:

DNA extraction: 1.5 USD

STS marker data point 0.8 USD

SNP marker data point 0.3 USD

 \rightarrow DNA extraction + 10 SNP: 4.5 USD

Gene targets: 2016 -

Program	Trait category	Genes
BW	Rust resistance, Aphid resistance, Zn/Fe concentration, Industrial quality, Nematodes, Aluminium tolerance,	Lr67, Sr22, Sr26, Sr32, Sr47, Sr50, SrND643, Yr5, Yr15, Yr39, Yr41, Yr51, Yr52, Yr57, Yr59, Yr60, Sr2/Fhb1, Pina- D1a, Alt1, Alt2, wbm, Gba, QTLZn-2B, QTLZn-3A, QTLZn-4B, QTLFhb-2Dc
DW	Rust resistance, Aphid resistance, Nematodes, Quality	Lr14a, Lr19/Sr25, Lr37/Yr17/Sr28, Lr47, LrQTL, Sr22, Sr39, H25, Cre1, Fht1/2, Gpc-B1, Glu-1, TaGW2
РТ	Rust resistance, Photoperiod, Vernalization, Earliness <i>per se</i> , TGW	Lr34, Lr46, Lr67, Lr37/Yr17/Sr28, Sr2, Vrn-1, Vrn-3, Ppd-1, Ppd-2, Ppd3, Eps- D1, TaGw2

Trait-based marker data points: 2007 - 2016

Case study - CIMMYT GWP Current Logistics

Current Service providers

- ✓ LGC Genomics, UK: KASP genotyping for MAS/MABC
- ✓ TraitGenetics, Germany: KASP genotyping for trait-based genotyping and marker development
- ✓ KSU, USA: GBS of advanced breeding germplasm
- ✓ SAGA, Mexico: GBS of gene discovery panels and populations
- TraitGenetics, Germany: SNP genotyping (15K/20K Ilumina and 35K Affymetrix arrays) for gene discovery
 - University of Bristol, UK: SNP genotyping (35K Affymetrix array) for gene discovery
 - Diverse research labs: Exome capture/RNAseq for gene discovery

Output due to the use of marker technologies

Marker-assisted selected lines in international nurseries

31st Semi-Arid Wheat Yield Screening Nursery

	Disease rating for stem rust								
Selection environment		Total	R	R-MR	MR	MR-MS	MS	MSS	S
Mexico - no MAS	No	159	25	52	30	27	22	3	0
	%		15.7	48.4	67.3	84.3	98.1	100.0	
Mexico - MAS	No	40	23	13	4	0	0	0	0
	%		57.5	90.0	100.0				
Kenya	No	106	44	46	10	5	1	0	0
	%		41.5	84.9	94.3	99.1	100.0		
ALL	No	305	92	111	44	32	23	3	0
	%		30.2	66.6	81.0	91.5	99.0	100.0	

Distribution of marker-selected lines in recent nurseries 30 SAWSN (2012): 22%, 20 SAWYT (2013): 24% 31 SAWSN (2013): 20%, 21 SAWYT (2014): 11%

-> genotypic data of international nurseries are released for further forward breeding

Products due to the use of marker technologies

Genetic resources: Sr2-Fhb1 recombinants introduced into various CIMMYT wheat backgrounds

Products due to the use of marker technologies

Genetic resources: new translocations in durum wheat, e.g. L. pontium segment Lr19/Sr25 and Sr22

Products due to the use of marker technologies New QTL/linked markers: Example Zn concentration in wheat grain

Reference: Hao et al. (2014)

Products due to the use of marker technologies

Genomic predictions applied for quality analyses and multiple environments

Prediction accuracy for different quality traits:

CIMMYT.

References: Battenfield et. al 2016, Guzman et. al 2016, Rutkoski et. al 2016

- HTPG project needs vs. expectation
- Leaf tissue sampling
- Concern about the throughput/functionality of the EP100
- Scissors not optimal

Option to send both DNA and/or tissue samples to Intertek

- Use the same DNA needs to be used to add STS marker genotyping

Flexible and larger sets of SNPs

- Set of > 30 SNPs for trait-based genotyping
- Set of genome-wide SNPs of MABC background selection

Turn-around time

Turn-around time needs to be guarantied

Communication with other CG centers and end users

CIMMYT/ICARDA: One Wheat Program

> CIMMYT will provide access to sequencing, molecular characterization capacity

CIMMYT-IWYP hub:

> Introgression of yield potential traits developed by advanced research institutions

INIFAP – National Program in Mexico > Service user through CIMMYT

New and upcoming initiatives in the GWP

Greenhouse set-up for RGA

Plant ma

1615 F₄ lines o crosses

C₀: 75 F₄ lines crosses that m gain

C₁:Inter-mated plants

C₂:Inter-mated plants with hig for grain yield

C₃:Inter-mate plants with hig for grain yield

C₄ and Field ev Screening of 8 derived from 1 genomic selec

Forward breeding for Fusarium head blight resistance, nutritional quality, soft durum wheat, APR leaf rust resistance in durum wheat

Incorporate trait-based genotypes in genomic prediction models (IWYP-hub, hybrid wheat)

Application and Adoption

> SNP sets

Set 1: Disease resistance genes (Rust, Fhb, Nematodes) Set 2: Phenology (Vrn, Ppd, Eps)

Set 3 is to come: Durum wheat (Rust, quality, Nematodes)

Validation set (Jan) Test AK-EP-100 in the greenhouse (arrival date?)

Germplasm

Crossing block BW for forward breeding (Jan-Feb) International nurseries for trait based genotyping (Jan-Feb, Jun) BC1 for MABC within IWYP (Feb) BC2 for MABC within BW (Mar) GS panel within IWYP (Mar)

Additional aspects

SNP data return

Data format

Ability of SNP re-calling

≻IP

Agreement between Intertek and LGC

Agreement between Intertek and CG centers

GBS/RepGen across CG centers

Initial RepGen testing with SAGA for wheat

Summary

- Development of marker-assisted selection strategies has been initiated in the different CIMMYT wheat breeding programs
- Increasing implementation of forward breeding strategies is required
- Large number of trait-linked KASPs are available but not necessarily for the 'must have' gens of forward breeding gene targets.
- For some traits SSR/STS markers need to be converted to SNPs to fully exploit the Intertek platform e.g. FHB, STB, Nematodes
- Target of 150K is still a challenge
- Logistics and turn-around time will be key factors for success.

Thank you for your attention

