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ABSTRACT Genomic tools allow the study of the whole genome, and facilitate the study of genotype-
environment combinations and their relationship with phenotype. However, most genomic prediction
models developed so far are appropriate for Gaussian phenotypes. For this reason, appropriate genomic
prediction models are needed for count data, since the conventional regression models used on count data
with a large sample size (nT ) and a small number of parameters (p) cannot be used for genomic-enabled
prediction where the number of parameters (p) is larger than the sample size (nT ). Here, we propose a
Bayesian mixed-negative binomial (BMNB) genomic regression model for counts that takes into account
genotype by environment ðG ·EÞ interaction. We also provide all the full conditional distributions to im-
plement a Gibbs sampler. We evaluated the proposed model using a simulated data set, and a real wheat
data set from the International Maize and Wheat Improvement Center (CIMMYT) and collaborators. Results
indicate that our BMNB model provides a viable option for analyzing count data.
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In most living organisms, phenotype is the result of genotype (G),
environment (E) and genotype by environment interactions ðG ·EÞ.
Garrod (1902) observed that the effect of genes on phenotype could be
modified by the environment (E). Similarly, Turesson (1922) demon-
strated that the development of a plant is often influenced by its sur-
roundings. He postulated the existence of a close relationship between
crop plant varieties and their environment, and stressed that the pres-
ence of a particular variety in a given locality is not a chance occurrence;
rather, there is a genetic component that helps the individual adapt to
that area.

For these reasons, today the consensus is that G· E is useful for
understanding genetic heterogeneity under different environmental
exposures (Kraft et al. 2007; Van Os and Rutten 2009), and for iden-
tifying high-risk or productive subgroups in a population (Murcray

et al. 2009); it also provides insight into the biological mechanisms of
complex traits such as disease resistance and yield (Thomas 2011), and
improves the ability to discover resistance genes that interact with other
factors that have fewmarginal effects (Thomas 2011). However, finding
significant G ·E interactions is challenging. Model misspecification,
inconsistent definition of environmental variables, and insufficient
sample sizes are just a few of the issues that often lead to low-power
and nonreproducible findings inG· E studies (Jiao et al. 2013;Winham
and Biernacka 2013).

Genomics and its breeding applications are developing very quickly
with the goal of predicting yet-to-be observed phenotypes, or unob-
served genetic values for complex traits, and inferring the underlying
genetic architecture utilizing large collections of markers (Goddard and
Hayes 2009; Zhang et al. 2014). Also, genomics is useful when dealing
with complex traits that are multigenic in nature, and have major
environmental influence (Pérez-de-Castro et al. 2012). For these rea-
sons, the use of whole genome predictionmodels continues to increase.
In genomic prediction, all marker effects are fitted simultaneously on a
model and simulation studies promote the use of this methodology to
increase genetic progress in less time. For continuous phenotypes,
models have been developed to regress phenotypes on all available
markers using a linearmodel (Goddard andHayes 2009; de los Campos
et al. 2013). However, in plant breeding, the response variable in many
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traits is a count (y = 0,1,2,. . .), for example, number of panicles per
plant, number of seeds per panicle, weed count per plot, etc. Count data
are discrete, non-negative, integer-valued, and typically have right-
skewed distributions (Yaacob et al. 2010).

Poisson and negative binomial regression are often used to deal with
count data. Thesemodels have a number of advantages over anordinary
linear regression model, including a skewed, discrete distribution
(0,1,2,3,. . .,) and the restriction of predicted values for phenotypes to
non-negative numbers (Yaacob et al. 2010). These models differ from
an ordinary linear regression model. First, they do not assume that
counts follow a normal distribution. Second, rather than modeling y
as a linear function of the regression coefficients, they model a function
of the response mean as a linear function of the coefficients (Cameron
and Trivedi 1986). Regression models for counts are usually nonlinear
and have to take into consideration the specific properties of counts,
including discreteness and non-negativity, and are often characterized
by overdispersion (variance greater than the mean) (Zhou et al. 2012).

However, in the context of genomic selection, it is still common
practice to apply linear regression models to these data, or to trans-
formed data (Montesinos-López et al. 2015a, 2015b). This does not take
into account that: (a) many distributions of count data are positively
skewed, many observations in the data set have a value of 0, and the
high number of 0s in the data set does not allow a skewed distribution
to be transformed into a normal one (Yaacob et al. 2010); and (b) it is
quite likely that the regression model will produce negative predicted
values, which are theoretically impossible (Yaacob et al. 2010; Stroup
2015). When transformation is used, it is not always possible to have
normally distributed data, and often transformations not only do not
help, they are counterproductive. There is also mounting evidence
that transformations do more harm than good for the models required
by the vast majority of contemporary plant and soil science re-
searchers (Stroup 2015). To the best of our knowledge, only the paper
of Montesinos-López et al. (2015c) is appropriate for genomic predic-
tion of count data in a Bayesian framework; however, it does not take
into account G· E interaction.

In this paper, we extend the negative binomial (NB) regressionmodel
for counts proposed by Montesinos-López et al. (2015c) to take into
account G· E by using a data augmentation approach. A Gibbs sam-
pler was derived since all full conditional distributions were obtained,
which allows samples to be drawn from them to estimate the required
parameters. In addition, we provide all the details of the efficient de-
rived Gibbs sampler so that it can be implemented easily by most plant
and animal scientists. We illustrate our proposed methods with a sim-
ulated data set and a real data set on wheat Fusarium head blight. We
compare our proposed models (NB and Poisson) with the Normal and
Log-Normal models commonly implemented for analyzing count data.
We also provide R code for implementing the proposed models.

MATERIALS AND METHODS
The data used in this study were taken from a PhD thesis (Falconi-
Castillo 2014) aimed at identifying sources of resistance to Fusarium
head blight (FHB), caused by Fusarium graminearum, and at identify-
ing genomic regions and molecular markers linked to FHB resistance
through association analysis.

Experimental data

Phenotypic data: A total of 297 spring wheat lines developed by the
International Maize and Wheat Improvement Center (CIMMYT) was
assembled and evaluated for resistance toF. graminearum. Phenotyping
was done at CIMMYT’s El Batan experimental station in Mexico over

two years (2012 and 2014), and at the Santa Catalina Experimental
Station of the National Institute for Agricultural Research (INIAP),
Ecuador, for one year (2014). For the application, we considered these
three environments, which we named Batan 2012, Batan 2014, and
Ecuador 2014. In all the experiments (environments), the genotypes
were arranged in a randomized complete block design, in which each
plot comprised two 1-m double rows separated by a 0.25 m space. In
Ecuador 2014, the nursery was inoculated with maize seeds infected
with a local F. graminearum isolate (SC01). The inoculum was broad-
cast in the field at 3 and 2 wk before anthesis, at a rate of 50 g/m2.

FHB severity data were collected shortly before maturity by
counting symptomatic spikelets on 10 randomly selected spikes in
each plot. In Mexico, plots were inoculated with a mixture of five
F. graminearum isolates (CIMFU235, 702, 715, 720, and 770) at each
line’s flowering period by spraying 30 ml of an F. graminearummacro-
conidial suspension (50,000 spores/ml) using a CO2-powered backpack
sprayer (model T R&D Sprayers, Opelousas, LA) calibrated to 40 psi.
High humidity was maintained in the field by a mist irrigation system
controlled by a programmable timer that applied 10 min of spray every
hour from 9:00 to 20:00. FHB severity data were collected at 25 days
after inoculation by counting spikelets showing FHB symptoms on
10 spikes that had been tagged at anthesis. In this study, we used only
182 spring wheat lines because we had complete marker information
only for those lines.

Genotypic data:DNAsampleswereextracted fromyoung leaves (2- to3-
wk-old) taken from each line, using Wizard Genomic DNA purification
(Promega) following the manufacturer’s protocol. DNA samples were
genotyped using an Illumina 9K SNP chip with 8632 SNPs (Cavanagh
et al. 2013). For a given marker, the genotype for the ith line was coded
as the number of copies of a designated marker-specific allele carried
by the ith line (absences equal to zero, and presents equal to one).
SNP markers with unexpected genotype AB (heterozygous) were
recoded as either AA or BB, based on the graphical interface visualiza-
tion tool of GenomeStudio (Illumina) software. SNP markers that did
not show clear clustering patterns were excluded. In addition, 66 sim-
ple sequence repeat (SSR) markers were screened. After filtering the
markers for 0.05 minor allele frequency (MAF), and deleting markers
with more than 10% of no calls, the final set of SNPs was 1635 SNPs.

Data and software availability
Thephenotypic (FHB)andgenotypic (marker)dataused in this study, as
well as basic R codes (R Core Team 2015), for fitting the models can be
downloaded directly from the repository at http://hdl.handle.net/
11529/10575.

Statistical models
We assume that, at each environment, the J genotypes were grown in
a randomized complete block design, and we let yijkt represent the
count response for the tth replication of the jth line in the kth block
in the ith environment, with i ¼ 1; :::; I; j ¼ 1; 2; :::; J; k ¼ 1; :::;K;
t ¼ 1; 2; :::; nijk, and we propose the following combined linear predic-
tor for the response variable:

hijk ¼ Ei þ RðEÞik þ gj þ gEij (1)

where Ei represents environment i, RðEÞik represent the effect of block
k within environment i, gj is the marker effect of genotype j, and gEij
is the interaction between markers and the environment; I ¼ 3;
since we have three environments (Batan 2012, Batan 2014,
and Ecuador 2014), J ¼ 182, since it is the number of lines under
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study, K ¼ 2, since only two blocks are available per environment,
and nijk represents the number of replicates of each line in each
block and environment but this was the same ðnijk ¼ nÞ for all com-
binations of i, j and k (n was 10 since 10 spikes were selected at
random from each plot). The number of observations in each environ-
ment i is ni ¼ JKn, while the total number of observations is
nT ¼ IJKn . IJ is the product of the number of environments and num-
ber of lines. Four models were implemented using the linear predictor
given in expression (1).

Model NB: Model NB stands for model negative binomial and is de-
fined by three distributions: yijkt

���gj; gEij �NB(mijk; r), with r being
the scale parameter, mijk ¼ expðhijkÞ; g ¼ ðg1; :::; gJÞT � Nð0;G1s

2
gÞ,

and gEi ¼ ðgEi1; :::; gEiJÞT � Nð0;G2s
2
gEÞ. Note that the NB dis-

tribution has expected value Eðyijkt���gj; gEijÞ ¼ mijk and variance

Varðyijkt���gj; gEijÞ ¼ mijk þ
m2
ijk
r and Varðyijkt���gj; gEijÞ. Eðyijkt���gj; gEijÞ

for r. 0. G1 and G2 were assumed known, with G1 computed

from marker W   dataðfor m ¼ 1; :::; q markersÞ as G1 ¼ WWT

q ;

thismatrix is called theGenomic RelationshipMatrix (GRM) (VanRaden
2008). The G1 matrix defines the covariance between individuals
based on observed similarity at the genomic level, rather than on
expected similarity based on pedigree, so that more accurate predic-
tions of merit can be achieved.WhileG2 is computed asG2 ¼ II5G1

of order IJ · IJ and5 denotes the Kronecker product, II means that
we assume independence between environments.

Model Pois: Model Poisson (Model Pois) is the same as Model
NB, except that yijkt

��gj; gEij �Poisson(mijk). Since, according to
Zhou et al. (2012) and Teerapabolarn and Jaioun (2014), the
limr/NNBðmijk; rÞ ¼ PoisðmijkÞ;Model Poiswas implemented using
the same method asModel NB, but fixing r to a large value, depend-
ing on the mean count. We used r ¼ 1000; which is a good choice
when the mean count is less than 50 (see Figure 1). However, when
the count is between 50 and 200, we suggest using r ¼ 5000, and,
when the count is larger than 200, we suggest a value of r ¼ 10; 000 or
larger. These suggestions are supported by Figure 1, where we plot the
mean and variance ofModel NB as a function of the scale parameter
r, with three values of r (1000; 5000; 10,000). Good approximations to
the Model Pois with the Model NB occur when the mean and var-
iance are very similar. For this reason, good approximations are those
that follow the diagonal in Figure 1 where m ¼ s2. We can see that
the mean count and variances are very similar for mean counts of less
than 50 with r ¼ 1000; however, when the mean count is larger than
50 and less than 200, we should use r ¼ 5000, and for counts greater
than 200, we suggest using a value of r ¼ 10; 000 or larger. In our
applications with simulated and real data, the mean count is less than
50; for this reason, we used a value of r ¼ 1000.

Model Normal: Model Normal is similar to Model NB, except that

yijkt
���gj; gEij �N(hijk , s

2
e) with identity link function ðhijk ¼ mijkÞ, and

s2
e is the scale parameter of the normal distribution and is associated

with the residual in the i environment, k block, j line and replication t.
The s2

e parameter must be estimated since the Normal distribution,
Log-normal distribution, and the Negative binomial distribution
belong to the two-parameter exponential family, while the Poisson
distribution belongs to the one-parameter exponential family. For
this reason, only the mijk need to be estimated since the mean is
equal to the variance. However, the scale parameter in the NB dis-
tribution is represented by r.

Model LN: Model Log-Normal (Model LN) is similar to Model NB,
except that logðyijkt þ 1Þ��gj; gEij �N(hijk, s

2
e ) with identity link func-

tion ðhijk ¼ mijkÞ and s2
e is the scale parameter associated with the

residual in the i environmment, k block, j line, and t replication.
When the number of markers ðqÞ is larger than the number of

observations ðnTÞ, implementing Models NB and Pois is challenging.
For this reason, we propose a Bayesian method for dealing with situ-
ations when q. nT and our model takes into account all markers

through the GRM

�
G1 ¼ WWT

q

�
described above. Models Normal

and LN were implemented in the BGLR package of de los Campos
et al. (2014). Therefore, our proposed Bayesian model for count data
is a so-called Genomic Best Linear Unbiased Prediction (GBLUP)
method, since it utilizes genomic relationships to predict the genetic
value of an individual.

Bayesian mixed negative binomial regression: Rewritingthe linear
predictor (1) as hijk ¼ xTikbþ b1j þ b2ij, with xTik ¼ ½x1; x2; x3; x11;
x12; x21;x22; x31; x32;�, where x1; x2 and x3 are indicator variables that
take the value of 1 if the observed environment i is 1, 2, and 3, re-
spectively, and 0 otherwise, xik; i ¼ 1; 2; 3 and k ¼ 1; 2; are indicator
variables that take the value of 1 if the block k is observed
within environment i, and 0 otherwise. bT ¼ ½b1;b2;;b3;b11;b12;;
b21;b22;b31;b32�; where the first three beta coefficients belong to the
effects of environment, and the last six beta coefficients correspond to
the blocks effects in each of the environments (that is, b is a vector of
beta coefficients of order p · 1, with p=I+I·K). Therefore,
xTikb ¼ Ei þ RðEÞik, b1j ¼ gj and b2ij ¼ gEij. Note that, under the
Model NB, because mijk ¼ Eðyijkt

��b1j; b2ijÞ ¼ expðhijkÞ, conditionally
on b1j and b2ij, the probability that the random variable Yijkt takes
the value yijkt is equal to

Pr
�
Yijkt ¼ yijkt

��b1j; b2ij�
¼
�
yijkt þ r2 1

yijkt

� 
12

mijk

r þ mijk

!r 
mijk

r þ mijk

!yijtk
 for  yijkt

¼ 0; 1; 2;

Figure 1 Plot of the mean count vs. the variance of Model NB as
a function of the scale parameter ðrÞ. Good approximations are
obtained when the mean and variance are very similar; in the plot,
they should follow the diagonal that plots m ¼ s2:
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¼
G
�
yijkt þ r

�
yijkt!GðrÞ

�
expðh�

ijkÞ
�yijkt�

1þ expðh�
ijkÞ
�yijktþr       yijkt ¼ 0; 1; 2; (2)

We arrive at Equation (2) since we make
mijk

r þ mijk
¼ rmijk

rðr þ mijkÞ
¼

mijk=r

1þmijk=r
¼ expðhijkÞexpð2 logðrÞÞ

1þ expðhijkÞexpð2 logðrÞÞ ¼ expðhijk 2 logðrÞÞ
1þ expðhijk 2 logðrÞÞ ¼

expðh�
ijkÞ

1þ expðh�
ijkÞ

, with h�
ijk ¼ xTikb

� þ b1j þ b2ij; b� ¼ ½b�
1;b

�
2;b

�
3;

b11;b12;;b21;b22;b31;b32�, and b�
i ¼ bi 2 logðrÞ. Therefore, in

Equation (2), we have the connection between the probability
distribution of the response (YijktÞ induced by the assumed relation
between the linear predictor (hijkÞ and the expected value of

Yijkt (mijkÞ under the model NB. Then we can rewrite the

PrðYijkt ¼ yijkt
��b1j; b2ijÞ given in Equation (2) as:

G
�
yijkt þ r

�
yijkt!GðrÞ

22yijkt2rexp

�
yijkt 2 r

2
h�
ijk

�

3

Z N

0
exp

2642
vijkt

�
h�
ijk

�2
2

375f ðvijkt; yijkt þ r; 0Þdvijkt (3)

Expression (3) was obtained using the following equality given by

Polson et al. (2013):
ðecÞa

ð1þ ecÞb ¼ 22bekc
RN
0 e2

vijktc
2

2 f ðvijkt; b; 0Þdvijkt,

where k ¼ a2 b=2 and f ð:; b; 0Þ denotes the density of the Pólya-
Gamma distribution (vijktÞ with parameters b and c ¼ 0
[PGðb; c ¼ 0Þ] (see Definition 1 in Polson et al. 2013). From here,
conditioning on vijkt � PGðyijkt þ r; c ¼ 0Þ, we have that

Pr
�
Yijkt ¼ yijkt

��b1j; b2ij;vijkt

�
¼

G
�
yijkt þ r

�
yijkt!GðrÞ

22yijkt2rexp

�
yijkt 2 r

2
h�
ijk

�
exp

	
2vijkt

�
h�
ijk

�2.
2



(4)

To be able to get the full conditional distributions, we provide the prior
distributions, f ðuÞ; for all the unknown model parameters u ¼ ðb�,

s2
b, b1, s

2
b1, b2, s

2
b2; r). We assume prior independence between the

parameters, that is,

f ðuÞ ¼ f ðb�Þf
�
s2
b

�
f ðb1Þf

�
s2
b1

�
f ðb2Þf

�
s2
b2

�
f ðrÞ:

We assign conditionally conjugate but weakly informative prior
distributions to the parameters because we have no prior information.
Prior specification in terms of b� instead of b is for convenience. We
adopt proper priors with known hyper-parameters whose values we
specify in model implementation to guarantee proper posteriors.
We assume that b���s2

b � Npðb0;∑
0
s2
bÞ; s2

b � x22ðnb; SbÞ where

x22ðnb; SbÞ denotes a scaled inverse chi-square distribution with
shape nb and scale Sb parameters, b1

��s2
b1 � Nnb1ð0;G1s

2
b1Þ,

nb1 ¼ J , s2
b1 � x22ðnb1; Sb1Þ, b2

��s2
b2 � Nnb2ð0;G2s

2
b2Þ, nb2 ¼ IJ;

s2
b2 � x22ðnb2; Sb2Þ and r � Gða0; 1=b0Þ. Next we combine (Equa-

tion 4) using all data with priors to get the full conditional distribution
for parameters b�, s2

b, b1, s
2
b1, b2, s

2
b2 and r.

Full conditional distributions: The full conditional distribution of
b� is given as:

f ðb���y; ELSEÞ � N
�
~b0; ~S0

�
(5)

where ~S0 ¼ ðS21
0 s22

b þ XTDvXÞ21, ~b0 ¼ ~S0ðS�1
0 s�2

b b0�
XTDv S

2
h¼1Zhbh þ XTkÞ, yijk ¼ ½yijk1; . . . ; yijkn�T , yij ¼ ½yTij1; . . . ; yTijK �T ,

yi ¼ ½ yTi1; . . . ; yTiJ �T , y ¼ ½ yT1 ; . . . ; yTI �T ; kijk ¼ 1
2
½ yijk1 � r; . . . ;

yijkn � r�T , kij ¼ ½kTij1; . . . ; kTijK �T , ki ¼ ½kT
i1; . . . ;k

T
iJ �T , k ¼

½kT
1 ; . . . ;k

T
I �T , Xijk ¼ ½1Tn 5 xik�T , Xij ¼ ½XT

ij1; . . . ;X
T
ijK �T , Xi ¼

½XT
i1; . . . ;X

T
iJ �T , X ¼ ½XT

1 ; . . . ;X
T
I �T , Dvijk ¼ diagðvijk1; . . . ;vijknÞ,

Dvij ¼ diagðDvij1; . . . ;DvijKÞ, Dvi ¼ diagðDvi1; . . . ;DviJÞ, Dv ¼
diagðDv1; . . . ;DvIÞ, b1 ¼ ½b11; . . . ; b1J �T , b2i ¼ ½b2i1; . . . ; b2iJ �T ,

b2 ¼ ½bT21; . . . ; bT2I �T , Z1i ¼

264
1n 0
0 1n

. . .

. . .
0
0

⋮ ⋮ . .
.

⋮
0 0 . . . 1n

375, Z1 ¼ ½ZT
11; . . . ;

ZT
1I �T and Z2 ¼ Z1� � X, where � � indicates the horizontal

Kronecker product between Z1 and X: The horizontal Kronecker
product performs a Kronecker product of Z1 and X, and creates a

n Table 1 Posterior mean and posterior SD of the Bayesian method with four sample sizes (n) for Model NB

n ¼ 5 n ¼ 10 n ¼ 20 n ¼ 40

Scenario Parameter True Mean SD Mean SD Mean SD Mean SD

b0 1.5 1.48 0.36 1.49 0.27 1.54 0.23 1.55 0.21
b1 21 20.98 0.26 20.99 0.25 21.08 0.25 21.02 0.19

1 b2 1 1.00 0.27 0.99 0.22 0.99 0.27 0.95 0.22
r 5 5.08 0.92 5.08 0.52 5.02 0.47 5.03 0.33
s2
1 0.5 0.54 0.20 0.59 0.18 0.58 0.18 0.59 0.22

s2
2 0.5 0.50 0.13 0.52 0.14 0.53 0.11 0.51 0.11

b0 1.5 1.48 0.50 1.46 0.50 1.56 0.61 1.47 0.50
b1 21 21.06 0.23 21.00 0.20 21.01 0.22 21.03 0.19

2 b2 1 0.95 0.24 1.03 0.22 0.99 0.20 0.97 0.20
r 5 5.10 0.81 4.99 0.59 5.04 0.35 5.03 0.20
s2
1 0.5 0.54 0.18 0.57 0.22 0.58 0.19 0.53 0.18

s2
2 0.5 0.50 0.12 0.51 0.14 0.53 0.13 0.51 0.10
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new matrix by stacking these row vectors into a matrix. Z1 and X
must have the same number of rows, which is also the same number of
rows in the result matrix. The number of columns in the result ma-
trix is equal to the product of the number of columns in Z1 and X.
When the prior for b�} constant, the posterior distribution of b�

is also normally distributed, Nð~b0;
~S0Þ, but we set the term S21

0 s�2
b

to zero in both ~S0 and ~b.
The fully conditional distribution of vijkt is

f ðvijkt jy; ELSEÞ � PGðyijkt þ r; xTik b� þ b1j þ b2ijÞ (6)

Definingh1 ¼ X b� þ Z2b2, the conditional distribution ofb1 is given as

f ðb1
��y; ELSEÞ � N

�
~b1; F1

�
(7)

with F1 ¼ ðs22
b1
G21
1 þ ZT

1DvZ1Þ21; ~b1 ¼ F1ðZT
1 k2ZT

1Dvh
1Þ.

Similarly, by defining h2 ¼ X b� þ Z1b1, the conditional distri-
bution of b2 is

f ðb2
��y; ELSEÞ � N

�
~b2; F2

�
(8)

where F2 ¼ ðs22
b2
G21
2 þ ZT

2DvZ2Þ21; eb2 ¼ F2ðZT
2 k2ZT

2Dvh
2Þ.

The fully conditional distribution of s2
bh
for h ¼ 1; 2; is

f ðs2
bh

���y; ELSEÞ � x22ð~nb ¼ nbh þ nbh ;~Sb

¼ ðbThG2 1
h bh þ nbhSbhÞ



nbh þ nbhÞ (9)

with nb1=J and nb2=IJ.
The conditional distribution of s2

b� is

f ðs2
b�
�����y; ELSEÞ � x22ð~nb� ¼ nb� þ I þ IK;~Sb

¼
h
ðb�2b0ÞTS2 1

0 ðb� 2b0Þ þ nb�Sb�
i

~nb� Þ (10)

Taking advantage of the fact that the NB distribution can also be
generated using a Poisson representation (Quenouille 1949) as
Y ¼PL

l¼1 ul; where ul � LogðpÞ; p ¼ m
rþm and is independent

of L � Pois½2 rlogð12pÞ�, where Log and Pois denote logarithmic
and Poisson distributions, respectively. Then, we infer a latent count L
for each Y � NBðm; rÞ conditional on Y and r. Therefore, following
Zhou et al. (2012), we obtain the full conditional of r by alternating

f ðLijkt
��y; ELSEÞ � CRT

�
yijkt ; r

�
(12)

where CRTðyijkt ; rÞ denotes a Chinese restaurant table (CRT) count
random variable that can be generated as Lijkt ¼ S

yijkt
l¼1dl; where

dl � Bernoulli
� r
l2 1þ r

�
. For details of the CRT random variable

derivation, see Zhou and Carin (2012, 2015).

Gibbs sampler: The Gibbs sampler for the latent parameters of the NB
with G· E can be implemented by sampling repeatedly from the
following loop:

1. Sample vijkt values from the Pólya-Gamma distribution in (6).
2. Sample Lijkt � CRTðyijkt ; rÞ from (12).
3. Sample the scale parameter ðrÞ from the gamma distribution in (11).
4. Sample the location effects (b�Þ from the normal distribution in (5).
5. Sample the random effects ðb1Þ from the normal distribution in (7).
6. Sample the random effects ðb2Þ from the normal distribution in (8).
7. Sample the variance effects (s2

bh
Þ with h ¼ 1; 2; from the scaled

inverted x2 distribution in (9).
8. Sample the variance effect (s2

b� Þ from the scaled inverted x2 dis-
tribution in (10).

9. Return to step 1 or terminate when chain length is adequate to
meet convergence diagnostics.

Model implementation: The Gibbs sampler described above for the
BMNB model was implemented in R-Core Team (2015). Imple-
mentation was done under a Bayesian approach using Markov
Chain Monte Carlo (MCMC) through the Gibbs sampler algo-
rithm, which samples sequentially from the full conditional dis-
tribution until it reaches a stationary process, converging with the
joint posterior distribution (Gelfand and Smith 1990). To decrease
the potential impact of MCMC errors on prediction accuracy, we

performed a total of 60,000 iterations, with a burn-in of 30,000, so
that 30,000 samples were used for inference. We did not apply
thinning of the chains following the suggestions of Geyer (1992),
MacEachern and Berliner (1994), and Link and Eaton (2012), who

n Table 2 Scenarios proposed to fit the real data set with Models
NB, Pois, Normal and LN

Scenario
Main Effects Nested Effect Interaction Effects

E L G R(E) EL EG

S1 X X X
S2 X X X
S3 X X X X
S4 X X X X

E, Environment; R, blocks; L, lines; G, lines taking into account markers; EL and
EG, interaction effects of E and L, and E and G; R(E) blocks nested in the
environment.

f ðr��y; ELSEÞ � G

0BB@a0 2XI
i¼1

XJ
j¼1

XK
k¼1

Xnijk
t¼1

log
�
12pijkt

�
;

1

b0 þ
XI

i¼1

XJ

j¼1

XK

k¼1

Xnijk
t¼1

Lijkt

1CCA (11)
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provide justification of the ban on subsampling MCMC output
for approximating simple features of the target distribution
(e.g., means, variances, and percentiles). We implemented the
prior specification given in the section Bayesian mixed negative
binomial regression with b�

���s2
b � Npðb0 ¼ 0T9 ; I9 · 10; 000Þ;

b1
��s2

b1 � Nnb1ð0Tnb1;G1s
2
b1Þ, where G1 is the GRM, that is, the

covariance matrix of the random effects, s2
b1 � x22ðnb1 ¼ 3;

Sb1 ¼ 0:001Þ; b2
��s2

b2 � Nnb2ð0Tnb2;G2s
2
b2Þ, G2 is the covariance

matrix of the random effects that belong to the G ·E term,
s2
b2 � x22ðnb2 ¼ 3; Sb2 ¼ 0:001Þ; and r � Gða0 ¼ 0:01; 1=ðb0 ¼

0:01ÞÞ: All these hyper-parameters were chosen to lead weakly
informative priors. The convergence of the MCMC chains was

n Table 3 Estimated beta coefficients, variance components, and posterior predictive checks for the four scenarios (S1, S2, S3, S4) for
each proposed model

S1 S2 S3 S4

Parameter Mean SD Mean SD Mean SD Mean SD

Model NB
b�
1 20.93 0.60 21.05 0.61 22.52 0.71 22.38 0.99

b�
2 20.83 0.71 21.16 0.66 22.27 0.58 22.73 1.00

b�
3 20.03 0.48 20.15 0.56 21.69 0.85 21.96 0.78

b11 20.09 0.52 20.06 0.65 20.02 0.54 20.25 0.67
b12 0.05 0.51 0.08 0.60 0.10 0.53 20.13 0.66
b21 20.20 0.62 0.05 0.70 20.27 0.47 0.09 0.67
b22 20.05 0.61 0.20 0.66 20.15 0.46 0.21 0.65
b31 0.07 0.42 0.11 0.61 0.11 0.61 0.32 0.50
b32 20.14 0.41 20.10 0.59 20.10 0.60 0.11 0.48
s2
1 0.43 0.05 1.37 0.17 0.34 0.05 1.03 0.15

s2
2 – – – – 0.38 0.03 1.04 0.10

r 2.80 0.12 2.81 0.12 11.87 1.12 11.55 1.17
Loglik 21526.65 21526.88 21268.83 21275.25
Cor 0.69 0.69 0.90 0.89
MSEP 2.13 2.12 0.75 0.77

Model Pois
b�
1 27.14 0.22 27.21 0.39 26.69 0.11 26.80 0.33

b�
2 27.08 0.13 27.17 0.11 27.07 0.16 27.27 0.19

b�
3 25.97 0.43 26.46 0.29 25.88 0.16 26.66 0.28

b11 0.12 0.17 0.07 0.29 20.25 0.11 20.34 0.23
b12 0.27 0.17 0.23 0.29 20.13 0.11 20.22 0.23
b21 0.06 0.14 0.03 0.15 0.14 0.15 0.13 0.17
b22 0.22 0.14 0.18 0.15 0.25 0.15 0.24 0.17
b31 0.04 0.34 0.41 0.21 20.09 0.13 0.51 0.19
b32 20.20 0.33 0.17 0.21 20.31 0.13 0.28 0.19
s2
1 0.44 0.05 1.46 0.17 0.35 0.05 1.03 0.14

s2
2 – – – – 0.38 0.03 1.05

r 1000.00 1000.00 1000.00 1000.00
Loglik 21477.63 21477.52 21228.73 21234.97
Cor 0.66 0.66 0.90 0.89
MSEP 1.87 1.86 0.74 0.76

Model Normal
b1 212.30 5.86 7.90 4.36 13.70 3.69 9.22 3.11
b2 212.20 5.80 7.93 4.41 13.60 3.73 9.11 3.16
b3 210.40 5.87 9.66 4.36 15.50 3.69 10.94 3.10
s2
1 0.96 0.16 1.42 0.35 0.72 0.18 1.58 0.40

s2
2 – – – – 1.33 0.18 1.13 0.34

r 2.75 0.14 2.91 0.15 1.67 0.11 2.23 0.17
Loglik 21918.00 21957.00 21542.00 21747.00
Cor 0.60 0.56 0.83 0.71
MSEP 2.41 2.60 1.07 1.68

Model LN
b1 23.95 0.51 26.34 3.33 1.41 0.48 3.32 1.31
b2 23.95 0.48 26.33 3.32 1.41 0.49 3.32 1.29
b3 23.51 0.49 25.85 3.33 1.86 0.49 3.79 1.31
s2
1 0.09 0.01 0.15 0.03 0.07 0.01 0.16 0.03

s2
2 – – – – 0.08 0.01 0.05 0.02

r 0.17 0.01 0.181 0.009 0.11 0.01 0.15 0.01
Loglik 2484.00 2518.00 2125.00 2354.00
Cor 0.71 0.68 0.88 0.79
MSEP 2.50 2.63 1.25 1.97

The beta coefficients corresponding to effects of environments (b1, b2, b3) are given for models Normal and LN only. Mean, posterior mean; SD posterior SD.
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monitored using trace plots and autocorrelation functions. We also
conducted a sensitivity analysis on the use of the inverse gamma
priors for the variance components, and we observed that the re-
sults are robust under different choices of priors.

Assessing prediction accuracy:We used cross-validation to compare
the prediction accuracy of the proposed models for count pheno-
types. We implemented a 10-fold cross-validation, that is, the data
set was divided into 10 mutually exclusive subsets; each time we
used nine subsets for the training set, and the remaining one for
the validation set. The training set was used to fit the model, and the
validation set was used to evaluate the prediction accuracy of
the proposed models. To compare the prediction accuracy of the
proposed models, we calculated the Spearman correlation (Cor) and
the mean square error of prediction (MSEP), both calculated using
the observed and predicted response variables of the validation set.
Models with large values of Cor indicate better prediction accu-
racy, while small MSEP indicate better prediction performance.
The predicted observations, ŷijkt , were calculated with M collected
Gibbs samples after discarding those of the burn-in period.

For Models NB and Pois, the predicted values were calculated

as ŷijkt ¼
PM

s¼1 expðxTik b̂
�ðsÞ þ logðr̂ðsÞÞ þ ĝj

ðsÞ þ ĝEijðsÞÞ
M

, where

r̂ðsÞ; b̂
�ðsÞ

, ĝ j
ðsÞ, and ĝEijðsÞ are estimates of b�; r; gj, and gEij, for line

j, block k, in environment i obtained in the sth collected sample.

For Model Normal as ŷijkt ¼
PM

s¼1ðxTik b̂
ðsÞ þ ĝj

ðsÞ þ ĝEijðsÞÞ
M

, and

for Model LN, the predicted observations were calculated as

ŷijkt ¼
PM

s¼1 expðxTik b̂
ðsÞ þ ĝ j

ðsÞ þ ĝEijðsÞ þ ŝ2ðsÞ
e
2 Þ

M
2 1, using the cor-

responding estimates of each model.

Simulation study: To show the performance of the proposed Gibbs
sampler for count phenotypes that takes into account G· E, we per-
formed a simulation study under model (1) with the following linear
predictor: hij ¼ Ei þ gj þ gEij; with two scenarios (S1 and S2). Sce-
nario 1 had three environments (I ¼ 3), 20 genotypes (J ¼ 20Þ,
G1 ¼ I20, G2 ¼ II5G1 and s2

b1
¼ s2

b2
¼ 0:5; with four different

n Table 4 Estimated posterior predictive checks with cross-validation for Models NB, Pois, Normal and LN

Batan 2012 Batan 2014 Ecuador 2014

Scenario Cor MSEP Cor MSEP Cor MSEP

Model NB
S1 Mean 0.43 (3) 0.98 (3.5) 0.43 (3.5) 1.39 (2) 0.18 (3) 11.733 (4)

SD 0.33 0.72 0.33 1.35 0.40 9.471
S2 Mean 0.42 (4) 0.98 (3.5) 0.43 (3.5) 1.38 (1) 0.20 (2) 11.222 (2)

SD 0.33 0.72 0.33 1.36 0.37 8.614
S3 Mean 0.54 (2) 0.49 (1) 0.52 (2) 1.48 (3) 0.22 (1) 8.645 (1)

SD 0.28 0.38 0.29 2.32 0.39 5.688
S4 Mean 0.56 (1) 0.61 (2) 0.56 (1) 1.85 (4) 0.12 (4) 11.343 (3)

SD 0.24 0.44 0.22 2.68 0.41 8.154
Model Pois

S1 Mean 0.43 (3) 0.98 (3.5) 0.43 (3.5) 1.39 (2) 0.18 (3) 11.733 (4)
SD 0.33 0.72 0.33 1.35 0.40 9.471

S2 Mean 0.42 (4) 0.98 (3.5) 0.43 (3.5) 1.38 (1) 0.20 (2) 11.222 (2)
SD 0.33 0.72 0.33 1.36 0.37 8.614

S3 Mean 0.54 (2) 0.48 (1) 0.52 (2) 1.48 (3) 0.22 (1) 8.645 (1)
SD 0.28 0.38 0.29 2.32 0.39 5.688

S4 Mean 0.56 (1) 0.61 (2) 0.56 (1) 1.85 (4) 0.12 (4) 11.343 (3)
SD 0.24 0.44 0.22 2.68 0.41 8.154

Model Normal
S1 Mean 0.36(1) 1.10 (4) 0.37 (1.5) 1.79 (1) 0.15 (1.5) 7.425 (2)

SD 0.28 0.88 0.39 1.70 0.32 4.151
S2 Mean 0.34 (2) 0.99 (2) 0.33 (3) 2.01 (3) 0.07 (3) 7.454 (3)

SD 0.33 0.65 0.44 2.46 0.33 4.339
S3 Mean 0.33 (3) 0.81 (1) 0.37 (1.5) 1.96 (2) 0.15 (1.5) 7.318 (1)

SD 0.30 0.46 0.40 2.99 0.29 4.159
S4 Mean 0.27 (4) 1.03 (3) 0.24 (4) 2.37 (4) 0.04 (4) 8.482 (4)

SD 0.34 0.73 0.45 3.42 0.24 4.326
Model LN

S1 Mean 0.51 (2) 0.66 (2.5) 0.46 (1) 1.60 (1) 0.15 (1.5) 8.10 (4)
SD 0.21 0.42 0.31 2.35 0.38 5.11

S2 Mean 0.51 (2) 0.66 (2.5) 0.43 (3.5) 1.78 (2) 0.09 (3.5) 7.82 (2)
SD 0.22 0.39 0.35 2.82 0.46 5.31

S3 Mean 0.51 (2) 0.64 (1) 0.45 (2) 1.871 (3) 0.15 (1.5) 7.76 (1)
SD 0.21 0.45 0.31 3.16 0.37 5.21

S4 Mean 0.43 (4) 0.72 (4) 0.43 (3.5) 1.95 (4) 0.09 (3.5) 8.04(3)
SD 0.25 0.42 0.33 3.15 0.41 5.18

The numbers in parentheses denote the ranking of the four scenarios for each posterior predictive check.
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numbers of replicates of each genotype in each environment, n ¼5,
10, 20, and 40. Scenario 2 is equal to scenario 1, except that
G1 ¼ 0:7I20 þ 0:3J20, where J20 is a square matrix of ones of the
order 20 · 20. In this second scenario, we imitated the correla-
tion between lines of real data available in genomic selection.
The priors used for the simulation study in both scenarios
(S1 and S2) were approximately flat for all parameters: for
b
��s2

b � NðbT
0 ¼ ½0; 0; 0�; I3 · 10; 000Þ, for r � Gð0:001; 1=0:001Þ,

for s2
b1

and s2
b2

a x22ð0:50002; 4:0002Þ, while for b1
��s2

b1 �
Nð0;G1s

2
b1Þ, and for b2

��s2
b2 � Nð0;G2s

2
b2Þ. We computed 20,000

MCMC samples; Bayes estimates were computed with 10,000 samples,
since the first 10,000 were discarded as burn-in. We report average
estimates obtained by using the proposed Gibbs sampler, along with
SD (Table 1). All the results in Table 1 are based on 50 replications.

RESULTS
Table 1 list the results of the simulation study of both scenarios (S1 and
S2). The bias when estimating the parameters is a little larger in S1
compared to S2. Also, parameter b0 is the parameter with larger bias
(underestimated). Both variances (s2

1,s
2
2) are overestimated in scenario

1, but only s2
1 is overestimated in scenario 2. Also, with a sample size of

n ¼ 5, parameter r had a larger SD; however, for larger sample sizes
(n ¼ 20; 40Þ, the SD were considerably reduced. In general, there was
not a large reduction in SDwhen the sample size increased from 5 to 10,
20, and 40, the exception being the estimation of r in both scenarios,
and the estimation of b0 in S1, where there was a large reduction in SD
when the sample size increased. Although estimations do not totally
agree with the true values of the parameters, the proposed Gibbs sam-
pler for count data, which takes into account G· E, did a good job of
estimating the parameters, since the estimates are close to the true
values with a SD of reasonable size.

In all the experiments (environments) using the real data set, the
genotypes were arranged in a randomized complete block design with
two blocks; thus the linear predictor usedwas that given in Equation (1).
Using the real data set, we compared four scenarios (S1–S4, given in
Table 2) for each model. Table 2 shows that, in the linear predictor, S1
and S2 do not take into account interaction effects between genotypes
and environments, only the main effects of these factors. Also, S1 and
S3 do not use marker information. These four scenarios were studied to
investigate the gain in model fit and prediction ability taking into
account the interaction effects, and using the marker information
available.

The posterior means (Mean), posterior SD of the scalar parameters,
andposteriorpredictive checks for eachscenario of theproposedmodels
are given in Table 3. For the four models, the posterior means of the
beta regression coefficients, variance components, and overdispersion

parameters (r) are similar between S1 and S2, and between S3 and S4.
In terms of goodness-of-fit measured by the loglikelihood posterior
mean (Loglik), the scenarios rank as follows: S3, rank 1; S4, rank 2;
S1, rank 3; and S2, rank 4, for the four proposed models, with the
exception of Model Pois, where the ranking was S3, rank 1; S4, rank
2; S2, rank 3; and S1, rank 4. Therefore, there is evidence that, with the
four proposed models in terms of goodness-of-fit, the best scenario is
S3. Of the four models under study, Table 3 shows that Model LN
reports the best fit since it has the largest Loglik.

Table 4 presents the mean and SD of the posterior predictive checks
(Cor and MSEP) for each location (Batan 2012, Batan 2014, and
Ecuador 2014) resulting from the 10-fold cross-validation imple-
mented for the four models and four scenarios. The predictive checks
given in Table 4 were calculated using the testing set. In Model NB,
according to the Spearman correlation, the ranking of scenarios was
as follows: in Batan 2012, 1 for S4, 2 for S3, 3 for S1, and 4 for S2. In
Batan 2014, the ranking was 1 for S4, 2 for S3 and 3 for S1 and S2. In
Ecuador 2014, the ranking was 1 S3, 2 for S2, 3 for S1, and 4 for S4.
With the MSEP, the ranking for Model NB in Batan 2012 was 1 for
S3, 2 for S4, 3 for S1 and 4 for S2. In Batan 2014, the ranking was 1 for
S2, 2 for S1, 3 for S3, and 4 for S4. In Ecuador 2014, the ranking in terms
ofMSEPwas 1 for S3, 2 for S2, 3 for S4, and 4 for S1. UnderModel Pois,
the ranking of the four scenarios in each locality was exactly the same as
the ranking reported forModel NB. ForModel Normal in terms of the
Spearman correlation, S1 was the best in prediction accuracy in Batan
2012, while scenario 4 was the worst in all three locations. In terms of
MSEP, the best scenario was S3 in Batan 2012 and Ecuador 2014, and
the worst was S4 in Batan 2014 and Ecuador 2014. For Model LN in
terms of the Spearman correlation, the best scenarios were scenarios S1,
S2 and S3 and the worst was S4 in Batan 2012. In Batan 2014, the best
scenario was S1, then scenario S3 and the worst was scenario S4. In
Ecuador 2014, the best scenario was scenario S1 and S3, then S2 and S4.
In terms of MSEP for Batan 2012, the best scenario was S3, then S1 and
S2 and the worst was S4. In Batan 2014, the best scenario was S1, then S2
and the worst was scenario S4. Finally, in Ecuador 2014, the best sce-
nario was S3, then S2 and the worst was scenario S1.

Table 5 gives the average of the ranks of the two posterior predictive
checks (Cor and MSEP) that were used. Since we are comparing four
scenarios for eachmodel, the values of the ranks range from 1 to 4, and
the lower the values, the better the scenario. For ties, we assigned the
average of the ranges that would have been assigned had there been no
ties. Table 5 shows that the best scenarios were S3 and S4 underModels
NB and Pois in Batan 2012. In Batan 2014, under Models NB and
Pois, the best scenario was S2, while in Ecuador 2014, the best scenarios
were S3. UnderModel Normal, the best scenario was S1 in Batan 2014
S1 and S3 in Ecuador 2014, while in Batan 2012, the best scenarios

n Table 5 Rank averages for the four scenarios for each model resulting from the 10-fold cross-validation implemented

Scenario Batan 2012 Batan 2014 Ecuador 2014 Batan 2012 Batan 2014 Ecuador 2014

Model NB Model Normal
S1 3.25 2.75 3.5 2.5 1.25 1.75
S2 3.75 2.25 2 2 3 3
S3 1.5 2.5 1 2 1.75 1.75
S4 1.5 2.5 3.5 3.5 4 4

Model Pois Model LN
S1 3.25 2.75 3.5 2.25 1 2.75
S2 3.75 2.25 2 2.25 2.75 2.75
S3 1.5 2.5 1 1.5 2.5 1.25
S4 1.5 2.5 3.5 4 3.75 3.25

Each average was obtained as the mean of the rankings given in Table 4 for the two posterior predictive checks (Cor and MSEP) in each scenario.
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were S2 and S3. Finally, under Model LN, the best scenario was S3 in
Ecuador 2014, S3 in Batan 2012 and S1 in Batan 2014.

Results in Table 4 and Table 5 indicate that the best models, in
terms of prediction accuracy, are Models NB and Pois, since they
had better predictions in the validation set based on both posterior
predictive checks (Cor and MSEP) implemented, although, in terms
of goodness-of-fit, Model LN was the best. These results are in par-
tial agreement with the findings of Montesinos-Lopez et al. (2015c),
who came to the conclusion that Models NB and Pois are good
alternatives for modeling count data, although in this study, the best
predictions were produced by Model LN. However, this model did
not take into account G· E interaction.

DISCUSSION
Generalized linear mixed models (GLMM) are widely recognized as
one of the major methodological developments of the second half of
the twentieth century. The main factor contributing to the success of
their wide applicability over the last 30 years or so has been their
flexibility, since they can be applied to many different types of data
(Berridge and Crouchley 2011). These types of data include contin-
uous interval/scale, categorical (including binary and ordinal) data,
count data, beta data, and others. Each member of the GLMM family
is appropriate for a specific type of data (Berridge and Crouchley
2011). However, GLMM for non-normal data are scarce in the con-
text of genome-enabled prediction, since most of the models devel-
oped so far are linear mixed models (mixed models for Gaussian
data). For this reason, we believe that developing specific methods
for count data for genome-enabled prediction can help to improve
the selection of candidate genotypes early when the phenotypes are
counts. Because using transformation to approximate the counts to
normality, or assuming that the counts are normally distributed,
frequently produces poor parameter estimates and lower power.
Also, parameter interpretation is more difficult when transformation
is used (Stroup 2015). However, in genomic selection, phenotypic
data (dependent variable) are not currently taken into account before
deciding on the modeling approach to be used, mainly due to the lack
of genome-enabled prediction models for non-normal phenotypes.
Although our proposed Bayesian regression models are only for
count data, they help fill this lack of genome-enabled prediction
models for non-normal data.

Another advantage of our proposed methods for count data is that
they take into account the nonlinear relationship between responses,
and consider the specific properties of counts, including discreteness,
non-negativity, and overdispersion (variance greater than the mean);
this guarantees that the predictive response will not be negative,
which makes no sense for count data. In addition, our methods help
modeling G ·E for count data in the context of genome-enabled pre-
diction, which plays a central role in plant breeding for the selection of
candidate genotypes that present high stability over a wide range of
environmental conditions, and for the prediction of yet-to-be observed
phenotypes when the relative performance of genotypes varies across
environments.

Another advantage of our proposed method is that the proposed
Gibbs sampler has an analytical solution because we were able to obtain
all the analytically required full conditional distributions. This is im-
portant, because, of all the computational intensive methods for
fitting complex multilevel models, the Gibbs sampler is the most
populardue to its simplicity andability to effectively generate samples
from high-dimensional probability distributions (Park and van Dyk
2009). This was possible because we constructed our Gibbs sampler
using the data augmentation approach proposed by Polson et al.

(2013). For this reason, we believe it is an attractive alternative for
fitting complex count data that arise in the context of genomic selection.

Our proposed methods showed superior performance in terms of
prediction accuracy compared to Models Normal and LN. Also, we
observed that, in Models NB and Pois, taking into account G ·E
considerably increased the prediction accuracy, which was expected
since there is enough scientific evidence that including G ·E inter-
action improves prediction accuracy. However, to use these models
correctly, it is important to first understand the types of data we
have before deciding on the modeling approach to be used. If the
phenotypic data are normally distributed, the linear mixed models
for genome-enabled prediction developed so far for Gaussian phe-
notypes should be used. If the phenotypic data are binary or cate-
gorical ordinal, the methods proposed by Montesinos-López et al.
(2015a, 2015b) developed for ordinal data for genome-enabled pre-
diction are preferred. If the phenotypic data are counts (number of
panicles per plant, number of seeds per panicle, weed count per plot,
etc.), and the counts are small, the models developed in this study,
and those proposed by Montesinos-López et al. (2015c), are the best
option, since they have more advantages over the conventional lin-
ear mixed models with Gaussian response, as was observed when
we applied them to the real data set. We also need to keep in mind
that Model Pois will be enough when the equi-dispersion (equality
of mean and variance) is supported by the data at hand. However,
when this assumption is violated, and the variance of the counts
exceeds the mean count, overdispersion is present; in this situation,
the most appropriate model is the NB model because it can control
the overdispersion with the scale parameter ðrÞ, and improve pa-
rameter estimates, power, and predictions (Yaacob et al. 2010).
Finally, more research is needed to study the proposed methods
using other real data sets, and extend the proposed genomic-enabled
prediction models to deal with the large number of zeros in count
response variables, and for modeling multiple traits.
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APPENDIX A

Derivation of full conditional distribution for all parameters.

Full conditional for b�
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Full conditional for b1: Defining h1 ¼ X b� þ Z2b2 the conditional distribution of b1 is given as
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Full conditional for s2
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Full conditional for r : To make the inference of r, we first place a gamma prior on it as r � Gða0; 1=b0Þ. Then we infer a latent count L
for each count conditional on Y and r. To derive the full conditional of r, we use the following parameterization of the NB distribution:
Y � NBðp; rÞ with p ¼ m

r þ m
. Since L � Pois½2 rlogð12pÞ�; by construction we can use the Gamma-Poisson conjugacy to update r.

Therefore,
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According to Zhou et al. (2012), the conditional posterior distribution of Lijkt is a Chinese restaurant table (CRT) count random variable. That is,

Lijkt�CRTðyijkt ; rÞ and we can sample it as Lijkt ¼ S
yijkt
l¼1dl; where dl � Bernoulli

�
r

l2 1þr

�
: For details of the CRT random variable deri-

vation, see Zhou and Carin (2012, 2015).

APPENDIX B

The Pólya-Gamma distribution
According to Polson et al. (2013), random variable v has a Pólya-Gamma distribution with parameters b. 0 and d 2 R, denoted v � PGðb; dÞ if

v¼D 1
2p2

XN
k¼1

gk�
k21

2

�2 þ d2

ð4p2Þ

(B1)

where gk �Gamma(b, 1) are independent gamma random variables, and D = indicates equality in distribution (Polson et al. 2013). However, it
is not easy to simulate Pólya-Gamma random variables from Equation (B1), which is a sum of gamma random variables. To avoid the difficulties
that can result from truncating the infinite sum given in Equation (B1), the density of a Pólya-Gamma random variable is expressed as an
alternating-sign sum of inverse-Gaussian densities as:
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where cosh denotes the hyperbolic cosine. A further useful fact is that all finite moments of a Pólya-Gamma random variable are available in

closed form (Polson et al. 2013). In particular, the expectation may be calculated directly, and is equal to EðvÞ ¼ b
2d

tanh

�
d
2

�
, where tanh

denotes the hyperbolic tangent. Also, the Pólya-Gamma distribution is closed under convolution for random variates with the same scale
parameter, given that if v1 � PG(b1, d), and if v2 � PG(b2, d) are independent, then v1 + v2 � P G(b1 þ b2, d) (Polson et al. 2013). This is used
to construct the proposed Gibbs sampler. More details on simulating Pólya-Gamma random variates can be found in section 4 of the paper of
Polson et al. (2013). Also, it is important to point out that this method for simulating Pólya-Gamma random variables is implemented in the R
package Bayeslogit.
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