1966-2016 CIMMYT

New perspectives from satellite data and associated digital tools smallholder agriculture

Clare Stirling and Urs Schulthess

DFID, Nov 8, 2016

The Economist, Nov 5, 2009 http://www.economist.com/sciencetechnology/displaystory.cfm?story_id=14793411

Outline

- Remote sensing data
- Remote sensing products
 - Sen2-Agri toolbox
 - Flood monitoring
- Technology targeting
 - Yield gap mapping
 - Potential for sustainable intensification using surface water for irrigation
- Integrated services
 - Crop management recommendations
 - GreenSat
 - PANI (Irrigation scheduling)
- Monitoring of compliance
 - Till vs zero till detection
- Smart phones & Big data
 - Ground cover app

Remote sensing data

- Landsat 8
 - $-30 \, \text{m}$
- Sentinel 1 (radar)
 - $\sim 10 \text{ m} / \sim 3 \text{ day revisit}$
- Sentinel 2 (optical)
 - 10 m / 5 day revisit starting in mid 2017
- Planet Labs
 - ~ 3 m, 4 bands (RGB and NIR)
 - Daily coverage of all the land surfaces starting in 2017
- WorldView 2/3, soon 4
 - 1.2 m / 2.4 multispectral data
- Many others, such as IRS, SPOT, etc

Cattle Grazing in Bangladesh

Sentinel 2 A&B

- 5 day revisit in 2017
- 10 m resolution

CIMMYT has been selected as a champion user of Sen2-Agri

Products for:

status indicators

Surface

reflectance composite

Dynamic annual

cropland mask

Crop type map

& extent area

- Technology targeting
- Crop management advice
- Monitoring and Evaluation

Other products

- Weather
- Soil moisture Anomaly (50 km resolution)
 - Data access: http://www.pecad.fas.usda.gov/
 - Description: http://www.pecad.fas.usda.gov/cropexplorer/d
 escription.aspx?legendid=355
- ESA mapping soil moisture: http://www.esa.int/Our_Activities/Observingg g_the_Earth/SMOS/Mapping_moisture
- GEOGLAM
 - http://www.cropmonitor.org

Flood map made from Sentinel-1 image 1 day after cyclone Roanu had hit Bangladesh on May 22, 2016

Yield estimation at the regional scale in Chiapas, Mexico

Error estimation of calibrated actual yield with 10-fold-crossvalidation

Yield data:

Average yield of 45 farmer's fields

Ground cover:

Derived from satellite image acquired around tasseling on Sept 7, 2012

Yield gap mapping in Chiapas, MX

Example of land use intensity, *rabi* 2013–14

PANI

Smartphone app for irrigation scheduling developed in Bangladesh & Mexico¹⁾

GreenSat: generates N recommendations for maize at V7-V8 and V10-V12

http://www.cmgs.gob.mx:89/GreenSat/

Mapping result seems promising but rely on high knowledge on farming systems

Source: G. Chomé, UCL

A Smart Tricorder

Tricorder can

- sense
- analyze
- record

Smart phones

- Sensors
 - GPS
 - Temperature
 - Hyperspectral sensors
- Analyze
- Record / Store data
- Provide recommendations
- Financial transactions

Source: <www.dailymail.co.uk/sciencetech>

Estimation of percent ground cover with a smart phone

Canopeo: <u>www.canopeoapp.com</u>

Definition of ground cover: Fraction of ground covered by green vegetation when seen from above.

Ground cover = 1 - exp (-k*LAI)
Where
k = light extinction coefficient
LAI = Leaf area index

Learning from the best: an integrated approach to optimize crop production

Conclusions

Finally, remote sensing can live up to its promises:

- ✓ Data
- ✓ Processing
- ✓ Delivery

Remote sensing works better with ground truth data

Thank you for your interest!

u.schulthess@cgiar.org

