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ABSTRACT

A study was conducted to assess the performance of maize hybrids with Bt event MON810 (Bt-hybrids)
against the maize stem borer Busseola fusca (Fuller) in a biosafety greenhouse (BGH) and against the
spotted stem borer Chilo partellus (Swinhoe) under confined field trials (CFT) in Kenya for three seasons
during 2013—2014. The study comprised 14 non-commercialized hybrids (seven pairs of near-isogenic Bt
and non-Bt hybrids) and four non-Bt commercial hybrids. Each plant was artificially infested twice with
10 first instar larvae. In CFT, plants were infested with C. partellus 14 and 24 days after planting; in BGH,
plants were infested with B. fusca 21 and 31 days after planting. In CFT, the seven Bt hybrids significantly
differed from their non-Bt counterparts for leaf damage, number of exit holes, percent tunnel length, and
grain yield. When averaged over three seasons, Bt-hybrids gave the highest grain yield (9.7 t ha™1),
followed by non-Bt hybrids (6.9 t ha~!) and commercial checks (6 t ha~!). Bt-hybrids had the least
number of exit holes and percent tunnel length in all the seasons as compared to the non-Bt hybrids and
commercial checks. In BGH trials, Bt-hybrids consistently suffered less leaf damage than their non-Bt
near isolines. The study demonstrated that MON810 was effective in controlling B. fusca and
C. partellus. Bt-maize, therefore, has great potential to reduce the risk of maize grain losses in Africa due
to stem borers, and will enable the smallholder farmers to produce high-quality grain with increased

yield, reduced insecticide inputs, and improved food security.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

amounts of maize consumed are found in Southern Africa at 85 kg/
capita/year as compared to 27 in East Africa and 25 in West and

Maize is currently cultivated in about 25 million ha in sub-
Saharan Africa, largely in smallholder systems that produce 38
million metric tons, primarily for food. An additional 2.8 million ha
is grown in South Africa, mostly in large-scale commercial pro-
duction, much of it for animal feed (Smale et al., 2011). The highest
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Central Africa. In Lesotho, Malawi, South Africa, Zambia and
Zimbabwe, average consumption is over 100 kg/capita/year. These
amounts represent more than 50% of total calories in Lesotho,
Malawi and Zambia, 43% in Zimbabwe, and 31% in South Africa
(Shiferaw et al., 2011).

Average national yields for maize in the main producing coun-
tries of the eastern and southern Africa are reported to range be-
tween 1.1 tons and 1.8 tons per hectare, although they have
occasionally surpassed 2—3 tons per hectare in Zambia, Zimbabwe,
Kenya and Ethiopia (Smale et al., 2011). Limited access to improved
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inputs (including improved maize varieties and fertilizers), recur-
rent drought, poor soil fertility, diseases, weeds and insect pests are
major factors contributing to the low maize yields in sub-Saharan
Africa (Smale et al., 2011; Shiferaw et al., 2011).

Lepidopteran stem borers cause significant negative impact on
maize yields in Africa due to their damage to the leaves, stem and
ears. The spotted stem borer Chilo partellus (Swinhoe) (Crambidae)
and the African stem borer Busseola fusca (Fuller) (Noctuidae) are
the two most economically important stem borers of maize. A study
made in 2000—2001 in Kenya, estimated annual maize yield lost
due to stem borers damage was on average 14%, about 0.44 million
tons valued US$ 25—60 million, which was enough to feed 3.5
million people per annum at per capita maize consumption of
125 kg (Odendo et al., 2003).

Application of chemical insecticides has been recommended to
protect maize crop against stem borers. However, insecticides are
too expensive for subsistence farmers in most parts of Africa, be-
sides posing environmental and health hazards if not used judi-
ciously or with proper safety measures (PAN UK, 2003). Therefore,
effective and economically feasible stem borer control practices
need to be made available to farmers in sub-Saharan Africa.

Bt maize has been genetically modified to produce a Bt protein
to control maize insect pests including European corn borer
(Ostrinia nubilalis Hiibner) and southwestern corn borer (Diatraea
grandiosella Dyar) (Hutchinson et al., 2010); the gene that produces
this insecticide is transferred to maize from a soil bacterium Bacillus
thuringiensis (Saxena and Stotzky, 2000). Bt maize has the potential
to increase yields where stem borers are a major constraint (Van
Wyk et al., 2008; Tende et al., 2010). South Africa is the only
country in Africa where farmers grow Bt maize (Assefa and Van Den
Berg, 2009). In 2014, 2.14 million hectares of the total maize area in
South Africa was Bt maize (James, 2014). Bt-maize is extensively
cultivated in the USA, Argentina, Canada, and recently in the
Philippines. Worldwide, the total area planted with genetically
modified maize is 57 million hectares (James, 2013).

A number of commercial Bt formulations have been used for a
long time as effective biopesticides for the protection of food crops,
ornamentals, forest trees and stored grains against insect-pests
(Meadows, 1993). Bt formulations are highly specific, harmless to
humans, animals, and a wide array of non-target pests (Saxena and
Stotzky, 2000). Therefore, it is ideally suited for integrated pest
management (IPM) strategies (Nester et al., 2002). In spite of these
advantages, Bt based formulations have several disadvantages, as
they need to be applied repeatedly and are effective only against
immature stages of target insects feeding on exposed plant surfaces
(McGaughey and Whalon, 1992). These limitations can be over-
come by expression of Bt-proteins (endotoxins) in transgenic plants
(Krattiger, 1997). Bt-maize has revolutionized stem borer control in
several countries and also enabled growers to expand maize pro-
duction into regions where high pest populations have made
growing maize unprofitable (Hellmich and Hellmich, 2012). South
Africa is the only country where Bt-maize is commercially grown in
Africa (James, 2007). Growers are interested in Bt-crops because of
the reduced need for application of broad-spectrum insecticides
(Carpenter et al., 2002), increased or protected yields due to
season-long control of the target insect pest (Rice and Pilcher,
1998), and improved grain quality as a result of lower mycotoxin
levels due to reduction in fungal pathogens associated with insects
feeding on the maize (Munkvold et al., 1999).

The National Biosafety Authority (NBA) of Kenya was established
by the Biosafety Act No. 2 of 2009 to exercise general supervision
and control over the transfer, handling and use of genetically
modified organisms (GMOs). The present trials were conducted for
three seasons under the supervision of the NBA to generate
empirical information to guide decision making on application for

approval to commercialize Bt-maize in Kenya. This study, therefore,
reports on the efficacy of maize with event MON810 against the
two major stem borers of maize, B. fusca and C. partellus in biosafety
greenhouse and confined field trials, respectively, in Kenya.

2. Materials and methods
2.1. Germplasm

A set of 18 hybrids were used in this study, with seven pairs of
near isolines of Bt (with event MON810 expressing Cry1Ab) and
non-Bt hybrids, and four non-Bt commercial hybrids (KH 414—3,
H516, WH505, DK8053). The Bt-hybrids and their non-Bt counter-
parts were sourced from Monsanto Company, and the non-Bt
commercial hybrids were procured from a local market in Nairobi
(Table 1).

2.2. Evaluation of Bt-maize against C. partellus under confined field
trials

Confined field trials (CFT) were conducted at the Kenya Agri-
cultural and Livestock Research Organization (KALRO), Maize
Research Station in Kiboko, Makueni County, Kenya. Kiboko is
located at 02°15’ S and 37°75’ E, and an elevation of 975 m above
sea level (m.a.s.l.). The experimental site has sandy clay soils and
receives on an average 530 mm annual rainfall, spread over two
very short rainy seasons. The site had similar relative humidity and
temperature during the study period. The site received high mean
temperature (25—28 °C) from February to April and low tempera-
ture (20—21 °C) in July and August. The weather conditions were
optimum for both maize and insect growth and development.

2.2.1. Experimental design and management

The experiment was laid out in a randomized complete block
design with four replications. Two seeds were sown per hill in a row
of 5 m long and thinned to one seedling per hill 2 weeks after
emergence. There were two rows per plot. The row-to-row distance
was 0.75 m while plant-to-plant distance was 0.25 m, giving a plant
density of 53,333 plants ha~L. Standard rates of fertilizers were
applied (60 kg N and 60 kg P,0s ha~'). Top dressing was done using
nitrogen fertilizer in two splits. Supplemental irrigation was
applied when needed. The fields were kept weed-free by hand
weeding. There were a total of 21 plants per row as described
above. The trial was repeated for three consecutive seasons; CFT-1
was planted in January 2013, CFT-2 in August 2013 and CFT-3 in
May 2014.

2.2.2. Artificial infestation with C. partellus

First instar larvae of C. partellus were obtained from the CIMMYT
and KALRO, Katumani Stem Borer Mass Rearing Laboratory. Each
row was divided using a string into two equal halves, one infested
and one uninfested, excluding one border plant from both ends. A
total of 20 plants per plot, 10 plants in the front half of each of the
two rows, were infested artificially with ten C. partellus neonates
per plant 14 and 24 days after planting using a camel hair brush.

2.2.3. Data collection

Foliar damage for stem borer was assessed from the 20 artifi-
cially infested plants per plot, using a 1-9 scale; where 1= no
visible damage; and 9 = completely damaged (Tefera et al., 2011).
Foliar damage was first assessed 24 days after planting (V2 stage)
just before the second round of artificial infestation was done on
the same day. Foliar damage was also assessed 39 days after
planting (V4 stage).

At physiological maturity (at harvest), the number of stem borer
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Table 1
List of Bt hybrids, non-Bt near isogenic hybrids and commercial checks.

Entry code (Bt hybrids)

Entry code (non-Bt hybrids, near isogenic hybrids)

Commercial checks (Non-Bt hybrids)

Hybrid1-MON810 (Entry 1)
Hybrid 2-MON810 (Entry 3)
Hybrid 3-MON810 (Entry 5)
Hybrid 4-MON810 (Entry 7)
Hybrid 5-MON810 (Entry 9)
(
(

Hybrid 1 (Entry 2)
Hybrid 2 (Entry 4)
Hybrid 3 (Entry 6)
Hybrid 4 (Entry 8)
Hybrid 5 (Entry 10)
Hybrid 6 (Entry 12)
Hybrid 7 (Entry 14)

Hybrid 6-MON810 (Entry 11)
Hybrid 7-MON810 (Entry 13)

KH414-3 (Entry 15)
H516 (Entry 16)
WH505 (Entry 17)
DK8053 (Entry 18)

exit holes per plant (holes resulting from larval feeding which serve
as exit holes for the moth) was counted from the 20 infested plants
per plot. Each tunnel length per stem was measured after splitting
the stems of the infested plants. Cumulative tunnel length was
summed per plant. The cumulative tunnel length was expressed as
percentage of total stem height. No larvae or pupae were recovered
at harvest after splitting the stems. The infested plants were har-
vested excluding one border plant from both ends. Ears from each
of these plants per plot were shelled separately, and grain weight
taken at moisture content of 12.5—13%, and converted to grain yield
per hectare.

2.3. Greenhouse evaluation of Bt maize against B. fusca

CFT was not conducted for B. fusca at Kiboko, Kenya, because the
site is hot and dry, and does not represent an ideal habitat for
B. fusca, a pest which inhabits and causes damage to cereal crops in
cooler areas of Kenyan highlands (Muyekho et al., 2005). Pre-
liminary unpublished observations from artificial infestation of
maize with B. fusca larvae at Kiboko resulted in high larval mortality
shortly after infestation; hence, greenhouse trials were designed.
The Bt-maize, non-Bt maize, and non-Bt commercial hybrids
described above were sown in the biosafety level-two greenhouse
at KALRO, Nairobi. Three seeds were planted per plastic pot of 10 L
(30 x 33 cm), filled with about six kg of sterilized soil; the pots were
watered as required, and kept weed-free. The pots were arranged in
completely randomized design; each pot was used as a replicate.
Each plant was artificially infested twice with ten neonates per
plant 21 and 31 days after planting using a camel hair brush. Leaf
damage was assessed twice, 31 and 41 days after planting using the
standard 1—9 visual scoring scale described above. The insect
succumbed to early mortality before making damage to stems and
only leaf damage was subject to analysis.

2.4. Statistical analysis

For the CFT data, percent tunnel length was angular transformed
(arcsine 4/ proportion) in order to normalize the variance before
analysis of variance (ANOVA). Number of exit holes and yield were
not transformed. Foliar damage was categorical data and subjected
to Kruskall-Wallis non-parametric analyses. Comparisons were
made using rank sums to determine significant differences be-
tween means at P < 0.05 (Dunn, 1964). For yield, number of exit
holes and percent tunnel length, a two-sample t-test (Snedecor and
Cochran, 1989) was used to determine the difference between Bt
and non-Bt hybrids. A two way factorial analysis (with entry and
season as fixed effects) was executed to determine interactions and
main effects amongst the three sets of hybrids (averages of Bt hy-
brids, non-Bt near isogenic hybrids and non-Bt commercial checks)
averaged across season. The means were separated using the least
significance difference (LSD) at P = 0.05. Data were analyzed with
Statistical Analysis Software (SAS, 2003). Untransformed (original)
data were presented in results for tunnel length and foliar damage.

For the biosafety greenhouse trial, leaf damage data by B. fusca were
analyzed using Kruskall-Wallis non-parametric analyses.

3. Results

3.1. Effect of Bt maize on leaf, stem damage, grain yield under
C. partellus infestation

Significant differences were mostly observed in leaf damage
between entries and seasons; however, for damage 1, the damage
were more significant in the second and third season than in the
first season (Table 2). There were significant differences between
entries in number of exit holes per plant in the first and third
season; entry 1 and 2, entry 9 and 10, and entry 13 and 14 were
consistently different among the seasons (Table 3). Per cent tunnel
length significantly differed among seasons and in all entries except
for entry 9 and 10, and entry 13 and 14 in the first season (Table 4).
Significant differences were observed in yield between entry 1 and
2 in the three seasons (Table 5); however, majority of the entries
showed significant differences in the second and third season than
in the first season.

There were significant effects of hybrids, seasons and their
interaction on grain yield (hybrids: F» ,7 = 142.2; P < 0.0001;
seasons: Fp, p7 =102.1; P < 0.0001; hybrids by seasons: Fy4 27 = 24.1;
P < 0.0001) (Table 6). Number of exit holes were significantly
affected by hybrids and seasons; however, the interaction between
hybrids and seasons was not significant (hybrids: Fy7 = 37.2; P =
P < 0.0001; seasons: F2,7 = 28.3; P < 0.0001; hybrids by seasons:
F427 = 0.8; P = 0.53). Similarly, significant differences were also
observed in tunnel length between hybrids and seasons but not in
the interaction between hybrids and season (hybrids: F,,7 = 88.8;
P < 0.0001; seasons: Fyy7 = 4.9; P < 0.0001; hybrids by seasons:
F427 = 1.7; P = 0.17) (Table 6). The significant interaction for yield
can be explained by a lack of entry effect in season 1, whereas the Bt
hybrids had higher yields than the non-Bt hybrids and commercial
checks in seasons 2 and 3. When averaged over three seasons, Bt-
hybrids gave the highest grain yield (9.7 t ha~!), followed by non-Bt
hybrids (6.9 t ha~!) and commercial checks (6 t ha—!) (Table 6). Bt-
hybrids had the least number of exit holes and percent tunnel
length in all the seasons as compared to the non-Bt hybrids and
commercial checks. The highest grain yield of 8.4 t ha~! was ob-
tained in third season and the least grain yield of about 5.8 t ha™!
was recorded in the first season (Table 6). The least number of exit
holes and percent stem tunneled were recorded in third season.

3.2. Effect of Bt maize on leaf damage under B. fusca infestation

There were significant differences in leaf damage between Bt-
hybrids and their near isogenic versions except for hybrids 1 and 2
(Table 7). Bt-hybrids consistently suffered less leaf damage than
their near isogenic versions.
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Table 2

Mean leaf damage of Bt hybrids and their near isogenic hybrids caused by C. partellus at Kiboko, Kenya, in three seasons. Plants were artificially infested with C. partellus 14 and
24 days after planting; leaf damage-1 was assessed 24 days after planting and leaf damage-2 was assessed 39 days after planting based on 19 visual scale. Pair mean values
with the same letter in a column are not significantly different at P = 0.05 using Kruskall-Wallis non-parametric analyses (+indicates standard error of the mean).

Entry Leaf damage 1 (+SE) Leaf damage 2 (+SE)
Season 1 Season 2 Season 3 Season 1 Season 2 Season 3
1 (Bt) 32+0.7a 1.3 +0.1a 1.0 + 0.0a 5.1 +0.9a 2.9 + 0.0a 1.1 +0.0a
2 (Non-Bt) 45+ 1.2a 4.8 + 0.4b 3.7+0.2b 49 + 1.0b 4.7 +0.1b 5.0 + 0.1b
3 (Bt) 4.7 + 0.4a 14 +0.1a 1.0 £ 0.0a 5.0 + 04a 3.1+02a 1.1 +£0.0a
4 (Non-Bt) 2.5+ 0.5b 6.6 + 0.5b 4.5 +0.2b 3.7 +0.3b 53 +0.1b 53 +0.1b
5 (Bt) 4.2 + 04a 1.7 £0.1a 1.2 +0.2a 4.8 +0.3a 34 +0.1a 1.5 +0.1a
6 (Non-Bt) 5+ 04a 5.6 + 0.2b 4.2 +0.4b 2.5+ 0.6b 4.6 + 0.3b 59+ 0.3b
7 (Bt) 3.7+0.7a 14 +0.1a 1.2 +0.2a 3.7 + 1.0a 3.2 +0.0a 1.1 +0.0a
8 (Non-Bt) 3.0 £ 0.5a 6.1 + 0.4b 5.0 + 0.4b 5.0 +£0.9a 53 +0.2b 5.3 + 0.6b
9 (Bt) 5.0 +0.7a 1.5 +0.1a 1.7 £ 0.2a 4.6 +0.7a 3.0+0.2a 1.2 +£0.0a
10 (Non-Bt) 3.2+08a 53 +03b 3.7+0.2b 4.1 +0.8a 4.4 +0.1b 5.1+ 0.5b
11 (Bt) 2.7 +0.8a 1.8 +0.3a 1.2 +0.2a 3.6 + 0.9a 35+0.1a 1.1+0.1a
12 (Non-Bt) 3.7 + 1.0a 6.1 +0.1b 3.7+0.2b 3.6 + 1.0a 49 +0.1b 5.0 + 0.4b
13 (Bt) 4.5 + 0.6a 14 +0.1a 1.0 £ 0.0a 3.0 + 0.9a 3.1+0.1a 1.3 +0.1a
14 (Non-Bt) 3.7+0.7a 6.0 + 0.2b 3.7+ 0.2b 4.8 + 0.4a 53 +0.3b 5.1 + 0.4b
Table 3 Table 5

Mean exit holes of Bt hybrids and their near isogenic hybrids caused by C. partellus at
Kiboko, Kenya, in three seasons. Entries with odd numbers have Bt gene and those
with even numbers do not have Bt gene (near isogenic hybrids). Plants artificially
infested with C. partellus 14 and 24 days after planting; exit holes were assessed at
harvest. Pair mean values with the same letter in a column are not significantly
different at P = 0.05 using t-tests.

Exit holes per plant

Entry Season 1 Season 2 Season 3

1 (Bt) 0.1 +0.1*a 0.5+ 0.3a 0.0 +£ 0.0a
2 (Non-Bt) 1.8 + 0.6b 3.9+ 0.5b 2.0 +0.4b
3 (Bt) 0.1 +0.1a 1.2 +09a 0.0 +£ 0.0a
4 (Non-Bt) 34 +0.7b 3.1 +£0.9a 1.0 + 0.2b
5 (Bt) 0.2 +0.2a 1.5+ 0.8a 0.0 £ 0.0a
6 (Non-Bt) 29 +0.5b 39+0.7b 0.6 + 0.2b
7 (Bt) 0.9 + 0.5a 5.7 +5.7a 0.0 +£ 0.0a
8 (Non-Bt) 3.1 +0.5b 5.1 +0.2a 1.5 + 0.4b
9 (Bt) 0.0 + 0.0a 0.5 + 0.2a 0.0 + 0.0a
10 (Non-Bt) 1.6 £ 0.3b 3.7+0.7b 1.4 +0.5b
11 (Bt) 1.5+ 0.7a 8.1+3.1a 0.0 + 0.0a
12 (Non-Bt) 4.0 + 0.3b 2.6 + 0.6b
13 (Bt) 0.0 + 0.0a 0.5+ 0.2a 0.0 + 0.0a
14 (Non-Bt) 22+0.2b 33 +0.5b 1.2 +0.2b

* = + Standard error of the mean.

Table 4

Mean percent tunnel length of Bt hybrids and their near isogenic hybrids caused by
C. partellus at Kiboko, Kenya, in three seasons. Entries with odd numbers have Bt
gene and those with even numbers do not have Bt gene (near isogenic hybrids).
Plants were artificially infested with C. partellus 14 and 24 days after planting; tunnel
length was assessed at harvest. Pair mean values with the same letter in a column
are not significantly different at P = 0.05 using t-tests (+indicates standard error of
the mean).

Tunnel length (%)

Entry Season 1 Season 2 Season 3

1 (Bt) 0.0 + 0.0a 0.0 + 0.0a 0.0 +£ 0.0a
2 (Non-Bt) 4.4 +0.7b 35+03b 2.6 + 0.6b
3 (Bt) 0.1 +0.1a 0.1 + 0.0a 0.0 + 0.0a
4 (Non-Bt) 4.7 + 0.47b 2.6 + 1.0b 1.6 £ 0.3b
5 (Bt) 0.3 +£0.3a 0.0 + 0.0a 0.0 +£ 0.0a
6 (Non-Bt) 3.5+ 1.6b 6.3 + 1.0b 1.6 + 0.3b
7 (Bt) 0.7 £ 0.5a 03 +0.3a 0.0 + 0.0a
8 (Non-Bt) 4.5 + 0.9b 5.5+ 0.5b 29+ 0.8b
9 (Bt) 14+ 14a 0.0 + 0.0a 0.2 +0.1a
10 (Non-Bt) 28 +0.2a 2.8 +0.8b 2+ 05b

11 (Bt) 1.5 + 0.6a 0.0 + 0.0a 02 +0.1a
12 (Non-Bt) 7.0 + 0.4b 7.9 + 2.0b 4.1 +0.5b
13 (Bt) 13 +13a 0.0 + 0.0a 0.0 + 0.0a
14 (Non-Bt) 3.1 +04a 2.6 + 0.1b 2.2 +04b

Mean grain yield (t ha—') of Bt hybrids and their near isogenic hybrids caused by
C. partellus at Kiboko, Kenya, in three seasons. Entries with odd numbers have Bt
gene and those with even numbers do not have Bt gene (near isogenic hybrids).
Plants were artificially infested with C. partellus 14 and 24 days after planting; yield
was assessed at harvest. Pair mean values with the same letter in a column are not
significantly different at P = 0.05 using t-tests (+indicates standard error of the
mean).

Yield ha—2

Entry Season 1 Season 2 Season 3

1 (Bt) 6.7 + 0.7a 129 + 0.5a 11.2 + 0.3a
2 (Non-Bt) 5.2 + 0.6a 10.5 + 0.7b 7.1 +0.7b
3 (Bt) 7.8 +0.1a 14.7 + 1.5a 11.6 + 0.7a
4 (Non-Bt) 7.2 + 0.6a 6.8 + 2.0b 9.2 + 0.9b
5 (Bt) 7.1 +0.3a 12.7 + 1.1a 10.5 + 0.8a
6 (Non-Bt) 6.2 + 0.3a 6.1 +1.2b 4.8 + 0.5b
7 (Bt) 5.9 + 0.6a 115+ 1.0a 11.7 £ 0.2a
8 (Non-Bt) 6.6 + 0.4a 6.9 + 0.2b 69 + 1.1b
9 (Bt) 52 +0.2a 10.7 + 0.6a 10.0 + 0.4a
10 (Non-Bt) 4.5 + 04a 6.1 +1.3b 58+ 1.3b
11 (Bt) 42 +0.3a 5.2 + 0.8a 103 + 0.4a
12 (Non-Bt) 3.7 + 0.5a 4.0+ 0.7a 5.9 + 0.4b
13 (Bt) 7.7 + 1.1a 14.2 + 0.9a 11.8 + 0.6a
14 (Non-Bt) 6.2 + 0.6a 103 + 1.7b 8.1 +0.5a

4. Discussion

The present study demonstrated the efficacy of MONS810 in
controlling the two major species of stem borers in Kenya, B. fusca
and C. partellus. Bt maize was initially developed for the control of
two stem borers in North America, namely Ostrinia nubilalis
(Hubner) (Lepidoptera: Crambidae) (Ostlie et al., 1997) and Diatraea
grandiosella (Dyar) (Lepidoptera: Crambidae) (Archer et al., 2001)
before it was introduced for control of B. fusca (Fuller) (Lepidoptera:
Noctuidae) and C. partellus (Swinhoe) (Lepidoptera: Crambidae) in
South Africa (Gouse et al., 2005).

After splitting the stems, no larvae of C. partellus or B. fusca were
recovered in the present study from Bt maize. Although the Bt
maize that is used in South Africa effectively controls B. fusca,
survival of this insect species on certain plant parts has been re-
ported (Van Rensburg, 1998, 2001). The MON810 event is, however,
reported to cause 100% mortality of C. partellus (Van Rensburg,
1998; Singh et al., 2005) and the pink stem borer, Sesamia calami-
stis (Hampson) (Lepidoptera: Noctuidae) (Van Wyk et al., 2007).
Laboratory studies had earlier indicated that C. partellus and B. fusca
larval survival and weight were lower after feeding on Bt-maize
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Table 6

Mean of entry by season interactions and main effects amongst three sets of entries (Bt hybrids, non-Bt near isogenic hybrids and non-Bt commercial checks) averaged across
season and across all Bt hybrids, non-Bt hybrids and across the commercial checks. Mean values with the same letter in a column are not significantly different using the least

significance difference (LSD) at P = 0.05.

Season Entry” Grain yield (t ha™!) (+SEM) Number holes/plant (+SEM) % Stem height tunnelled (+SEM)
1 Bt 6.4 + 0.4ab 04 +03a 0.7 +0.3a
Non-Bt 5.7 + 0.4ab 2.7 +0.3c 3.8 +0.3c
Checks 5.0 + 0.5a 2.8 + 0.5¢c 5.0 + 0.4d
2 Bt 11.7 + 0.4d 1.7 +0.3b 0.1 +£03a
Non-Bt 7.2 + 0.4bc 40+0.3d 3.9 +0.3c
Checks 5.9 + 0.5ab 49 + 0.5d 4.8 +0.4d
3 Bt 11.0 + 0.4d 0.03 +0.3a 0.07 £ 0.3a
Non-Bt 6.9 + 0.4ab 1.5+ 0.3b 2.1+03b
Checks 7.0 + 0.5bc 2.1 +0.5b 3.4 + 0.4c
Mean entry Bt 9.7 + 0.2¢c 0.7 +0.2a 03 +0.1a
Non-Bt 6.9 + 0.2b 2.8 +0.2b 3.7+0.1b
Checks 6.0 + 0.3a 33+0.2c 4.7 + 0.2c
Mean season 1 58 +0.2a 2.0+ 0.2b 33+0.2b
2 83 +0.2b 3.6 +0.2c 3.1+0.2b
3 8.4 +0.2b 1.2+0.2a 23 +0.2a

*Entry Bt = Bt hybrids; Non-Bt = Non-Bt near isogenic hybrids; Checks = Commercial checks.

Table 7

Mean leaf damage of Bt hybrids and their near isogenic hybrids caused by B. fusca in
biosafety greenhouse under artificial infestation twice with ten neonates per plant
21 and 31 days after planting. Leaf damage was assessed twice, 31 and 41 days after
planting using the 1-9 visual scoring scale. Pair mean values with the same letter in
a column are not significantly different at P = 0.05 using Kruskall-Wallis non-
parametric analyses (+indicates standard error of the mean).

Entry Leaf damage 1 Leaf damage 2
1 (Bt) 25+0.1a 3.7+0.2a
2 (Non-Bt) 1.5+0.1a 42 +0.2a
3 (Bt) 25+0.2a 22+02a
4 (Non-Bt) 4.7 + 0.8b 42 +0.7b
5 (Bt) 22+02a 20+0.1a
6 (Non-Bt) 32 +04b 3.0 +04b
7 (Bt) 25+0.2a 1.7 +0.2a
8 (Non-Bt) 4.0 + 0.4b 4.7 + 0.4b
9 (Bt) 22+02a 20+0.1a
10 (Non-Bt) 4.5 + 0.8b 4.0+ 0.2b
11 (Bt) 2.7 +04a 2.0+0.1a
12 (Non-Bt) 42 +0.2b 5.0 + 0.2b
13 (Bt) 2.0+0.1a 20+0.1a
14 (Non-Bt) 32+02b 3.0+0.1a

(Tende et al., 2010).

The Bt-hybrids had less leaf damage, number of exit holes and
percent tunnel length compared to the commercial checks. This can
likely be attributed to expression of the Bt toxin in leaves and
stems. Castro (2002) reported protein expression for MON810 in all
maize plant tissue. Different promoters have been used in various
commercial Bt-maize hybrids and these different hybrids have been
shown to express different amounts of toxin in different plant tis-
sues (Van Wyk et al., 2009; Dutton et al., 2003). Cry1Ab protein
expression in transgenic maize varieties containing the cauliflower
mosaic virus (CaMV) 35 S promoter for MON810 and Bt11 expresses
the toxin throughout the season in leaves, stem, roots, and kernels
(EPA, 2000). Important behavioural implications may arise if dif-
ferences in Bt-toxin concentrations exist within the plant. For
example, if the larvae feed on silks and kernels with a lower toxin
concentration, and only then penetrate the stems as 3rd instars,
they may be able to survive inside the stems. Van Rensburg (2001)
observed that protein expression was high enough during the
vegetative stages of plant development when larvae feed only on
leaf and stem tissue, but B. fusca 1st instars survived when fed on
maize silks.

The Bt-hybrids in the present study gave the highest mean grain

yield, 9.7 t ha~!, as compared to the mean grain yield of the non-Bt
near isolines, 6.9 t ha~l, ie. 28% yield advantage. Safeguarding
maize yield through stem borer control with Bt-event will have a
huge yield benefit to both smallholder and large-scale commercial
maize farmers in Kenya and elsewhere in SSA. Bt-crops are
particularly suitable for small-scale farmers since no equipment
and pesticide knowledge are needed and these crops can reduce
exposure of farmers to insecticides, especially for those using hand
sprayers (Heldt, 2006; Qaim and de Janvry, 2005). Although we did
not test this in the current study, another potential benefit of Bt-
maize could be lesser accumulation of mycotoxins from opportu-
nistic fungi that infect damaged ears (Munkvold et al., 1999).
Healthier ears without insect-pest damage are less likely to be
infected by fungi, which produce mycotoxins that are harmful, and
often lethal, to humans and livestock (Miller et al., 2003).

Although MON810 has proved to be effective in the present
study in controlling the stem borers, it is prudent to design insect-
pest resistant management strategy at the outset for deploying Bt-
maize for possible commercial cultivation in Kenya. Resistance has
already been reported for some insect-pests. Fall armyworm, Spo-
doptera frugiperda, showed resistance to Cry1F in maize in Puerto
Rico (Matten et al., 2008) and resistance of the stem borer B. fusca to
Bt maize was reported by Van Rensburg (2007), six years after Bt-
maize was introduced in South Africa. Different Cry genes target
different receptors in the target insects, and therefore, require
multiple mutations for resistance to develop in the insects (Zhao
et al., 2003). Unlike South Africa where Bt-maize is mainly grown
by large-scale commercial farmers, in the rest of African countries,
maize is predominantly grown by subsistence farmers under
diverse and genetically non-uniform farming practices which may
play a role in delaying the evolution of resistance (Mulaa et al.,
2007; Mulaa et al., 2011). In Africa, the target lepidopteran stem
borers attack a wide range of wild grass species as well as cultivated
cereal crops. Although abundance of stem borers are generally low
on alternate hosts, wild grasses often are found in the vicinity of
maize and other cereal fields, and may provide a refuge if Bt maize
is introduced into the farming systems (Mulaa et al., 2011). The
refuge component of the strategy requires that non-Bt crops are
available in the cropping system, or nearby, so that susceptible
individuals (ss) survive to mate with any resistant homozygous
individuals (R/R) surviving on the Bt crops (Gould and Tabashnik,
1998).

Growing Bt-maize has been deemed compatible with other
control methods, including integrated pest management (IPM)
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programs (Pons et al., 2005; Cotter, 2009). Compared to other IPM
practices, growing Bt-maize is not knowledge-intensive because
the technology is in the seed. This should be attractive to the
smallholder maize farmers in Kenya or elsewhere in Africa, where
poor infrastructure and inadequate extension services sometimes
limit the use of conventional IPM practices. Maize farmers in Afri-
can countries, however, often have other agronomic and socio-
economic constraints besides pest management before deciding
to adopt/grow Bt maize. Nevertheless, Bt maize has the potential to
reduce yield variability due to lepidopteran pests. While Bt-maize
can be an important component in effectively managing important
insect-pests affecting maize yields in sub-Saharan Africa, conven-
tional pest management practices should be maintained in order to
avoid reliance on a single control strategy. Bt-maize, as a highly
specific and efficient stem borer control measure, has great po-
tential to enable smallholder maize farmers in Kenya to produce
high-quality grain with increased yield, reduced dependence on
insecticides, and improved food security.

Acknowledgment

This work was supported by Water Efficient Maize for Africa
(WEMA) Project, funded by the Bill & Melinda Gates Foundation
and the US Agency for International Development (USAID), through
the Africa Agricultural Technology Foundation (AAFT)
(OPP1019943) to the International Maize and Wheat Improvement
Center (CIMMYT), Monsanto, and Kenya Agricultural and Livestock
Resercah Organization (KALRO).

References

Archer, T.L., Patrick, C., Schuster, G., Cronholm, G., Bynum, E.D., Morrison, W.P.,, 2001.
Ear and shank damage by corn borers and corn earworms to four events of
Bacillus thuringiensis transgenic maize. Crop Prot. 20, 139—144.

Assefa, Y., Van Den Berg, J., 2009. Genetically modified maize: Adoption practices of
small-scale farmers in South Africa and implications for resource poor farmers
on the continent. Asp. Appl. Biol. 96, 215—223.

Carpenter, J., Felsot, A., Goode, T., Hammig, M., Onstad, D., Sankula, S., 2002.
Comparative Environmental Impacts of Biotechnology-derived and Traditional
Soybean, Corn, and Cotton Crops (CAST: 1-189). Council for Agricultural Science
and Technology, Ames, IA.

Castro, B.A., 2002. Evaluation of Bt Transgenic Field Corn for Management of Lou-
isiana Corn Pests. PhD thesis. Louisiana State University.

Cotter, J., 2009. GM Insect-resistant (Bt) Maize in Europe: a Growing Threat to
Wildlife and Agriculture. Greenpeace Research Laboratories. Technical Note 02/
2009. http://www.greenpeace.to/publications/Bt-maize-in-Europe-2009.pdf.

Dunn, O.]., 1964. Multiple comparisons using rank sums. Technometrics 6, 241—-252.

Dutton, A., Romeis, ., Bigler, F., 2003. Assessing the risks of insect resistant trans-
genic plants on entomophagous arthropods: Bt-maize expressing Cry1Ab as a
case study. BioControl 48, 611—636.

EPA (Environmental Protection Agency), 2000. Biopesticides Registration Action
Document. Bacillus Thuringiensis Plant Incorporated Protectants. II Science
Assessment: Product Characterization. Available from: http://www.epa.gov/
scipolysap/2000/october/brad2_scienceassessment.pdf.

Gould, F, Tabashnik, B.E., 1998. Bt-cotton resistance management. In: Mellon, M.,
Rissler, . (Eds.), Now or Never: Serious New Plans to Save a Natural Pest Control,
Union of Concerned Scientists, Cambridge, pp. 67—105.

Gouse, M., Pray, C,, Kirsten, J.F,, Schimmelpfennig, D., 2005. A GM subsistence crop
in Africa: the case of Bt white maize in South Africa. Int. J. Biotechnol. 7 (1/2/3),
84-94.

Heldt, H.W., 2006. Genetically Modified Insect Resistant Crops with Regard to
Developing Countries. Union of the German Academies of Science and Hu-
manities (Commission Biotechnology) Inter-academy Panel Initiative on
Genetically Modified Organisms. Group of the International Workshop, Berlin.

Hellmich, R.L,, Hellmich, K.A., 2012. Use and impact of Bt maize. Nat. Educ. Knowl. 3,
4.

Hutchinson, W.D., Burkness, E.C., Mitchell, P.D., Moon, R.D., Leslie, T.W.,
Fleischer, S.., Abrahamson, M., Hamilton, KL., Steffey, KL., Gray, M.E.,
Hellmich, R.L, Kaster, L.V., Hunt, Thomas E., Wright, Robert J., Pecinovsky, K.,
Rabaey, T.L.,, Flood, B.R., Raun, E.S., 2010. Area wide suppression of European
corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330,
222-225.

James, Clive, 2014. Global Status of Commercialized Biotech/GM Crops: 2014. ISAAA
Brief No. 49. ISAAA, Ithaca, New York.

James, C., 2013. ISAAA Report on Global Status of GM/Biotech Crops. International

Service for Acquisition of Agri-Biotech Applications. http://www.isaa.org.

James, C., 2007. Global Status of Commercialized Biotech/GM Crops 2007 (ISAAA
Brief No. 37). International Service for the Acquisition of Agri-Biotech Appli-
cations, Ithaca, NY.

Krattiger, A.F., 1997. Insect Resistance in Crops: A Case Study of Bacillus Thur-
ingiensis and its Transfer to Developing Countries. International Service for the
Acquisition of Agri-biotech Applications(ISAAA) Briefs No-2. ISAAA, Ithaca, NY,
USA.

Matten, S.R., Head, G.P., Quemada, Q., 2008. How governmental regulation can help
or Hinder the integration of Bt crops within IPM programs. In: Romeis, J.,
Shelton, A.M., Kennedy, G. (Eds.), Integration of Insect Resistant Genetically
Modified Crops within IPM Programs. Springer, New York, pp. 27—39.

McGaughey, W.H., Whalon, M.E., 1992. Managing insect resistance to Bacillus
thuringiensis toxins. Science 258 (5087), 1451—1455.

Meadows, M.P.,, 1993. Bacillus thuringiensis in the environment: ecology and risk
assessment. In: Entwistle, P.E, Cory, J.S., Bailey, MJ., Higgs, S. (Eds.), Bacillus
thuringiensis, an Environmental Biopesticide: Theory and Practice,
pp. 193-220.

Miller, A., Frenzel, T.h., Schmarr, H.G., Engel, KH. 2003. Coupled liquid
chromatography— gas chromatography for the rapid analysis of c-oryzanol in
rice lipids. J. Chromatogr. 985, 403—410.

Mulaa, M., Bergvinson, D., Mugo, S., Wanyama, M., Tende, M., De Groote, D.,
Tefera, T., 2011. Evaluation of stem borer resistance management strategies for
Bt maize in Kenya based on alternative host refugia. Afr. J. Biotechnol. 10,
4732—4740.

Mulaa, M.A., Bergvison, D., Mugo, S., Ngeny, ]., 2007. Developing insect resistance
management strategies for Bt maize in Kenya. Afr. Crop Sci. Conf. Proc. 8,
1067-1070.

Munkvold, G.P., Hellmich, R.L., Rice, L.G., 1999. Comparison of fumonisin concen-
trations in kernels of transgenic Bt maize hybrids and non-transgenic hybrids.
Disease 83, 130—138.

Muyekho, EN., Barrion, A.T., Khan, Z.R., 2005. Host range for stem borers and
associated natural enemies in different farming systems of Kenya. Insect Sci.
Appl. 3,173-183.

Nester, E\W., Thomashow, LS., Metz, M., Gordon, M., 2002. Years of Bacillus Thur-
ingiensis: A Critical Scientific Assessment. American Academy of Microbiology,
Washington, D.C.

Odendo, M., Ouma, J., Wachira, W., Wanyama, J., 2003. Economic assessment of
maize yield loss due to stem borer in major maize agro-ecological zones of
Kenya. Afr. Crop Sci. Conf. Proc. 6, 683—687.

Ostlie, K.R., Hutchison, W.D., Hellmich, R.L., 1997. Bt corn and European corn borer:
long-term success through resistance management. In: NCR Publication,
No.602. University of Minnesota, St Paul, Minnesota.

PAN UK, 2003. The Dependency Syndrome: Pesticide Use by African Smallholders.
Pesticide Action Network, London.

Pons, J.M., Hassanin, A., Crochet, P.A., 2005. Phylogenetic relationships within the
(Charadriiformes: Aves) inferred from mitochondrial markers. Mol. Evol. 37,
686—699.

Qaim, M., de Janvry, A., 2005. Bt cotton and pesticide use in Argentina: economic
and environmental effects. Environ. Dev. Econ. 10, 179—200.

Rice, M.E,, Pilcher, C.D., 1998. Potential benefits and limitations of transgenic Bt corn
for management of the European corn borer (Lepidoptera: Crambidae). Am.
Entomol. 44, 75—78.

SAS (Statistical Analysis Software) Institute Inc, 2003. The SASR System for WIN-
DOWSTM. Version 9.0, Cary, NC, USA.

Saxena, D., Stotzky, G., 2000. Insecticidal toxin from Bacillus thuringiensis is released
from roots of transgenic Bt corn in vitro and in situ. Microb. Ecol. 33, 35—39.

Shiferaw, B., Prasanna, B.M., Hellin, J., Banziger, M., 2011. Crops that feed the world
6. Past successes and future challenges to the role played by maize in global
food security. Food Secur. 3, 307—327.

Singh, R., Channappa, RK., Deeba, F, Nagaraj, NJ., Sukaveneswaran, MK,
Manjunath, T.M., 2005. Tolerance of Bt corn (MON 810) to maize stem borer,
Chilo partellus (Lepidoptera: Pyralidae). Plant Cell Reprod. 24, 556—560.

Smale, M., Byerlee, D., Jayne, T., 2011. Maize revolutions in Sub-Saharan Africa.
World Bank, Washington, DC, and Tegemeo Institute, Kenya.

Snedecor, G.W., Cochran, W.G., 1989. Statistical Methods, eighth ed. lowa State
University Press.

Tefera, T., Mugo, S., Tende, R., Likhayo, L., 2011. Methods of Screening Maize for
Resistance to Stem Borers and Post-harvest Insect Pests of Maize. CIMMYT,
Nairobi, Kenya, 38pp.

Tende, R., Mugo, S.N., Nderitu, ].H., Olubayo, F.M., Songa, ].M., Bergvinson, D.J., 2010.
Evaluation of Chilo partellus and Busseola fusca susceptibility to d-endotoxins in
Bt maize. Crop Prot. 29, 115—120.

Van Rensburg, J.BJ., 2007. First report of field resistance by the stem borer, Busseola
fusca (Fuller) to Bt-transgenic maize. S. Aft. J. Plant Soil 24, 147—151.

Van Rensburg, J.BJ., 1998. Evaluation of Bt-transgenic maize for resistance to the
stem borers Busseola fusca (Fuller) and Chilo partellus (Swinhoe) in South Africa.
S. Afr. ]. Plant Soil 16, 38—43.

Van Rensburg, ].BJ., 2001. Larval mortality and injury patterns of the African
stalkborer, Busseola fusca (Fuller) on various plant parts of Bt-transgenic maize.
S. Aft. J. Plant Soil 16, 38—43.

Van Wyk, A., Van den Berg, ], Van Hamburg, H., 2007. Selection of non-target
Lepidoptera species for ecological risk assessment of Bt maize in South Africa.
Afr. Entomol. 15, 356—366.

Van Wyk, A., Van den Berg, J., Van Hamburg, H., 2008. Diversity and comparative


http://refhub.elsevier.com/S0261-2194(16)30180-6/sref1
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref1
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref1
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref1
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref2
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref2
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref2
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref2
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref4
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref4
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref4
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref4
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref5
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref5
http://www.greenpeace.to/publications/Bt-maize-in-Europe-2009.pdf
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref7
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref7
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref8
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref8
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref8
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref8
http://www.epa.gov/scipolysap/2000/october/brad2_scienceassessment.pdf
http://www.epa.gov/scipolysap/2000/october/brad2_scienceassessment.pdf
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref10
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref10
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref10
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref10
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref11
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref11
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref11
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref11
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref13
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref13
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref13
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref13
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref14
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref14
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref15
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref15
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref15
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref15
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref15
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref15
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref15
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref16
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref16
http://www.isaa.org
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref18
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref18
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref18
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref19
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref19
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref19
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref19
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref20
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref20
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref20
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref20
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref20
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref53
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref53
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref53
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref21
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref21
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref21
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref21
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref21
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref22
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref22
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref22
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref22
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref22
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref23
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref23
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref23
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref23
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref23
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref24
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref24
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref24
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref24
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref25
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref25
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref25
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref25
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref26
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref26
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref26
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref26
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref27
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref27
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref27
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref28
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref28
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref28
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref28
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref29
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref29
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref29
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref30
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref30
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref31
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref31
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref31
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref31
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref32
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref32
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref32
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref33
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref33
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref33
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref33
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref52
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref52
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref34
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref34
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref34
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref36
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref36
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref36
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref36
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref36
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref37
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref37
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref37
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref37
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref38
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref38
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref51
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref51
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref39
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref39
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref39
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref40
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref40
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref40
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref40
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref42
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref42
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref42
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref43
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref43
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref43
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref43
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref44
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref44
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref44
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref44
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref46
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref46
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref46
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref46
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref47

208 T. Tefera et al. / Crop Protection 89 (2016) 202—208

phenology of Lepidoptera on Bt- and non-Bt maize in South Africa. Int. J. Pest Noctuidae) in South Africa. Crop Prot. 28, 113—116.
Manag. 54, 77-87. Zhao, ]J.Z,, Cao, ], Li, Y., Collins, H.L, Roush, RT, Earle, E.D., Shelton, A.M., 2003.
Van Wyk, A,, Van den Berg, ], Van Rensburg, ].BJ., 2009. Comparative efficacy of Bt Transgenic plants expressing two Bacillus thuringiensis toxins delay insect

maize events MON810 and Bt1l against Sesamia calamistis (Lepidoptera: resistance evolution. Nat. Biotechnol. 21, 1493—1497.


http://refhub.elsevier.com/S0261-2194(16)30180-6/sref47
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref47
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref47
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref48
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref48
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref48
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref48
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref50
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref50
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref50
http://refhub.elsevier.com/S0261-2194(16)30180-6/sref50

	Resistance of Bt-maize (MON810) against the stem borers Busseola fusca (Fuller) and Chilo partellus (Swinhoe) and its yield ...
	1. Introduction
	2. Materials and methods
	2.1. Germplasm
	2.2. Evaluation of Bt-maize against C. partellus under confined field trials
	2.2.1. Experimental design and management
	2.2.2. Artificial infestation with C. partellus
	2.2.3. Data collection

	2.3. Greenhouse evaluation of Bt maize against B. fusca
	2.4. Statistical analysis

	3. Results
	3.1. Effect of Bt maize on leaf, stem damage, grain yield under C. partellus infestation
	3.2. Effect of Bt maize on leaf damage under B. fusca infestation

	4. Discussion
	Acknowledgment
	References


