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While Simple Sequence Repeats (SSRs) are extremely useful genetic markers, recent advances in technology have produced a
shift toward use of single nucleotide polymorphisms (SNPs). The different mutational properties of these two classes of
markers result in differences in heterozygosities and allele frequencies that may have implications for their use in assessing
relatedness and evaluation of genetic diversity. We compared analyses based on 89 SSRs (primarily dinucleotide repeats) to
analyses based on 847 SNPs in individuals from the same 259 inbred maize lines, which had been chosen to represent the
diversity available among current and historic lines used in breeding. The SSRs performed better at clustering germplasm into
populations than did a set of 847 SNPs or 554 SNP haplotypes, and SSRs provided more resolution in measuring genetic
distance based on allele-sharing. Except for closely related pairs of individuals, measures of distance based on SSRs were only
weakly correlated with measures of distance based on SNPs. Our results suggest that 1) large numbers of SNP loci will be
required to replace highly polymorphic SSRs in studies of diversity and relatedness and 2) relatedness among highly-diverged
maize lines is difficult to measure accurately regardless of the marker system.
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INTRODUCTION
Until recently, Simple Sequence Repeats (SSRs), also called

microsatellites, have been the genetic markers of choice, because

they are economical to score, have high allelic diversity, and are

usually selectively neutral [1]. Recent advances in technology,

however, have produced a shift toward single nucleotide

polymorphism (SNP) markers, particularly for model organisms

with substantial genomic resources. Individual SNP markers,

being biallelic, have lower information content than SSRs, but

they occur at much higher density in the genome, are amenable to

high-throughput methods such as genotyping arrays, and have

lower genotyping error rates [2–5]. For an overview of many of the

technical and statistical issues of SSR and SNP genotyping, see [6].

The different properties of SNP and SSR markers arise from

inherent differences in their mutational processes as well as from

biased sampling practices that intensify those differences. (In this

paper, we use the term SNP to refer to a marker that is genotyped

using high-throughput technology [3], not a polymorphism that has

been scored in fully re-sequenced alleles.) Because nucleotide

mutation rates are low (on the order of 1028/bp/generation), the

vast majority of SNPs are biallelic, and thus have a maximum

heterozygosity of 0.5. Not only is the SSR mutational rate much

higher (for dinucleotide repeats in maize, 5.261024 to 1.161023 /

generation [7]), but the slippage process can create a virtually

unlimited number of new alleles [8,9]. Maximal heterozygosity can

thus approach 1.0, and frequencies are often skewed toward rare

alleles. While re-sequencing studies can detect large numbers of

singleton SNPs in many population samples (depending on

population history), the selection of informative SNPs for genotyping

studies (i.e., ascertainment) ensures that most SNP marker alleles will

segregate at intermediate frequency, exaggerating the difference in

frequency spectrum that already exists between SNPs and SSRs

[3,4]. This ascertainment bias must be corrected if SNP data are to

be used in estimation of population genetic parameters.

The great interest in mapping genes affecting human health and

the early use of SNP markers in this field have produced several

comparisons of SSR and SNP markers in family-based linkage

studies, e.g. [10]. In these studies, as well as in linkage studies of

experimental populations, the mutational processes of the markers

are not of great consequence because only a small number of

meioses are captured by the data. In contrast, marker choice might

have a greater effect on inferences about relatedness and genetic

diversity among groups of individuals that are recently diverged on

an evolutionary timescale, but are not considered relatives, such as

populations of cases and controls, or diverse germplasm collections

within a cultivated species. At this level of divergence, SNP-based

distances will be due almost entirely to drift, while SSR-based

distances will also be due in part to mutation.

Most crop plant germplasm collections have been assembled on

the basis of geographic and phenotypic diversity, with the goal of

capturing as much functional genetic diversity as possible. To

allow more efficient exploitation of germplasm collections, core

subsets are typically assembled by various criteria, e.g. [11,12],

and eventually characterized with presumably neutral molecular

markers. Once the accessions have been scored with a common set

of markers, estimation of genetic relationships among accessions

provides information that is critical for choice of breeding material
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and for design of experimental crosses. In maize, for example,

prediction of productive hybrid combinations and assignment of

lines to heterotic groups has been based on the hypothesis that

heterosis of hybrids increases monotonically with increasing

genetic distance of the parents [13–15].

Inference of ancestry among unrelated individuals is also

important because of its influence on the accuracy of popula-

tion-based methods for genetic mapping of complex traits: to

prevent spurious results, ancestry must be assessed and accounted

for in the analyses. The most widely-used approach is the model-

based method of Pritchard et al. [16], which assigns individuals

membership in a population based on their alleles at a large

number of genome-wide markers. Using this method, Rosenberg et

al. [17] found that dinucleotide repeat SSRs in humans are five to

eight times as informative as random SNPs, a result that was

confirmed by Liu et al. [18].

Given the trend toward increased use of SNP markers, it is of

interest to compare the performance of these two types of markers

for characterization of the same set of individuals in a model crop

plant, maize. In a recent study, Jones et al. [19] collected data for

80 SSRs and 187 SNPs in the same set of 58 inbred maize lines

representing a subset of maize diversity derived from temperate

Northern Flint and Southern Dent landraces. They demonstrated

the technical advantages of SNPs over SSRs with respect to data

quality, and found that measures of genetic distance based on

SSRs, SNPs, and SNP haplotypes were not significantly correlated

unless the inbreds were related by pedigree.

We were interested in exploring further, with a larger data set,

how evaluation of population structure and measures of genetic

distance are affected by choice of marker type, and what

properties of the markers are responsible for differences in their

usefulness. In this paper, we compare analyses based on 89 SSRs

(primarily dinucleotide repeats) to analyses based on 847 SNPs in

individuals from the same 259 inbred maize lines. These lines

represent the widest genetic diversity available among current and

historic lines used in breeding [20], including tropical and semi-

tropical lines. We ask to what extent these two classes of markers

provide concordant information about the structure of populations

and the relationships among individuals. We also test whether any

SNPs are more strongly differentiated than would be expected by

chance, suggesting a history of positive selection.

RESULTS

Summary statistics
As expected, the allelic diversities and frequency spectra were very

different for these data sets (Table 1, Figure 1). Due to the high

rate of SSR mutation, this fairly modest number of SSR loci had a

very large number of alleles, most at low frequencies in the

population, and a large number of singletons. In contrast, the SNP

loci showed large numbers of intermediate frequency alleles.

Clearly, this was a consequence of ascertainment bias, since only

SNPs that were discovered in a small set of lines were included in

the study. Such bias is inherent to all SNP-based studies.

To make greater use of the information content of the SNP

data, we constructed haplotypes for those loci where more than

one SNP had been scored from the same amplicon (see Methods).

The 554 loci in the ‘‘SNP Haplotypes’’ set had fewer total alleles

than the 847 single SNPs because, at most loci, not all gametic

Figure 1. Allele frequency spectra for different classes of markers.
Note that the scale on the x axis is different for total SNPs, because only
this class is biallelic.
doi:10.1371/journal.pone.0001367.g001

Table 1. Properties of different marker sets.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Marker # Loci # Alleles # Singletons He

SSR 89 1872 540 0.801

SNP 847 1694 11 0.319

SNP haplotype 554 1480 82 0.387

doi:10.1371/journal.pone.0001367.t001..
..

..
..

..
..

..
..

..
..

..
..

..
..
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types were observed (Table 2) and because more than half the loci

were still single SNPs. However, expected heterozygosity was

increased by about 20%, and the frequency spectrum shifted

slightly toward rarer alleles, including substantially more singletons

(Table 1).

Assessment of population structure
Using SSR variation, Liu et al. [20] showed that maize diversity is

best described as belonging to three population groups: Stiff Stalk

(SS), Non-Stiff Stalk (NSS), and Tropical-Semitropical (TS). We

used the same approach as Liu, namely the model-based method

of Pritchard et al. [16], to compare the SSR and SNP marker sets’

ability to detect population structure and assign individuals to

populations (see Methods). Figure 2 shows that, for all data sets,

likelihood increased most when k (the number of populations in

the model) was increased from two to three; results were very

consistent across runs with k = 3 but became less consistent at

higher values of k. Interestingly, the percent of individuals assigned

to populations did not continue to increase with k, as might be

expected: maximal assignment occurred at k = 2 , 3, or 4,

depending on the markers used (Table 3), though many of the

differences in percent assignment were small. The most dramatic

difference was between k = 2 and k = 3 for the SNP+SSR data set:

almost 20% more individuals were assigned under the model with

k = 3. Strikingly, all assignment percentages for this data set were

lower than for the SSR data set alone.

For all values of k tested, it is clear that the SNP data did not

contain sufficient information to resolve all the relationships that

Table 2. Number of haplotypes observed in multi-SNP
amplicons.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SNPs/locus (#
amplicons) 2 alleles 3 alleles 4 alleles 5 alleles 6 alleles

1 (282) 282 - - - -

2 (251) 16 147 88 - -

3 (21) 1 6 5 3 6

doi:10.1371/journal.pone.0001367.t002..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

Figure 2. Estimated ln(probability of the data) and Var[ln(probability of the data)] for k from 2 to 5. Values are from STRUCTURE run three times at
each value of k, using A) 89 SSRs; B) 847 SNPs; C) 554 SNP haplotypes; D) 89 SSRs+847 SNPs. The blue diamonds are ln(probability of the data) and the
pink squares are var[ln(probability of the data)].
doi:10.1371/journal.pone.0001367.g002

Table 3. Percent population assignment based on different
marker sets.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Marker k = 2 k = 3 k = 4 k = 5

SSR 78.0 76.4 66.8 69.1

SNP 40.1 52.5 55.2 50.6

SNP Haplotype 41.3 55.2 52.5 51.7

SNP+SSR 48.3 67.6 62.3 59.8

Each value gives the percent of individuals that had $0.8 membership in a
population under that model with that data set (see Methods).
doi:10.1371/journal.pone.0001367.t003..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
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were detected by SSR variation, resulting in a lower percentage of

individuals that could be assigned to a population. This was not

due simply to the higher allele number, since a reduced data set of

80 SSRs with 1694 alleles (the same number as the SNP data set)

resulted in the same percent assignment as the full data set (data

not shown).

The assignment of individuals to populations was very

consistent among marker types, for those individuals that were

assigned. Assuming three populations as described by Liu et al.

[20], we plotted the relationship between membership in the NSS

and TS populations based on SNPs and membership based on

SSRs (Figure 3). The correlations were strong (R2 = 0.88 and 0.93,

respectively), but there was clearly much more spread along the y

axes (SNPs) than along the x axes (SSRs): 116 lines had NSS

membership between 0.2 and 0.8 based on SNPs, as opposed to

only 58 lines that fell in that range based on SSRs. In no case was

an individual assigned to a different population based on different

marker information. In a small number of cases, SNP data resulted

in assignments for individuals that were unassigned using SSR

data. One such example is line F2834T, indicated by an arrow in

each panel of Figure 3. Based on SNP data, F2834T had 82% of

its ancestry in the TS cluster, while, based on SSR data, it had only

52% of its ancestry in that cluster and was thus classified as Mixed.

Distance measures
Distance matrices based on allele sharing were constructed for all

pairs of individuals using either SSR data or total SNP data, and

the relationship between the distance matrices was plotted

(Figure 4). For the small percentage of individual pairs that were

closely related (SSR Distance ,0.65), there was a strong

correlation between the distances for the two marker types

(R2 = 0.73, Fig 4 top). However, the vast majority (97.7%) of SSR-

Figure 3. Comparison of membership in population clusters based on marker class. Each point represents one individual’s proportion of ancestry
in the NSS (top panel) or TS (bottom panel) cluster, based on SSR (x axis) or SNP (y axis) data assuming three populations. The arrows indicate line
F2834T (see text).
doi:10.1371/journal.pone.0001367.g003
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based distances were large ($0.65), and for those comparisons the

correlation with SNP-based distance was modest (R2 = 0.11). The

lower panel of Figure 4 shows that, while SSR-based distances

varied from 0.65 to over 0.95, the SNPs provided poor resolution

in this group, with distances that varied only from about 0.2 to

0.35. While comparisons at the individual level were not well-

correlated across marker types, this was not the case for

population-level comparisons: the correlation between allele-

sharing distance among populations was .0.99 (Mantel test).

Given that the SSR data set had a much larger proportion of

low frequency alleles, we tested whether this difference was

responsible for the decrease in resolution provided by the SNP

data set. To do this, we divided the SNP data into five frequency

classes, calculated all pairwise distances based on each class, and

calculated the correlation between those distances and the SSR-

based distances. Although the results were slightly confounded by

sample size, Table 4 shows that the intermediate frequency SNPs

were better able to resolve shorter distances, but that the low

frequency SNPs contributed most of the resolution when distances

were larger. Distances based on the SNPs at intermediate

frequency are the best correlated with the distances based on

SSRs, even though the SSR data set was dominated by rare alleles.

Core sets
Liu et al. [20] found a total of 2039 SSR alleles in 260 inbred lines,

and tested different sized ‘‘core sets’’ to see what fraction of the alleles

could be captured. Because of the large number of rare alleles, 193

lines were needed to capture all 2039 alleles, and a set of 20 lines

captured only 46% of the alleles. We repeated this analysis with our

data sets, and found that a subset of 20 individuals captured almost

all SNP alleles and over 90% of SNP haplotypes. Table 5 shows the

percent of alleles captured by subsets of 20, 30, 40, and 50 for the

various marker data sets. When we removed nine loci from the SSR

data set so that it had exactly 1694 alleles (like the SNP data set), the

percent alleles captured by subsets of these sizes remained the same

(data not shown).

This comparison is somewhat misleading, however, because of

the ascertainment of the SNPs in our data set. If all 259 lines had

been fully re-sequenced, there would be more rare alleles to be

captured. We therefore simulated a set of 847 unlinked SNPs in

Figure 4. Correlation between genetic distance based on SSRs and SNPs. Each point represents the genetic distance between a pair of individuals,
based on sharing of SSR (x axis) or SNP (y axis) alleles. The top panel shows the relationship for pairs of individuals whose SSR distance is ,0.65; the
bottom panel shows the relationship for pairs of individuals whose SSR distance is $0.65.
doi:10.1371/journal.pone.0001367.g004
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259 individuals under the standard neutral model (SNM),

producing the full frequency spectrum of variation. As expected,

the percent of alleles captured in a small core set dropped

substantially (from 98% to 83% for a subset of 20), but was still

much higher than the percent of SSR alleles captured in a core set

of the same size (Table 5). Furthermore, the SNM likely

overestimates the number of rare alleles that would be observed

in a fully re-sequenced maize data set, due to the effect of the

domestication bottleneck. Since the exact parameters appropriate

for simulating such a data set are unknown (see Discussion), we

performed simulations under two reasonable bottleneck models for

comparison to the SNM. As seen in Table 6, heterozygosity and

the number of singletons in this data set were intermediate

between the values observed in the ascertained SNP data set and

under the SNM. The percent of alleles captured by these core sets

was only slightly lower than was found for the ascertained data

(Table 5), suggesting that we may not have missed a large number

of rare SNP alleles.

Fst at individual loci
Overall Fst was very similar regardless of marker set used (0.08–

0.10), with Fst based on SSRs being in the lower end of the range,

as expected because of their higher heterozygosity. Fst based on

individual SNP loci, however, varied from 0 to 0.568; some of

these differences in Fst may be due to the action of natural or

artificial selection at particular loci. To test this hypothesis, we

used the FDIST2 program [21], which uses coalescent simulations

to generate a neutral joint distribution of Fst and He. Loci that have

an unusually large value of Fst, given their heterozygosity, are

candidates for having experienced selection.

We found that 32 SNPs, about 3.8% of the 847 loci tested, had

p-values ,0.05 (uncorrected for multiple tests), so there was little

evidence for selection. P-values for two SNPs, both from the same

locus (AY108077, in IBM2 Bin 6.04, with similarity to a

calmodulin-binding heat-shock protein), were the only ones that

were significant using a Bonferroni-corrected critical value of

0.05/847 = 0.000059. These two SNPs, whose alleles are in

complete linkage disequilbrium (i.e., r2 = 1), showed a pattern that

was very common among the SNPs with higher Fst: the NSS and

TS populations had the same allele at very high frequency, while

the SS population had the alternate allele at a very high frequency.

Usually the allele at high frequency in NSS and TS was also at

high frequency in Mexican samples that included teosintes (these

frequencies can be viewed at www.panzea.org).

Table 4. Correlation between genetic distance for SSRs and SNPs of different frequency classes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SNP Class # loci Minor allele freq R2 between SNP distance and

SSR dista SSR dist (,0.65)b SSR dist ($0.65)b

1 185 p#0.10 0.109 0.175 0.072

2 188 0.10,p#0.2 0.160 0.590 0.046

3 164 0.20,p#0.3 0.161 0.652 0.020

4 149 0.30,p#0.4 0.136 0.596 0.013

5 162 0.40,p#0.5 0.190 0.645 0.023

123 536 p#0.30 0.295 0.678 0.100

total 847 0,p,1 0.394 0.726 0.114

haps 554 0,p,1 0.400 0.736 0.110

Measures of pairwise genetic distance among all individuals were calculated for different frequency classes of SNP alleles and for all SSRs. a The correlation between all
pairwise distances based on a class of SNP loci vs based on SSRs. b The correlation between pairwise distances for the subset of pairs whose SSR distance is ,0.65 or
$0.65.
doi:10.1371/journal.pone.0001367.t004..
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Table 5. Alleles captured by subsets of the data for different marker sets.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SSRs SNPs SNP haplotypes Sim SNPs SNM Sim SNPs Bot1 Sim SNPs Bot2

subset
size Allele #

%
captured Allele #

%
captured Allele #

%
captured Allele #

%
captured Allele #

%
captured Allele #

%
captured

20 896 48 1659 98 1346 91 1414 83 1552 92 1493 88

30 1091 58 1684 99 1399 95 1486 88 1600 94 1558 92

40 1249 67 1685 99 1420 96 1530 90 1617 95 1596 94

50 1340 72 1693 100 1446 98 1563 92 1640 97 1624 96

Sim SNPs SNM, Bot1, and Bot2 represent core sets drawn from data generated by coalescent simulations under the standard neutral model and two bottleneck models
(see Methods).
doi:10.1371/journal.pone.0001367.t005..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

Table 6. Properties of data sets simulating full resequencing.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Data set He # Singletons

Observed (ascertained) 0.319 11

Simulated Standard Neutral 0.165 139

Simulated Bottleneck 1 0.255 100

Simulated Bottleneck 2 0.199 90

doi:10.1371/journal.pone.0001367.t006..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..
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DISCUSSION
Molecular markers serve a variety of purposes in genetic analysis.

In this study we compared the ability of SSR and SNP markers to

assess relatedness in a population where divergence times are long

enough that most individuals are considered unrelated and the

true relationships are unknown. We found that a set of 89 highly

polymorphic SSRs performed better at clustering germplasm into

populations than did a set of 847 SNPs or 554 SNP haplotypes,

and that SSRs provided more resolution in measuring genetic

distance based on allele-sharing. We observed only slightly higher

resolution when we converted SNPs to haplotypes, perhaps

because fewer than half our SNPs could be converted.

These results are consistent with theoretical predictions [6,22]

and with other empirical studies, e.g. [17]. According to Laval et al.

[22], (k-1) times more biallelic markers are needed to achieve the

same genetic distance accuracy as a set of microsatellites with k

alleles. In our case, the average number of alleles per SSR locus

was about 20; thus we should need [(20–1) * 89] = 1691 SNP

markers to achieve the same accuracy; we had almost exactly half

that many SNP markers.

The difference in information content of SSRs and biallelic

markers may also be due to differences in the frequency spectrum:

SSR loci have many more low-frequency alleles than SNP loci,

since at least half of all SNP alleles must be at high or intermediate

frequency. This frequency difference is even greater when

ascertained SNPs are genotyped.

Population structure estimation
Population genetics theory predicts that ‘‘preferentially discovering

SNPs with high heterozygosity leads to an underestimation of the

magnitude of structure’’ [4]. Using SSR data and the model-based

method of Pritchard et al. [16], Liu et al. [20] found that the 259

maize inbred lines in this study were best described as belonging to

three populations, with about 22% of the lines having mixed

ancestry. We found that our SNP data could support a model of

three or four populations and were largely consistent with the results

of Liu et al., although, regardless of the number of populations in the

model, far more individuals (44.8–47.5%) were classified as mixed

using SNP data. It was surprising that, as k was increased, the

likelihood increased but the percent assignment declined.

Measures of genetic distance in maize
Our analysis showed that most maize lines in a diverse sample are

separated by a large genetic distance and, consistent with the

results of Jones et al. [19], that measures of distance based on

different markers were well-correlated only for the small subset of

individuals that were closely related. Other studies of tropical

maize, which is extremely diverse, have found that SSR variation

does not provide evidence of population structure other than

among individuals closely related by pedigree [23,24]. Collective-

ly, these results suggest that relatedness among highly-diverged

maize lines is difficult to measure accurately regardless of the

marker system. This may explain the observation that only

intragroup crosses show a correlation between parental genetic

distance and midparent heterosis [25]. Individuals within groups

have smaller genetic distances that can be more accurately

assessed, while intergroup comparisons are in the range where

resolution is poor (Fig 3 top).

Yu et al. [26] used essentially the same data set as this one to test

the sensitivity of relatedness estimation to marker number, as

assessed by the power to detect QTL in mixed-model association

mapping. Contrary to our results, they found that ‘‘the whole set of

89 SSR markers provided roughly the same amount of

information as did the whole set of 912 SNP markers for

relatedness construction.’’ This apparent discrepancy is probably

due to the fact that, in the calculation of the kinship matrix,

kinship estimates for individuals who were less related than

average were all set to zero. Thus no attempt was made to estimate

the larger genetic distances. Given this strategy, the difference in

resolution was not of great practical importance. However, this

may not be the optimal strategy. Accurate estimate of identity-by-

state for thousands of markers may provide even greater power

and control of type I errors.

Implications for germplasm conservation
The development of core sets is often described in terms of the

fraction of SSR alleles retained in subsets of the collection. An

implicit assumption is that the presence of unique SSR alleles in an

individual or population is an indicator of the presence of unique

functional variation. As stated in Laborda et al. [27], their goal was

to ‘‘expose useful diversity for breeding purposes’’ by maximizing

allelic diversity at markers. Similarly, Lockwood et al [28] state:

‘‘Sampling for allelic richness is important for conservation and in

the development of genetic resource collections.’’ It is well known

that most SSR variation is neutral, and that functional variation is

much more likely to be associated with SNPs and indels in and

around genes. Since a small sample of alleles captures most of the

SNP variation segregating in a population, is it truly important to

capture rare SSR alleles in germplasm collections?

We have shown that 98% of the (ascertained) SNP allelic

variation in a sample of 259 diverse lines can be captured in a set

of 20 lines, as opposed to only 48% of the SSR alleles. How much

of this difference is due to the loss of rare SNP alleles due to

ascertainment? Data sets simulating fully re-sequenced data

showed that rare SNP alleles are indeed missed, however, because

maize is not a population at equilibrium, it is not clear how many

singletons would have been found by complete re-sequencing of

these inbred lines. In a mix of landraces and inbreds, Tenaillon et

al [29] found an average D [30] of about 0.1, and reported that

average D was higher in the inbreds alone, indicating a loss of rare

alleles. The bottleneck models reported in Tables 5 and 6 are

suggestive but do not reproduce the actual frequency spectrum in

maize, so these results must be interpreted with caution. In any

case, the number of lines required to capture all SNP alleles even

in the non-bottlenecked population is far smaller than that

required to capture all rare SSR alleles. Generalizing beyond

maize, the extent to which rare alleles are lost in SNP genotyping

studies will vary among species, since different population histories

will produce different frequency spectra of variation. Eventually,

the dramatically lower cost of new sequencing technologies may

allow for full re-sequencing to replace SNP genotyping, eliminat-

ing the problem of ascertainment altogether.

However, even if every SNP were observed and captured, SNP

diversity at individual sites is unlikely to capture all functional

variation, since different combinations of SNP alleles (both within

and between loci) will give rise to haplotypes that may differ in

their contributions to phenotypes of interest. SSR allelic diversity

should be positively correlated with SNP haplotypic diversity for

the simple reason that both attributes are functions of effective

population size. (Due to their higher mutation rates, SSRs more

accurately reflect effective population size in non-equilibrium

populations.) As a proxy for larger effective population size,

maximal SSR diversity ensures that novel combinations of

functional SNP alleles are more likely to be captured in a sample.

Note that this applies only at the genome-wide level: Payseur and

Cutter [31] showed that SSR heterozygosity and nucleotide

heterozygosity at linked sites are only weakly correlated under a
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number of different scenarios (maximum correlation ,0.2), so we

cannot expect that high SSR allelic diversity in a particular

chromosomal region is indicative of high SNP or haplotype diversity

as well. This suggests that capturing particular rare SSR alleles is not

likely to capture rare functional variation at linked sites.

General conclusions
While SNPs represent the latest technology, and have a number of

technical advantages, there may be biological questions for which

SSRs provide higher quality information. However, conclusions

about the relative usefulness of SSRs and SNPs will vary

depending on the specifics of the particular study. Because the

SSR mutational process is very heterogeneous among loci [9],

results of these kinds of comparisons may depend on the particular

SSR loci, or class of loci (e.g., repeat-type), surveyed. In addition,

the choice of marker type, and the number of loci needed, is a

function of the evolutionary history of the populations being

investigated [4,9]. Extensive simulation studies are needed to

understand how the interaction between mutational processes and

population history affects population genetic inferences.

MATERIALS AND METHODS

Plant material
Individuals from 259 maize inbred lines were used in this study:

33-16, 38-11, 4226, A188, A214N, A239, A272, A441-5, A554,

A556, A6, A619, A632, A634, A635, A641, A654, A659, A661,

A679, A680, A682, B10, B103, B104, B105, B109, B115, B14A,

B164, B2, B37, B46, B52, B57, B64, B68, B73, B73Htrhm, B75,

B76, B77, B79, B84, B97, C103, C123, C49A, CH701-30, CH9,

CI187-2, CI21E, CI28A, CI31A, CI3A, CI64, CI66, CI.7,

CI90C, CI91B, CM174, CM37, CM7, CML10, CML103,

CML108, CML11, CML14, CML154Q, CML157Q, CML158Q,

CML218, CML220, CML228, CML238, CML247, CML254,

CML258, CML261, CML264, CML277, CML281, CML287,

CML311, CML314, CML321, CML322, CML323, CML328,

CML331, CML332, CML333, CML341, CML38, CML45,

CML5, CML52, CML61, CML69, CML77, CML91, CML92,

CMV3, CO106, CO125, CO255, DE1, DE_2, DE_3, DE811,

E2558W, EP1, F2834T, F44, F6, F7, GA209, GT112, H105W,

H49, H84, H91, H95, H99, Hi27, Hy, I137TN, I205, Ia5125,

IDS91, K148, K4, K55, K64, Ki11, Ki14, Ki21, Ki3, Ki43, Ki44,

Ky21, Ky226, Ky228, L317, L578, M14, M162W, M37W,

MEF156-55-2, Mo17, Mo18W, Mo1W, Mo24W, Mo44, Mo45,

Mo46, Mo47, MoG, Mp339, MS1334, MS153, MS71, Mt42,

N192, N28Ht, N6, N7A, NC222, NC230, NC232, NC236,

NC238, NC250, NC258, NC260, NC262, NC264, NC290A,

NC294, NC296, NC296A, NC298, NC300, NC302, NC304,

NC306, NC310, NC314, NC318, NC320, NC324, NC326,

NC328, NC33, NC336, NC338, NC340, NC342, NC344,

NC346, NC348, NC350, NC352, NC354, NC356, NC358,

NC360, NC362, NC364, NC366, NC368, ND246, Oh40B,

Oh43, Oh43E, Oh603, Oh7B, Os420, Pa762, Pa875, Pa880,

Pa91, R109B, R168, R177, R229, R4, SC213R, SC357, SD44,

T232, T234, T8, Tx303, Tx601, Tzi10, Tzi16, Tzi18, Tzi25, Tzi8,

Tzi9, U267Y, Va102, Va14, Va17, Va22, Va26, Va35, Va59,

Va85, Va99, VaW6, W117Ht, W153R, W182B, W22, W64A, WD,

Wf9. These lines have been previously described [20].

SSRs
Of the 89 SSRs used in this study, 76 are dinucleotide repeats, 5

are trinucleotide repeats, 7 are tetranucleotide repeats, and one is

a pentanucleotide repeat. Analysis of a largely overlapping data set

has been published before [20]. All 89 of the markers and 210 of

the 259 lines in our study are common to the two data sets.

Markers scored by Liu et al. [20] not used in this study are: bnlg1014,

bnlg1189, bnlg1288, bnlg1520, bnlg1839, bnlg1931, bnlg2238,

phi031, phi096, and phi116; information on all SSRs can be found

in the MaizeGDB database (http://www.maizegdb.org/).

SNPs
A collection of 913 SNPs that had been found to be polymorphic

in a set of 14 maize inbred lines and 16 inbred teosintes [32] was

scored in a set of 277 maize inbred lines [33]. They were designed

from randomly selected genes out of the ,10,000 maize ESTs in

the MMP-DuPont set [34]. SNP assay development and scoring

was performed by Genaissance Pharmaceuticals using the

Sequenom MassARRAYTM System [35]. Replicated assays

indicate that the genotyping error rate is ,0.3%.

After exclusion of lines not common to the two data sets and

markers with .20% missing data, the final data set consisted of

259 individuals scored for 847 SNPs and 89 SSRs. The SNPs were

located in 563 PCR products throughout the genome, thus

representing 563 loci. A list of the SNPs can be found in Dataset

S1; information about each marker can be found at http://www.

panzea.org/db/searches/webform/moldiversity_search.

Haplotypes were constructed when more than one SNP had

been scored from a single amplicon. Because the individuals

sampled came from inbred lines, the vast majority of SNP

genotypes were homozygous, making haplotypes unambiguous. In

cases where more than one SNP was heterozygous in an amplicon

from one individual, haplotypes were inferred if only two

haplotypes were observed in homozygous individuals (i.e.,

complete LD), otherwise they were treated as missing data.

Data analysis
Summary statistics, genetic distances (allele sharing), core sets, and

input files for STRUCTURE were obtained using PowerMarker

[36]. To compare the assignment of individuals to NSS, SS, or TS

populations using different marker sets, STRUCTURE [16] was

run with k = 2, 3, 4, or 5 (i.e., assuming 2–5 populations) for each

of four different data sets:

1) 89 SSRs.

2) 847 SNPs.

3) 554 SNPs or SNP haplotypes. SNPs from the same amplicon

were grouped into haplotypes that were recoded as alleles. There

were 251 2-SNP loci and 21 3-SNP loci, as well as 282 isolated SNPs.

If the genotype of any SNP at a locus was missing in an individual,

the entire locus was treated as missing data for that individual.

4) Data sets 1 and 2 combined.

For each value of k, STRUCTURE was run three times with

burn-in and runs of 50,000 each. The admixture model was used,

allele frequencies were assumed to be correlated, and alleles were

assumed to be unlinked (an assumption that is violated by data sets

2 and 4). An individual was assigned to a population if it had $0.8

membership in that population.

For purposes of Fst calculation, individuals were designated as

SS, NSS, TS, or mixed, according to the results of STRUCTURE

using the SSR data set with k = 3. The three groups identified by

STRUCTURE were classified as Stiff Stalk (SS), Non-Stiff Stalk

(NSS), or Tropical-Semitropical (TS) based on the membership of

individuals that typify those groups [20].

Tests for selection
We used the program FDIST2 [21] to test whether any of the

values of Fst observed for individual SNPs were unusually large,

given average Fst and locus-specific heterozygosity. Parameters for
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the simulations were: demes = 3, sampled populations = 3, sample

size = 50 (following the recommendation of the FDIST2 docu-

mentation). Average Fst in the simulations = 0.1, the average

observed for the SNP data set.

Simulations
Three data sets of 847 SNPs in 259 individuals were simulated

using the program ms [37]. One was generated under the standard

neutral model, the others were generated under two different

bottleneck models, both of which are modifications from Wright et

al. [32]. Bottleneck 1 used ‘‘./ms 259 847 -s 1 -eN .0013 .0076 -eN

.00208 1’’, which produced average D [30] of about 0.4, while

Bottleneck 2 used ‘‘./ms 259 847 -s 1 -eN .0013 .05 -eN .00208 1’’,

which produced average D of about 0.2. In all cases, every SNP

was sampled from a different locus, so that all SNPs were

evolutionarily independent.

SUPPORTING INFORMATION

Dataset S1 SNP loci used in this study.

Found at: doi:10.1371/journal.pone.0001367.s001 (0.03 MB

DOC)
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