Wheat Special Report No. 45

Wheat Bibliography from Southern Africa:
Breeding, Pathology and Production

Research and Extension Literature

Thomas S. Payne

Maize and Wheat Improvement Research Network for SADC, And the CIMMYT Wheat Program

January 1997
Wheat Special Report No. 45

Wheat Bibliography from Southern Africa:
Breeding, Pathology and Production
Research and Extension Literature

Thomas S. Payne
Maize and Wheat Improvement Research Network for SADC,
And the CIMMYT Wheat Program
January 1997
Contents

1 Introduction

2 Index

10 General citations

43 Citations published or researched in collaboration with CIMMYT

ISBN: 968-6923-92-6
ISSN: 0187-7787
AGROVOC Descriptors: Wheats; Triticum; Plant breeding; Plant production; Production data; Plant pathology; Plant diseases; Research; Extension activities; Documentation; Southern Africa
AGRIS Category Codes: C30 Documentation and Information, C10 Education, F30 Plant Genetics and Breeding
Dewey Decimal Classification: 633.11016

SADC Wheat Bibliography, MWIRNET
Introduction

The impetus for this bibliography came as a guide to the Steering Committee of the Maize and Wheat Improvement Research Network for SADC (MWIRNET) to the published wheat research conducted in southern Africa. This type of information was initially critical to allow objective consideration of the relevance of research proposals submitted to MWIRNET for funding support. It is hoped that this bibliography will now serve a broader audience of administrators, researchers, extension specialists and farmers by giving them increased access to the large pool of information concerning wheat in southern Africa.

The bibliography lists citations of publications printed primarily in English. It is arranged in three sections; a country-topic index, and alphabetic author lists of literature-at-large, and research whose conduct or publication was supported by CIMMYT. The bibliography was compiled from various electronic and printed sources, and by scouring annual reports and workshop proceedings. Problems associated with assembling lists of this sort include the necessary abridgment of the corpus literature, the necessity to set a publication deadline thus resulting in failure to include contemporary citations, and duplications, omissions, typographical and citation errors, and arbitrary indexing procedures. Inaccuracy in the reporting of these citations is sincerely regretted.

Thanks for assistance in compilation of this bibliography are sincerely expressed to Edith Hesse, Alma McNab, and John Woolston at CIMMYT-Mexico, and Doug Tanner at CIMMYT-Ethiopia.

Thomas S. Payne
MWIRNET Team Leader and Wheat Breeder
January 1997
SADC Wheat Bibliography Index

ANGOLA:
- Cultivar: 23
- Cultural Practices: 493
- General: 44, 537
- Pathology: 508
- Rural extension: 24

BOTSWANA:

GENERAL:
- Abiotic stress: 1001
- Agro-climatology: 36
- Arbuscular mycorrhiza: 1168
- Acid Soils: 1010, 1017, 1051, 1058
- Barley Yellow Dwarf: 1013
- Breeding: 1001, 1026, 1065, 1136
- Cultural practices: 1024, 1055, 1141, 1172, 1173
- *Diuraphis noxia*: 1015
- *Fusarium* spp.: 1153
- Germplasm evaluation: 1021, 1046
- Heat, stress: 1009, 1138, 1173
- *Helminthosporium sativum*: 1008, 1023, 1030, 1100
- Pathology: 95, 96, 1123, 1128, 1137, 1140, 1146
- Phosphorus: 1017, 1070
- Production: 70
- Production, small-holder: 94
- *Puccinia recondita tritici*: 1011, 1036
- *Puccinia striiformis*: 1022
- *Puccinia* spp.: 1037
- Quality: 1002, 1126
- Soils: 1018
- Sustainable production: 1027, 1028, 1055
- *Triticale*: 1127, 1151, 1152

LESOTHO:

MADAGASCAR:
- Cultural practices: 254
- General: 30
- Pathology: 446
- Production potential: 368, 449, 450

MALAWI:
- Cultural Practices: 138, 330, 1082, 1102
- General:
 - Country report: 28, 57, 163, 342, 1076, 1081
 - Research report: 99, 330, 344
- Irrigation: 189, 300
 - Small-holder: 354
- Nematodes: 322
- Pathology: 98, 399
- Production:
 - Potential: 78, 368
 - Small-holder: 300, 354, 1077
- *Puccinia* spp.: 56, 424
- Rotation: 138, 1082
- Weed control: 1083
MOZAMBIQUE:
Cultural Practices: 45, 108, 220, 352
General: 107, 351, 473
Production, potential: 117
Puccinia graminis tritici: 166, 167, 494

NAMIBIA:

SOUTH AFRICA:
Acid soils: 59
Agroclimatology:
- Effective rain-fall: 112, 205
- Evapotranspiration: 132, 191
- Infra-red stress monitoring: 169, 170
- Modeling: 192, 355, 452, 515, 516, 517, 18, 519, 520
- Soil water properties: 261
- Temperature: 87, 334, 372, 373
- Water supply potential: 133, 293, 565, 566
- Water use: 87, 297, 335, 625, 626, 627

Anthracnose: 223
Barley Yellow Dwarf: 1141
- Vectors: 131
Breeding: 120, 283, 393, 1038
Brome Mosaic Virus: 160, 161, 591, 607
Brown Wheat Mite: 238
Carbon, distribution: 91, 92, 101
- Balance: 495
Cultivar: 100, 321, 585, 592
- 'Flameks': 214
- 'Karee': 118
- 'Kastell': 213
- Registration: 197
- 'Skemer': 214
- 'Tosca': 213
- 'Wilge': 394
Cultural Practices: 512, 560, 614
- Irrigation frequency: 370
- Nitrogen application timing: 181, 370
Production strategies:
- Protein: 576
- Quality: 575, 576
- Yield: 575
PUTU, wheat growth model: 517, 518, 519
- Rotation systems: 13, 614
- Seeding rate: 370
- Soil conservation: 538
- Tillage: 10, 538, 617
Cytogenetics:
- Chromosome morphology: 277
- Gene mapping: 305
- Pistillodiy: 310
- Seed sterilization: 604
- Synthetics: 401
- *Thinopyrum* addition lines: 279
- Wheat x Rye crosses: 303, 312, 317, 404
Diuraphis noxia: 1012, 1122, 1171
- Australia, potential impact: 201
- Chloroplast, effect: 239
- Control, biological: 2. 6. 436
Control, chemical: 62
 Economic threshold: 550, 558
 Seed treatment: 74, 610, 611
 Soil systemic insecticides: 549
Control, genetic:
 Breeding methodology: 72, 73, 524, 525, 552
 PI294994, monosomic analysis: 316
 Resistance, components: 555
 Resistance, inheritance: 554
 Rye-derived: 309
 Sources: 553, 557, 559, 561
 Triticum monococcum: 409
Damage assessment, grain yield: 168, 558
Ecology: 3, 601
 Genetic variation, world-wide: 441
 Host range: 8, 194
 Off-season occurrence: 4, 194
 Physiological effect: 609, 612
 Population dynamics: 1, 7, 235, 605
 Grain yield: 236
Identification: 5, 134
Research report: 600
"Virus" vector: 606, 1014, 1170
Durum Wheat: 278, 402, 403, 565
Entomology: 124, 269, 588
Experimental methodology: 61
Eye-spot: 469
Fertilizer:
 Application practices: 589
 Guidelines: 32
Research:
 Sewage sludge: 200
 Transvaal: 97
 Yield, response: 267
Fusarium spp.: 251, 619
Crown rot:
 Control, crop rotation: 282
 Cultivar response: 623
 Species comparison: 226, 227, 290, 320, 400, 620, 621, 622
 Fusarium avenaceum: 250, 253
 Fusarium graminearum: 250, 253
 Fusarium tricinctum: 252
 Glume spot: 224
 Head blight: 320, 505
 Mycotoxin production: 350, 540, 541
General: 262, 567, 1056
"Grazing" trials: 573, 574
Heat stress: 1054
Helminthosporium spp.: 502
Heterosis: 245, 246
Historical Series: 270
Irrigation:
 Deficit: 111
 Macro-nutrient interaction: 410, 412
 Micro-nutrient interaction: 411, 412
 Nitrogen interaction: 180, 181
 Scheduling: 111, 318, 319, 369, 371
 Tillage interaction: 538
 Water extraction efficiency: 437
 Wheat straw compost: 188
Leptosphaeria nodorum: 222
Lime application: 164
Maize Streak Virus: 507
Molybdenum, seed dormancy: 79, 80, 81, 345
Nematodes: 212
Nitrogen:
 Conservation tillage, interaction: 617
 Fertilizer placement: 243
 Growth and development: 88, 103, 186
 Irrigation, interaction: 180, 181
 Quality: 569
 Root gas-exchange characteristics: 102
 Salinity: 186, 187
 Soil analysis: 618
 Stress: 93
 Stress, water: 233, 234
 Translocation, partitioning and distribution: 85, 89, 90, 91, 92, 101
 Uptake: 85, 89, 90, 187
 Utilization efficiency: 60, 86
Pathology:
 Control, air-borne pathogens: 480
 Field debris mycoflora: 397, 471, 501, 590, 619
 Fungicide application: 503
 Leaf spot diseases: 498
 Review: 113, 499
 Root diseases: 289, 504
 Soil-borne diseases: 392, 500, 501
 Viruses: 491, 591
Phosphorous: 58, 84, 85, 86, 122, 158, 165
Physiology:
 Carbon assimilate, translocation: 215
 Growth rates, seedling: 307
 Leaf area index: 258
 Photoperiod: 215, 217, 373
 Plant growth and development: 573, 574
 Temperature: 373
 Vernalization: 215, 260, 536
 Water, stress: 11, 298, 389, 390, 594, 595, 596, 597, 598
 Yield, components: 257, 259, 308
 Yield, potential: 258
Potassium: 47, 256
Production potential: 120
Pseudomonad spp.: 531
Puccinia graminis tritici: 341
 Brome mosaic virus, association: 160, 161
 Disease progress: 416
 Histology: 263
 Hosts: 228
 Pathotypes: 281, 481, 483, 570
 Resistance:
 Cultivars: 534
 Inheritance: 485, 486, 1147
 Phenotypic expression: 532
 Physiology: 265
 Sources: 313, 314, 568
 Sr5: 264
 Sr24: 476, 482
 Review: 113
Puccinia recondita tritici:
- Brome mosaic virus, association: 160, 161
- Grain yield: 128
- Histology: 230
- Pathotypes: 428, 434, 435
- Quality: 231, 419
- Resistance: 1129
 - Adult-plant: 127, 420, 429, 430, 433
 - Components: 422, 426, 427, 430, 432
 - Cultivars: 533
 - Induced: 33
 - Inheritance: 425
 - *Lr22a*: 425, 429, 431
 - *Lr26*: 417, 421
 - *Lr32*: 418
 - *Lr34*: 127, 128, 129, 130, 422, 433
 - *Lr37*: 229, 230
 - Management: 415
 - *Triticum monococcum* derived: 204
- Review: 1129
- Yield, loss: 231

Pyrenophora tritici repentis: 221

Pythium spp.: 497, 506

Quality:
- 1B/1R: 268, 423
- Biscuit quality: 244, 247, 248, 249
- Bollworm damage: 269
- Cultivar, ‘Elize’: 568
- Environmental effects: 271, 272, 569, 575, 576, 578, 579
- Historical series: 270
- Micro-baking techniques: 586
- Pre-harvest sprouting: 43, 79, 80, 81
- Protein: 104, 171, 198, 273, 302, 447, 448, 576, 577, 583, 584, 585, 587
- *Puccinia* spp., effect: 128
- Water, stress: 12
- Yellow berry: 42

Ramulisporia herpotrichoides: 470, 472

Rhizoctonia solani: 26, 110, 391, 392, 526, 527, 528, 529, 530, 608, 1072

Roots: 51, 54, 207, 216, 289, 437, 438

Rotation: 180, 181

Salt Tolerance: 46, 48, 49, 186, 276

Schizaphis graminum:
- Control, biological: 69
- Distribution: 68
- Ecology: 443

Seed Production: 581

Septoria spp.: 478, 479, 590

Sodium humate: 459

Soil fertility: 9, 19, 20

Straw: 188, 211, 221, 397, 471, 501

Tillage: 16
- Conservation: 82

Triticale: 561, 1059

Ustilago spp.: 477

Water, stress: 593, 594
- Evapotranspiration: 87, 191, 452, 571, 625
- Heterosis: 245, 246
Hydraulic conductivity: 206
Infra-red monitoring: 169, 170
Lysimetric simulation: 53, 54
Nitrogen: 93, 233, 234
Post-anthesis: 11
Quality: 12
Proline, accumulation: 190
Rainfall, effective: 112, 572
Rooting, depth and density: 51, 207, 216, 437, 438
Soil, density: 52
Fertility: 19, 20
Spatial variability: 136, 192
Solar radiation: 297
Turgor potential: 135, 298, 595, 596, 598
Yield components: 246
Weed Control: 50, 55, 82, 183, 202, 405, 406, 407, 408
Zinc: 121

SOUTHERN AFRICA:
Acid soils: 1107
Agroclimatology: 1154
Barley Yellow Dwarf: 1164, 1169
Breeding: 1125, 1154, 1158, 1161, 1163, 1165, 1166
Cultural practices: 1055, 1090, 1125, 1156
Economics: 284, 1016
Environmental impact: 106
General: 580, 1125
Pathology: 1131, 1158, 1163, 1166
Proceedings: 1020, 1156, 1159
Production constraints: 220, 1035, 1125, 1161
potential: 70
small-scale: 1089, 1139, 1149
Puccinia graminis tritic: 424, 603
Quelea: 1025
Regional, germplasm evaluation: 1050, 1130, 1165
Projects: 154, 1043, 1045, 1046, 1047
Research agenda: 1157, 1160, 1163
Rural development: 195, 284
Training: 1167
Water, stress: 220
Weed control: 1029, 1155, 1175

SWAZILAND:
General: 67, 343, 382, 396
Mechanization: 384
Production, dryland: 105
Economic considerations: 66, 128, 511, 513, 514
Potential: 395, 582
Rural development: 285

TANZANIA:
Agro-climatology: 539
Barley: 1075
Breeding: 156, 182, 510, 1042, 1063, 1109, 1110, 1111, 1118, 1143, 1144
Cultural Practices: 63, 176, 185, 286, 293, 376, 1004, 1005, 1060, 1061, 1071, 1085, 1086, 1095
Fertilizer: 17, 1087, 1116
General: 368, 383
Country report: 27, 173, 174, 175, 1108, 1113, 1117
Harvest methods: 1003
Manganese deficiency: 1084
Pathology: 137, 176, 182, 240, 241, 296, 301, 1052, 1111, 1143
Phosphorus: 1114
Production, constraints: 332, 1074, 1113, 1117
Economics: 629, 630, 1039, 1046, 1064

Puccinia striiformis: 1073
Quality: 1041
Rhizoctonia solani: 1053, 1072
Seed Production: 155
Septoria nodorum: 242, 1097
Soils: 35, 293, 376, 413, 1019, 1145
Tillage, conservation: 1005
Triticale: 1108, 1119
Water, Stress: i088, 1095, 1096
Use: 232, 1031
Weed control: 628, 1078, 1079, 1080, 1120, 1121
Zinc: 1115

Zaire:
General: 1049

Zambia:
Acid Soils: 274, 275, 363, 1010, 1057, 1058
Adaptation: 78
Agro-climatology:
 - Modeling: 225
 - Boron, Deficiency: 333
 - Breeding: 1103
Cochliobolus sativus: 445
Cultivar: 602
Cultural Practices: 34, 349, 357, 374, 1006, 1007, 1092, 1150
Dambo cultivation: 162
General: 31, 159, 203, 347, 353, 364, 509, 523, 564, 1148
Helminthosporium sativum: 64, 1133, 1134, 1135
Irrigation: 348, 1031
 - Schedules: 71, 179, 359
Micronutrients: 83
Nitrogen: 71, 346, 359
 - N15 utilization: 361
Pathology: 25, 116, 184, 339, 1032, 1104
 - Review: 18, 208, 331, 338, 365, 380, 381, 444, 467, 468
Production, constraints: 1101, 1105, 1106
 - Potential: 78, 225, 1101, 1132
 - Small-scale: 398, 1091, 1149
Puccinia spp.: 424
 - Resistance, horizontal: 114
 - Incomplete: 115
Secale cereale: 362
Quality: 1099
Quelea: 210
Rain-fed production: 356, 522, 624, 1007, 1057
Rotations: 360
Seed Production: 287, 535
Soils: 266
 - Tillage: 177, 178, 1006
Triticale: 1124, 1132, 1148
Water, Stress: 522, 1057, 1124
ZIMBABWE:

Acid Soils: 141
Adaptation: 78, 1067, 1174
Agro-climatology: 328, 329, 375, 616
Breeding: 143, 193, 328, 329, 1033, 1034
Copper deficiency: 543, 544
Cultivar:
 General: 21, 22, 139, 140, 142, 144, 157, 327, 378, 379, 386, 455, 457, 458, 459, 460, 461, 462, 463, 474
 'Angwa': 39
 'Bubye': 150
 'Chiwore': 42
 'Gwebi': 152
 'Limpopo': 149
 'Ngezi': 151
 'Odzi': 144
 'Rusape': 323
 'Sanyati': 42
 'Sengwa': 324
 'Tarim 73': 38
Cultural Practices: 37, 75, 77, 109, 146, 148, 613, 1062, 1066, 1069, 1174
 Growth regulants: 487, 488, 489, 490, 1033
 Planting, date: 16, 387, 456
 Rate and spacing: 599
Entomology: 454, 465
Fertilizer: 126
Frost, avoidance: 14
General: 385, 547, 564
Country report: 29, 40, 163
Irrigation: 1062, 1112
 Scheduling: 76, 299
Maize Streak Virus: 367
Nematodes: 322
Nitrogen: 147, 492
 Leaching: 218, 219
 Metabolism: 153
 Timing: 15
Pathology: 193, 326, 355, 466, 474
Phosphorus: 147
Physiology: 145, 388, 562, 563, 615, 1174
Potassium: 542
Production, constraints: 196, 1069
 Economics: 209, 377, 1093, 1094, 1098
 Potential: 78
Puccinia spp.: 424
Quality: 325
 Pre-harvest sprouting: 1068
Residue management: 1066
Roots: 294
Summer Wheat: 125
Termite, control: 65
Water, stress: 126
 Use: 119, 299, 546, 615
Weed control: 548

15. Alvord, ED; Sandmann, WPL (1974): Further experiments on sowing date of wheat on sandveld soils in the highveld near Marandellas. Rhod. Agric. J. 71(6), 143-147. [SOWING DATE; ZIMBABWE]

32. Anonymous (1988): Fertilization guidelines for wheat production in the summer rainfall and Eastern Cape coastal areas. Farming in South Africa. 3, 4. [FERTILIZER; SOUTH AFRICA]

33. Asch, MAJ va; Rijkenberg, FHJ; Coutinho, TA (1992): Resistance induced in wheat by an avirulent race of Puccinia recondita f.sp. tritici. Plant Disease 76:4, 412-415. [PUCCINIA RECONDITA TRITICI; RESISTANCE; SOUTH AFRICA]

SADC Wheat Bibliography, MWIRNET 12

64. Brandle, JE; Namwila, JCP; Little, R (1987): Effect of plant architecture on levels of Helminthosporium sativum infection on spring wheat grown in Zambia. Crop Protection 6(3), 153-156. [HELMINTHOspORIUM SATIVUM; ZAMBIA]

66. Brook, CE (1972): Swaziland: The economic potential for wheat and maize as complementary or alternative crops in the middleveld. Misc. report no. 92 ed. Agricultural Research Division, Malkerns. [ECONOMIC POTENTIAL; SWAZILAND]

70. Bunting, AH; Bunting, EJ; Choudhri, MB (1987): Wheat production potential in Africa... 169 pages. [EAST AFRICA; SOUTHERN AFRICA]

71. Bunyolo, A; Munyinda, K; Karamanos, RE (1985): The effect of water and nitrogen on wheat yield on a Zambian soil. II. Evaluation of irrigation schedules. Communications in Soil Science and Plant Analysis 16(1), 4333. [IRRIGATION; NITROGEN; ZAMBIA]

76. Cackett, KE (1970): Irrigation of wheat: a detailed explanation on scheduling. Mod. Fmg. 6, 29-41. [IRRIGATION; ZIMBABWE]

78. Cackett, KE; Wall, PC (1971): The effect of altitude and season length on the growth and yield of wheat in Rhodesia. J. Agric. Res. 9(2), 107-120. [MALAWI; ZAMBIA; ZIMBABWE]

82. Chedzey, J (1986): Conservation tillage in South Africa: weed control programmes in the rotation maize/wheat in high rainfall conditions or under irrigation. In: Conservar el suelo. 103-111. [CONSERVATION TILLAGE; SOUTH AFRICA; WEED CONTROL]

89. Collins, MC; Cresswell, CF (1982): Uptake and distribution of nitrogen in two cultivars of winter wheat grown under different nitrogen regimes. Crop Prod. 11, 144-146. [NITROGEN; SOUTH AFRICA; WATER USE]

90. Collins, MC; Cresswell, CF (1983): The uptake and distribution of nitrogen in two varieties of winter wheat. Crop Prod. 12, 92-93 [NITROGEN; SOUTH AFRICA]

91. Collins, MC; Cresswell, CF (1984): Distribution of carbon and nitrogen in selected wheat varieties. Crop Prod. 13(37), [NITROGEN; SOUTH AFRICA]

92. Collins, MC; Cresswell, CF (1986): Influence of the level of nitrogen application on the carbon and nitrogen distribution in selected wheat varieties. In: Fundamental, ecological and agricultural aspects of nitrogen metabolism in higher plants. (Eds: Lambers, JH; Neeteson, JJ ed; Stulen, J), South Africa, [NITROGEN; SOUTH AFRICA]

101. Cramer,MD; Lewis,OAM (1993): The influence of NO3- and NH4+ nutrition on the carbon and nitrogen partitioning characteristics of wheat and maize plants. Plant and Soil 154(2), 289-300. [NITROGEN; SOUTH AFRICA]

102. Cramer,MD; Lewis,OAM (1993): The influence of NO3- and NH4+ nutrition on the gas exchange characteristics of the roots of wheat and maize plants. Annuals of Botany 72(1), 37-46. [NITROGEN; ROOTS; SOUTH AFRICA]

103. Cramer,MD; Lewis,OAM (1993): The influence of nitrate and ammonium nutrition on the growth of wheat and maize plants. Annuals of Botany 72(4), 359-365. [NITROGEN; SOUTH AFRICA]

104. Craven,GH (1977): Growth, physiology and endosperm protein composition of wheat cultivars grown under different conditions. Crop Prod. 6, 13-22. [QUALITY; SOUTH AFRICA]

164. Folscher, WJ; Barnard, RO; Horne, JJ; Yuuren, JA van (1986): Growth of wheat with heavy lime application. Tropical Agriculture (Trinidad) 63(2), 132-136. [LIME, SOUTH AFRICA]

177. Gill, KS; Aulakh, BS (1990): Wheat yield and soil bulk density response to some tillage system on an Oxisol. Soil and Tillage Research 18(1), 37-45. [SOILS; ZAMBIA]

183. Halderen, A van; Green, JR; Schneider, DJ (1990): An outbreak of suspected Phalaris staggers in sheep in the Western Cape province. Journal of the South African Veterinary Association 61(4), 39-40. [SOUTH AFRICA]

184. Hartman, GL; Sinclair, JB (1992): Cultural studies on Dactuliochaeta glycines, the causal agent of red leaf blotch of soybeans. Plant Disease 76(8), 847-852. [PATHOLOGY; ZAMBIA]

188. Haylett, DG (1969): Wheat straw compost for irrigated wheat. Agroplantae 1, 139-148. [IRRIGATION; SOUTH AFRICA; STRAW]

189. Hearn, AB; Wood, RA (1964): Irrigation-control experiments on dry-season crops (maize, wheat) in Nyasaland. Em. J. Exp. Agric. 32(125), 1-17. [IRRIGATION; MALAWI]

197. Howard, NL; Lehman, S (1980): Polyacrylamide gel electrophoretic separation of wheat gliadin fractions for cultivar identification and registration. Crop Prod. 9, 61-63. [GLADINS; SOUTH AFRICA]

198. Howard, NL; March, ER; Laubscher, J; Hemingway, IC (1981): Protein content of South African wheat. Crop Production (S. Africa) 10, 27-29. [QUALITY; SOUTH AFRICA]

201. Hughes, RD; Maywald, GF (1990): Forecasting the favourableness of the Australian environment for the Russian wheat aphid, Diuraphis noxia (Homoptera: Aphididae), and its potential impact on Australian wheat yields. Bull. Ent. Res. 80 (2), 165-175. [DIURAPHIS NOXIA]

213. Jouber, GD (1972): Two newcomers to our wheat fields: Kasteel and Tosca. Farming in South Africa 48(8), 16-18. [CULTIVAR; SOUTH AFRICA]

215. Jouber, GD (1977): Effect of vernalization and different photoperiods on the translocation of 14C-assimilates in wheat. Agroplanta 9, 35-40. [PHOTOPERIOD; SOUTH AFRICA; TRANLOCATION; VERNALIZATION]

221. Kemp, GHJ; Pretorius, ZA; Jaarsveld, M van (1990): The occurrence of Pyrenophora tritici repens on wheat debris in the eastern Orange Free State. Phytophylactica 22(3), 363-364. [PYRENOPHORA TRITICI REPENS; SOUTH AFRICA]

226. Klaasen, JA; Matthee, FN; Marasas, WFO; Schalkwyk, DJ van (1991): Comparative isolation of Fusarium species from plant debris in soil, and wheat stubble and crowns at different locations in the southern and western Cape. Phytophylactica 23(4), 299-307. [FUSARIUM SPP; SOUTH AFRICA]

227. Klaasen, JA; Matthee, FN; Marasas, WFO; Schalkwyk, DJ van (1992): Survey of Fusarium species associated with crowns of healthy-head and white-head wheat plants in the southern and western Cape province. Phytophylactica 24(1), 85-94. [FUSARIUM SPP; SOUTH AFRICA]

242. Kuwite, CA; Hughes, GR; Danial, DL (1995): Expression of components of resistance to Septoria nodorum blotch of wheat at different growth stages. IN: Breeding for disease resistance with emphasis on durability. pp 139-142. Wageningen Agricultural University, Netherlands. [SEPTORIA NODORUM; TANZANIA]

249. Labuschagne, MT; Coetsee, MCB; Deventer, CS van (1996): General combining ability of six genotypes of spring wheat for biscuit making quality characteristics. Plant Breeding. 115:4, 279-281. [QUALITY; SOUTH AFRICA]

251. Lamprecht, SC; Marasas, WFO; Knox Davies, PS; Calitz, FJ (1990): Seed treatment and cultivar reaction of annual Medicago species and wheat to Fusarium avenaceum and Fusarium graminearum Gr. 1. Phytophylactica 22(2), 201-208. [FUSARIUM SPP; SOUTH AFRICA]

252. Lamprecht, SC; Marasas, WFO; Wyk, PS van; Knox-Davies, PS (1988): Fusarium tricinctum (fungi: Hypomyces) in South Africa - morphology and pathogenicity Bothalia 18(2), 189-194. [FUSARIUM SPP; SOUTH AFRICA]
253. Lamprecht, SC; Marsaa, WFO; Knox-Davis, PS; Calitz, FJ (1990): Cross pathogenicity of Fusarium avenaceum and F. graminearum Gr. 1 to Medicago truncatula and wheat. Phytophylactica 22(2), 209-211. [FUSARIIUM SPP; SOUTH AFRICA]

256. Laubscher, EW (1980): The role of potassium in wheat production in the western cape (S. Africa). In: The role of potassium in crop production. 1979 Bern, Switzerland, 83-88. [POTASSIUM; SOUTH AFRICA]

258. Laubscher, EW (1982): An evaluation of the influence of wheat leaf area index upon yield potential. Crop Prod. 11, 194-197. [LEAF AREA; SOUTH AFRICA; YIELD POTENTIAL]

263. Lennox, CL; Rijkenberg, FHI (1989): Scanning electron microscopy study of infection structure formation of Puccinia graminis f.sp. tritici in host and non host cereal species. Plant Pathology 38(4), 547-556. [PUCCINIA GRAMINIS TRITICI; SOUTH AFRICA]

265. Lennox, CL; Staden, J van; Rijkenberg, FHI (1993): Endogenous cytokinin levels and wheat stem rust resistance. South African Journals of Botany 59(6), 633-637. [PUCCINIA GRAMINIS TRITICI; SOUTH AFRICA]

268. Lill, D van; Howard, NL; Niekerk, HA van (1990): The dough handling properties of two South African wheats with the 1B/1R chromosome translocation. South African Journal of Plant and Soil 7(3), 197-200. [QUALITY; SOUTH AFRICA]

269. Lill, D van; Miles, C; Scott, DE; Roux, J le (1994): Reduction in hard bread wheat quality caused by American bollworm (Lepidoptera: Heliothis armigera) damage. Journal of Cereal Science 19(3), 283-289. [ENTOMOLOGY; QUALITY; SOUTH AFRICA]

270. Lill, D van; Purchase, JL (1995): Directions in breeding for winter wheat yield and quality in South Africa from 1930 to 1990. Euphytica 82(1), 79-87. [BREEDING; QUALITY; SOUTH AFRICA]

278. Littlejohn, GM; Pienaar, R de V (1994): The transfer of Thinopyrum-derived leaf rust resistance from common wheat to durum wheat. Plant Breeding 113(1), 58-64. [DURUM; Puccinia recondita tritici; SOUTH AFRICA; THINOPYRUM SPP.]

279. Littlejohn, GM; Pienaar, R de V (1995): Thinopyrum distichum addition lines: production, morphological and cytological characterisation of 11 disomic addition lines and stable addition-substitution lines. Theoretical and Applied Genetics 90(1), 33-42. [SOUTH AFRICA; THINOPYRUM DISTICUM]

288. Maas, EMC; Bezuidenhout, JJ; Kotze, JM; Grimbeek, RJ (1989): A quantitative method for the simultaneous assessment of take-all of wheat in field plots and the isolation of the pathogen Phytophylactica 21(2), 171-174. [SOUTH AFRICA; TAKE-ALL.]

298. Maire, C Le; Oosterhuis, DM; Streutker, A (1984): Use of the Scholander pressure chamber of assess plant water status on a farm scale. Crop Prod. 13(8), 3. [SOUTH AFRICA; WATER, STRESS]

303. Marais, GF (1988): Effects of wheat chromosome 1D telosomes on hybrid seed development in wheat X rye crosses. Plant Breeding 100(2), 157-159. [CYTOGENETICS; RYE; SOUTH AFRICA]

311. Marais, GF; Marais, AS (1990): The assignment of a Thinopyrum distichum (Thunb) Love derived translocation to the long arm of wheat chromosome 7D using endopeptidase polymorphisms. Theoretical and Applied Genetics 79(2), 182-186. [CYTOGENETICS; SOUTH AFRICA; THINOPYRUM DISTICUM]

312. Marais, GF; Marais, AS (1994): The derivation of compensating translocations involving homoeologous group 3 chromosomes of wheat and rye. Euphytica 79(1-2), 75-80. [CYTOGENETICS; SOUTH AFRICA]

320. Marasas, WFO; Voigt, WGI; Lamprecht, SC; Wyk, PS van (1988): Crown rot and head blight of wheat caused by Fusarium graminearum groups 1 and 2 in the southern Cape Province. Phytopathologia 20(4), 385-389. [FUSARIUM GRAMINEARUM; SOUTH AFRICA]

322. Martin, GC (1962): Population levels of nematodes in roots and soil around the root zones of tea, sugar-cane, tobacco and wheat grown in the Federation of Rhodesia and Nyasaland. Rhodes Agric. J. 59(1), 28-35. [MALAWI; NEMATODES; ZIMBABWE]

328. Mashiringwani, NA; Schweppenhauser, MA (1991): Yield adaptation of wheat to a range of temperature condition. Zimbabwe Journal of Agricultural Research. 29(1), 65-75. [AGRO-CLIMATOLOGY; BREEDING; ZIMBABWE]
329. Mashiringwani, NA; Schweppenhauser, MA (1992): Phenotypic characters associated with yield adaptation of wheat to a range of temperature conditions. Field Crops Research 29(1), 69-77. [AGRO-CLIMATOLOGY; BREEDING; ZIMBABWE]

332. McKeague, JA; Modestus, WK (1991): Water as a limiting factor in wheat production in two areas of the northern highlands of Tanzania. Tropical Agriculture (Trinidad) 68(4), 349-355. [TANZANIA; WATER, STRESS]

345. Mthi, AT; Cairns, ALP (1994): Molybdenum deficiency in wheat results in lower dormancy levels via reduced ABA. Seed Science Research 4(3), 329-333. [MOLYBDENUM; SOUTH AFRICA]

347. Moono, DMS (1979): Climate, phenology and yield of wheat in Zambia. 8 pp. [PRODUCTION; ZAMBIA]

SADC Wheat Bibliography, MWIRNET 28

373. Nel, PC; Small, JGC (1973): Photoperiod and temperature effects on yield of four South African wheat cultivars. Agroplantae 5(2), 25-32. [PHOTOPERIOD; SOUTH AFRICA; TEMPERATURE, STRESS]

400. Pienaar, R de; Marais, GF (1986): Crown rot of wheat caused by Fusarium crookwellense. Phytophylactica 18*2), 91-92. [CROWN ROT; FUSARIUM SPP; SOUTH AFRICA]

404. Pienaar, RV de; Marais, GF (1986): Effect of D-genome chromosome substitutions on hybrid seed development and viability in T. turgidum var. durum X S. cereale crosses. Plant Breeding 97(2), 112-118. [CYTOGENETICS; DURUM; RYE; SOUTH AFRICA]

407. Pool, CF; Du Toit, D; Smit, HA (1994) Influence of soil properties on imazamethabenz methyl and clorsulfuron/metsulfuron methyl activity. German Journal of Agriculture.. [SOUTH AFRICA; WEED CONTROL]

408. Pool, CF; Du Toit, D; Smit, HA (1994) The influence of growth stage on the efficacy of three wild oat herbicides towards Pcrumum schinzi Applied Plant Science. [OATS WII D, SOUTH AFRICA; WEED CONTROL]

423. Pretorius, ZA; Marais, GF; Smith, J; Roux, J le; Kloppers, FJ (1994): Absence of the 1BL/1RS chromosome translocation in the Kavkaz-derived wheat cultivar Tugela. South African Journal of Plant and Soil 11(3), 130-133. [BREEDING; CYTOGENETICS; PATHOLOGY; SOUTH AFRICA]

424. Pretorius, ZA; Purchase, PL (1990): Virulence characteristics of wheat leaf rust in Zimbabwe, Zambia and Malawi. Phytophylactica 22(1). 141-142. [MALAWI; PUCCINIA RECONDITA TRITICI; ZAMBIA; ZIMBABWE]

426. Pretorius, ZA; Rijkenberg, FHJ; Wilcoxson, RD (1986): Growth stage and leaf position effects on resistance of wheat to leaf rust. Phytopath. 76(10), 1147. [PUCCINIA RECONDITA TRITICI; SOUTH AFRICA]

430. Pretorius,ZA; Rijkenberg,FHJ; Wilcoxson,RD (1988): Effects of growth stage, leaf position and temperature on adult plant resistance of wheat infected by Puccinia recondita f.sp. tritici. Plant Pathology 37(1), 36-44. [Puccinia Recondita Tritici; South Africa]

439. Purchase, JL; Roux, J Le; Tonder, HAJ van (1992): The effects of various seed treatments on the germination, coleoptile length and emergence of South African winter wheats. South African Journal of Plant and Soil 9(3), 139-143. [Pathology; South Africa]

440. Puterka,GJ; Black,WC; Steiner,WM; Burton,RL (1993): Genetic variation and phylogenetic relationships among worldwide collections of the Russian wheat aphid, Diuraphis noxia, inferred from allozyme and RAPD-PCR markers. Heredity 70(6), 604-618. [DIURAPHIS NOXIA; South Africa]

447. Randall, PG; Manley, M; McGill, AEJ; Taylor, JRN (1993): Relationship between the high Mr subunits of glutenin of South African wheats and end-use quality. Journal of Cereal Science 18(3), 251-258. [QUALITY; SOUTH AFRICA]

452. Reid, PCM; de Jager, JM (1982): The estimation and distribution of potential maize and wheat yields and crop water requirements in South Africa (Irrigation). Crop Production (S. Africa) 11, 9-12. [IRRIGATION; SOUTH AFRICA; WATER, USE]

453. Reid, PCM; Jager, JM de (1982): The estimation of distribution of potential maize and wheat yields and crop water requirements in South Africa. Crop Prod. 11, 9-12. [SOUTH AFRICA; WATER, USE]

460. Rhodesia, Dept Conservation and Extension (1972): Recommended variety list for the more important crops in Rhodesia. Rhod. Agric. J. 69, 103-110. [CULTIVAR; ZIMBABWE]

477. Roux, J Le; Muller, D (1985): Chemical seed treatments to control seed-borne stinking and loose smut diseases of wheat in South Africa. Phytophylactica 17(3), 149-151. [SOUTH AFRICA; USTILAGO SPP.]

478. Roux, J Le (1984): Detection of Septoria nodorum resistance and tolerance during the seedling and adult plant stages. Phytophylactica 16(2), 77-84. [SEPTORIA NODORUM; SOUTH AFRICA]

479. Roux, J Le (1984): Effect of Septoria nodorum on kernel mass, kernels per ear, mass per ear and mass per plot of spring wheat cultivars in the winter rainfall area of South Africa. Phytophylactica 16(2), 85-88. [SEPTORIA NODORUM; SOUTH AFRICA]

489. Rowland, PEM (1974): Variety and site as factors modifying the effect of CCC on spring wheat. Rhod. Agric. J. 71. 139-144. [CCC; CULTIVAR; ZIMBABWE]

503. Scott, DB. (1996): Disease control and yield improvement obtained with fungicide application to spring wheat in South Africa. Crop Protection. 15: 167-170. [DISEASE CONTROL; SOUTH AFRICA]

SADC Wheat Bibliography, MWIRNET 36
527. Smith, EM; Wehner, FC (1987): Biological and chemical measures integrated with deep soil cultivation against crater disease of wheat. Phytophylactica 19(1), 87-90. [RHIZOCTONIA SOLANI; SOUTH AFRICA]

529. Smith, EM; Wehner, FC (1989): In vivo and in vitro effects of alternative crops on Rhizoctonia solani associated with crater disease of wheat. Phytophylactica 21(1), 61-64. [RHIZOCTONIA SOLANI]

534. Sydenham, EW; Marasas, WFO; Shephard, GS; Nieuwenhuis, JJ (1991): Production of mycotoxins by selected Fusarium graminearum and F. crookwellense isolates. Food Additives and Contaminants 8(1), 31-41. [FUSARIUM SPP; SOUTH AFRICA]

544. Tanner, PD; Cooper, GRC; Madziva, TFA; Vere, IP (1981): Copper deficiency: Probable cause of the purpling symptom in irrigated winter wheat. Zimbabwe Agric. J. 78, 185-187. [COPPER; ZIMBABWE]

548. Thomas, PEL; Schwarzel, PJ (1979): Weed competition in Rhodesian wheat. Rhod. Agric. J. 76(2), 73-75. [WEED CONTROL; ZIMBABWE]

SADC Wheat Bibliography, MWIRNET 37

565. Vanassche, FMG; Laker, MC (1991): The use of certain plant parameters to determine the profile available water capacity of durum wheat at different growth stages. Water SA 17(2), 161-166. [DURUM; SOUTH AFRICA; WATER, USE]

566. Vanassche, FMG; Laker, MC (1993): Determination of the profile available water capacity of maize and wheat at different growth stages. Water SA 19(2), 139-146. [SOUTH AFRICA; WATER, USE]

568. Van der Mey, JAM; Howard, NL; Kotze, J; Le Roux, J; Pretorius, ZA (1981): The reconstitution of stem rust resistance and protein characteristics in Elize spring wheat through a back-crossing programme. Crop Production (S. Africa) 10, 31-33. [PUCCINIA GRAMinis TRITICI; SOUTH AFRICA]

569. van der Mey, JAM; Oliverier, HM (1978): Effect of cultivar nitrogenous fertilization and precipitation on wheat quality parameters in the irrigation areas of Transvaal. Crop Prod. 8, 35-45. [NITROGEN; QUALITY; SOUTH AFRICA]

571. Van Eeden, FJ (1982): Water use patterns by dryland wheat on a vertic soil. Crop Production (S. Africa) 11, 47-54 [SOUTH AFRICA; WATER, USE]

577. Van Lill, D; Wentzel, BS; Smith, MF; De Villiers, OT (1993): Protein extraction procedures and correlation between quantitative protein composition and bread-baking quality of five South African winter wheat cultivars. South African Journal of Plant and Soil 10(4), 162-167. [QUALITY; SOUTH AFRICA]

581. Venter, HA van de; Barla-Szabo, G; Ybema, SG (1993): A study of single and multiple stress seed vigour tests for undeteriorated seed lots of wheat. Seed Science and Technology 21(1), 117-125. [SEED PRODUCTION; SOUTH AFRICA]

608. Wehner, FC; Smith, EM; Barnard, RO; Kothe, JM (1987): Control of crater disease of wheat, caused by Rhizoctonia solani, with phosphorous acid. Phytophylactica 19(4), 495-498 [RHIZOCTONIA SOLANI; SOUTH AFRICA]

613. Whingwiri, EE; Mataruka, D; Ntungakwa, C (1984): A survey of commercial wheat production practices in the Mazowe/Bindura Area. Zimbabwe Agric. J. 81, 139-141. [CULTURAL PRACTICES; ZIMBABWE]

616. Wilson, JHH; Williams, JH (1977): Relations between atmospheric temperature at ear level in a wheat crop and in a Stevenson screen or on bare ground. Rhod. J. Agric. Res. 15, 99-100. [AGRO-Climatology; ZIMBABWE]

619. Wyk, PS van; Schootz, DJ; Los, O (1986): A selective medium for the isolation of Fusarium spp. from soil debris. Phytophylactica 18(2), 67-69. [FUSARIUM SPP; SOUTH AFRICA]

620. Wyk, PS van; Los, O; Marasas, WFO (1988): Pathogenicity of a new Fusarium sp. from crown rot of wheat in South Africa. Phytophylactica 20(1), 73-75. [FUSARIUM GRAMINEARUM; SOUTH AFRICA]

621. Wyk, PS van; Los, O; Pauer, GDC; Marasas, WFO (1987): Geographic distribution and pathogenicity of Fusarium species associated with crown rot of wheat in the Orange Free State, South Africa. Phytophylactica 19(3), 272-274. [CROWN ROT: FUSARIUM SPP; SOUTH AFRICA]

623. Wyk, PS van; Pauer, GDC; Rheeder, JP; Los, O; Marasas, WFO (1988): Reaction of different wheat cultivars to crown rot caused by Fusarium graminearum Group 1. Phytophylactica 20(1), 69-72. [FUSARIUM GRAMINEARUM; SOUTH AFRICA]

SADC Wheat Bibliography

Research or publication supported, in part, by CIMMYT

1015. Burnetl, P.A; Cuellar, E; Gilchrist, L.I; Rodriguez, R (1984): The extent of Freestate streak and Diuraphis noxia in Mexico. In: Barley yellow dwarf, a proceedings of the workshop December 6-8, 1983. CIMMYT Mexico. (Eds: Burnetl, P.A; Cuellar, E) CIMMYT, Mexico DF. [DIURAPHIS NOXIA; MEXICO; SOUTH AFRICA]

SADC Wheat Bibliography, MWIRNET

SADC Wheat Bibliography, MWIRNET 45

1072. Meyer, L; Wehner, FC; Kuwite, CA; Pieiring, L. (1996): Canker disease and patchy stunting of wheat caused by the same strain of Rhizoctonia solani. Plant Disease. 80: 1079. [RHIZOCTONIA SOLANI; SOUTH AFRICA; TANZANIA]

1088. Modestus, WK; McKeague, JA (1990): Water as a limiting factor in wheat production at two areas of the northern highlands of Tanzania. In: Sixth Regional Wheat Workshop for Eastern, Central and Southern Africa. (Eds: Tanner, DG; van Ginkel, M; Mwangi, W) CIMMYT, Mexico, D.F., pp. 166-172. [TANZANIA; WATER, STRESS]

SADC Wheat Bibliography, MWIRNET 52

